Image Processing for Physicists

Prof. Pierre Thibault pthibault@units.it

Interferometric imaging and

imaging with Fourier amplitudes

Overview

- The phase problem
- Holography: on/off-axis
- Grating interferometric imaging
- Imaging using far-field amplitude measurements
 - Fourier transform holography
 - Coherent diffraction imaging
 - Ptychography

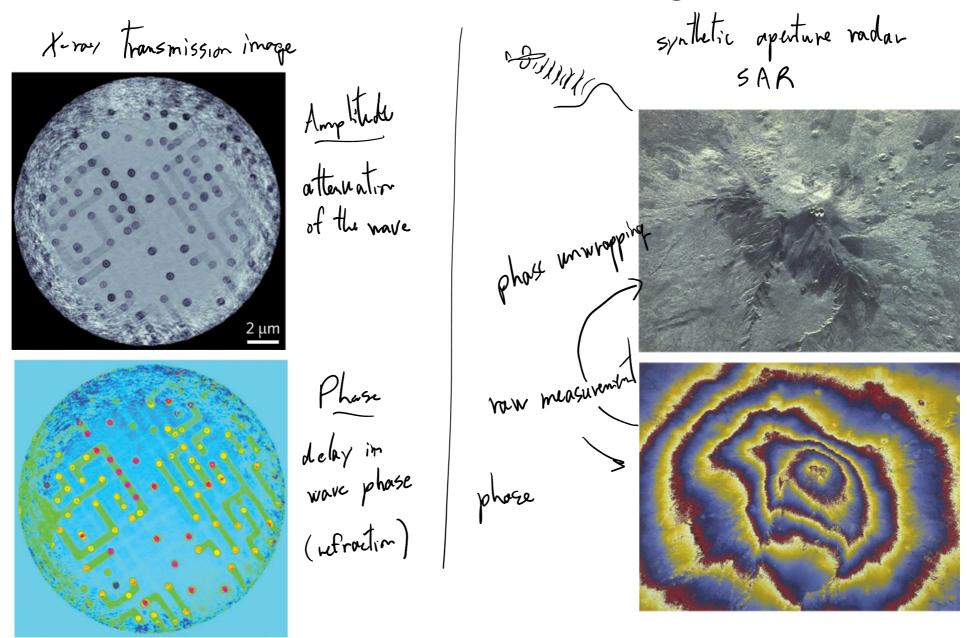
Wave propagation

$$\begin{aligned} \mathcal{V}(\vec{r};z) &= \int^{-1} \left\{ \mathcal{F} \left\{ \mathcal{V}(\vec{r};z=o) \right\}^{2} \exp\left(-i\pi \mu^{2}\lambda z\right) \right\} \\ &\quad \text{unit less} \end{aligned}$$

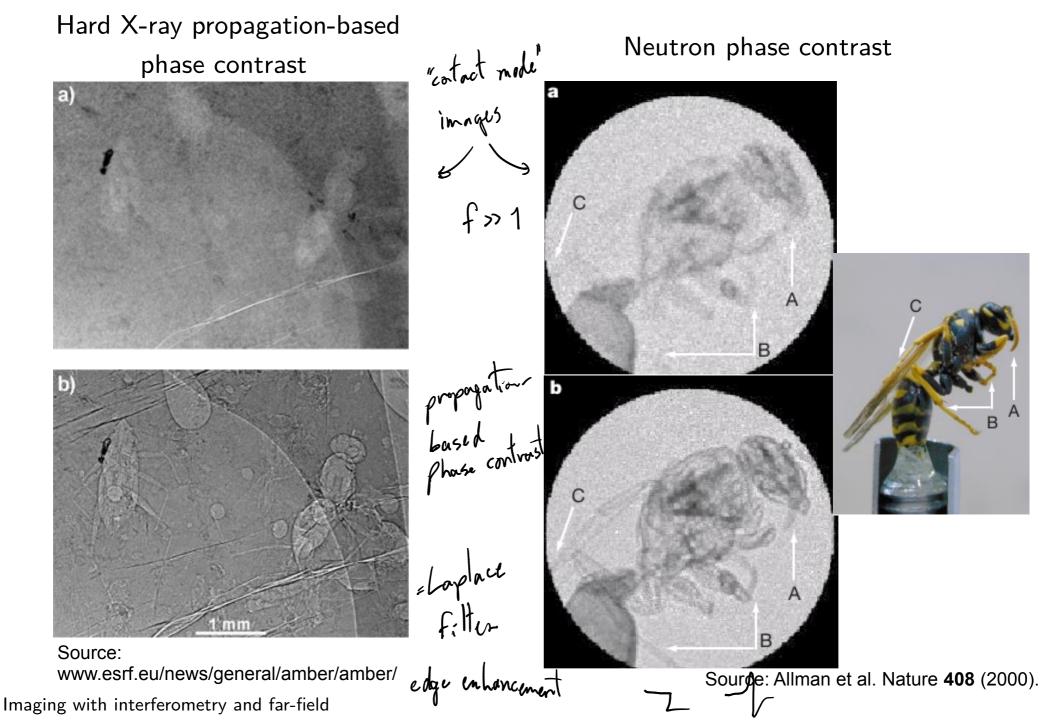
$$\begin{aligned} \mathcal{I}_{\alpha} &= \left\{ \lambda_{\alpha} \right\}^{2} \\ &\quad \mathcal{I}_{\alpha} \\ &\quad \mathcal{I}$$

 $\frac{q^2}{\lambda z} = f$ $\frac{1}{2} = f$

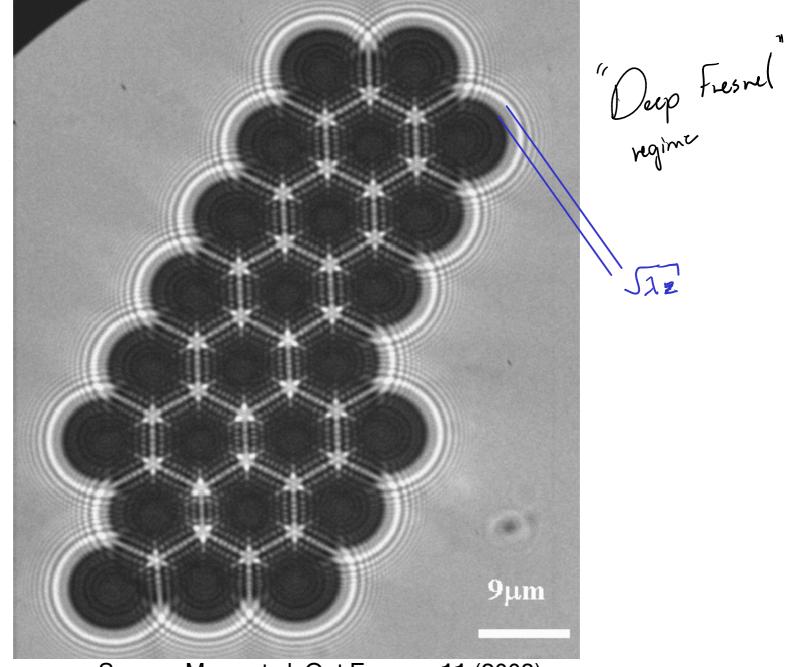
Complex-valued images



Phase-contrast



In-line holography



Source: Mayo et al. Opt Express 11 (2003).

In-line holography

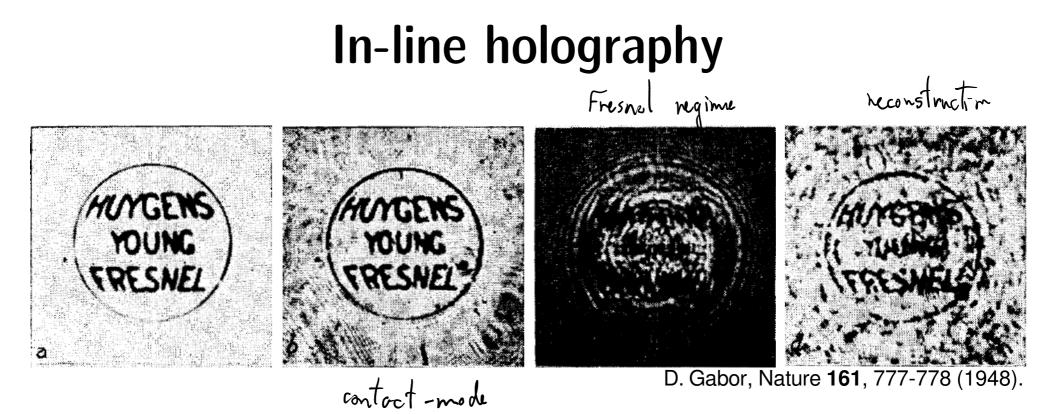
$$M_{epsure} \quad I(\vec{r}) = |\Psi(\vec{r};z)|^{2}$$

$$If # The illumination is a plane monochromatic nave
the transmission of the imaged object is weak:
$$\Psi(\vec{r};z=0) = A(1+\varepsilon(\vec{r}))$$

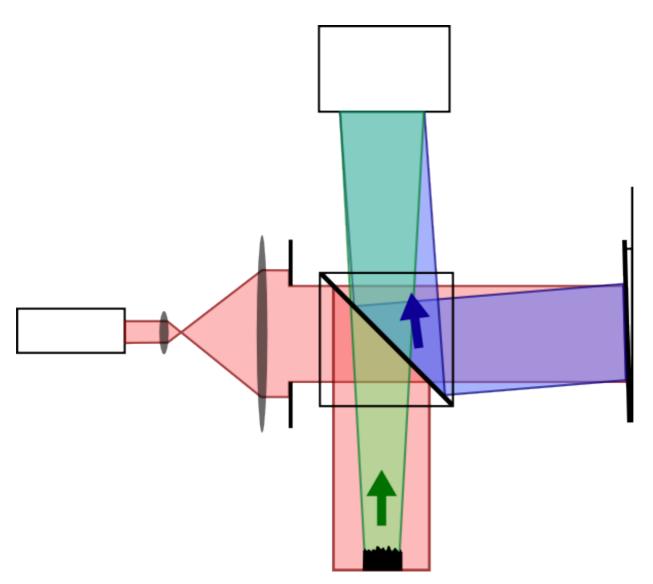
$$I(\vec{r}) = |A(1+\varepsilon(\vec{r};z))|^{2} = |A^{2}|(1+\varepsilon(\vec{r};z)+\varepsilon^{2}(\vec{r};z))+|\varepsilon(\vec{r};z)|^{2})$$

$$uniform \left(\begin{array}{c}propagated\\propagated$$$$

The phase problem

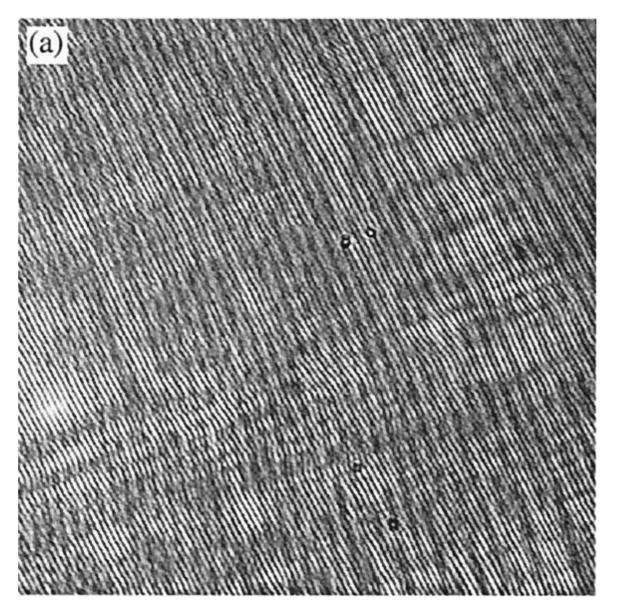


Fringe interferometry



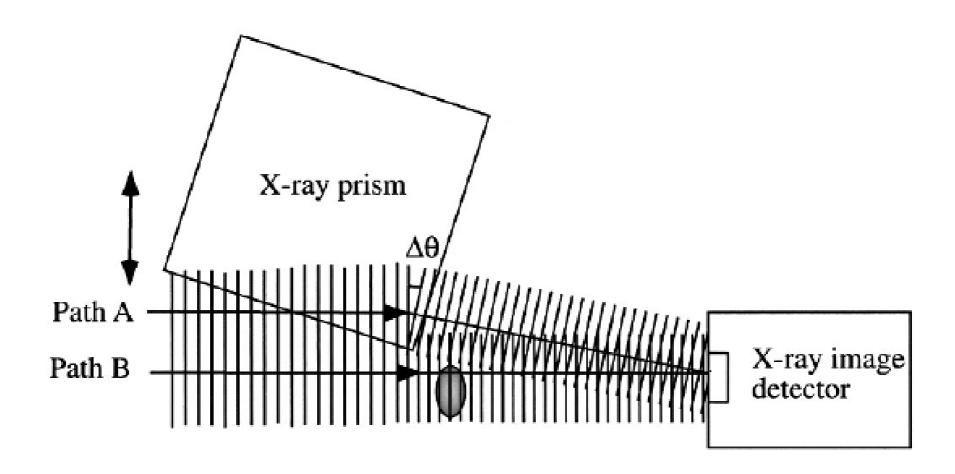
Twyman-Green interferometer

Fringe interferometry

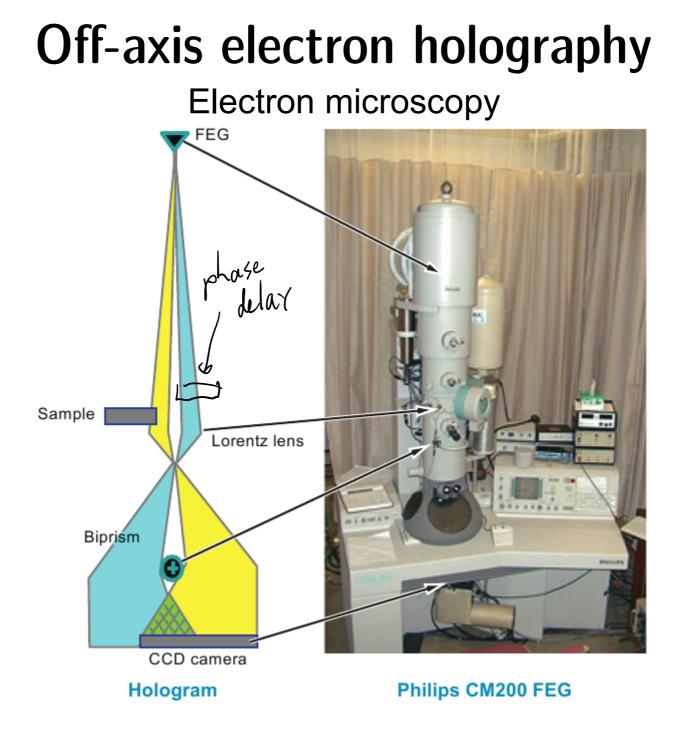


Source: Cuche et al. Appl. Opt. **39**, 4070 (2000)

Off-axis X-ray holography

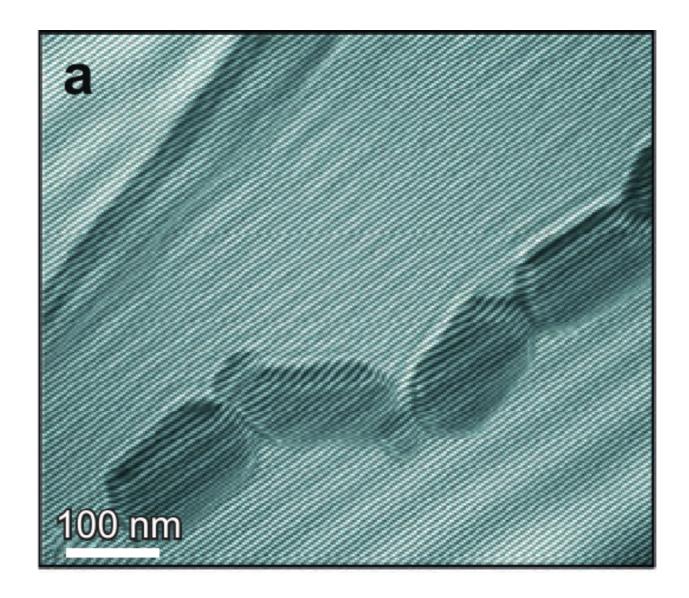


Source: Y. Kohmura, J. Appl. Phys. 96, 1781-1784 (2004)



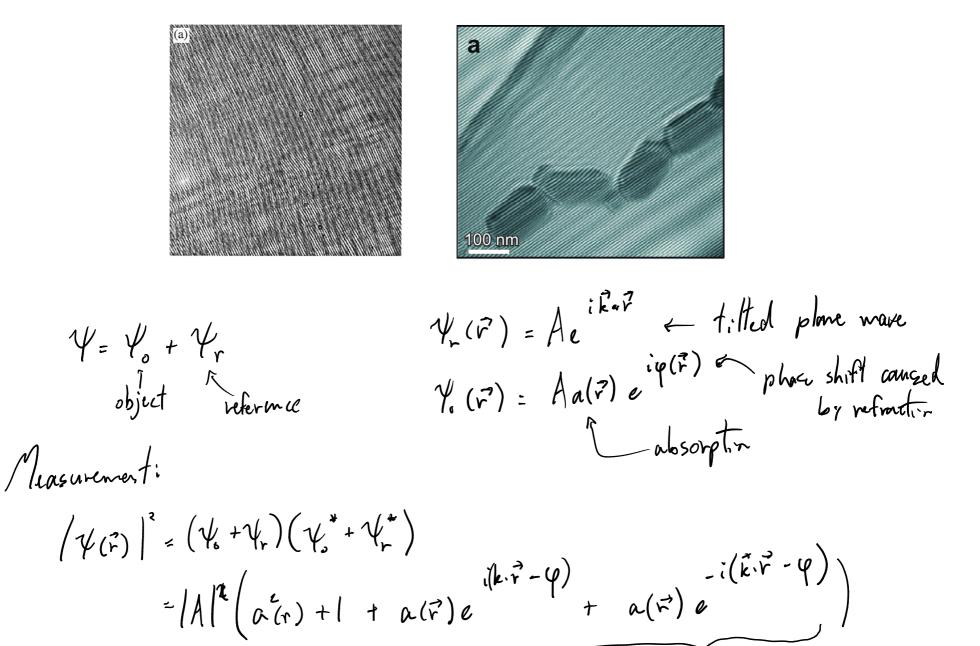
Source: M. R. McCartney, Ann. Rev. Mat. Sci. 37 729-767 (2007)

Off-axis electron holography

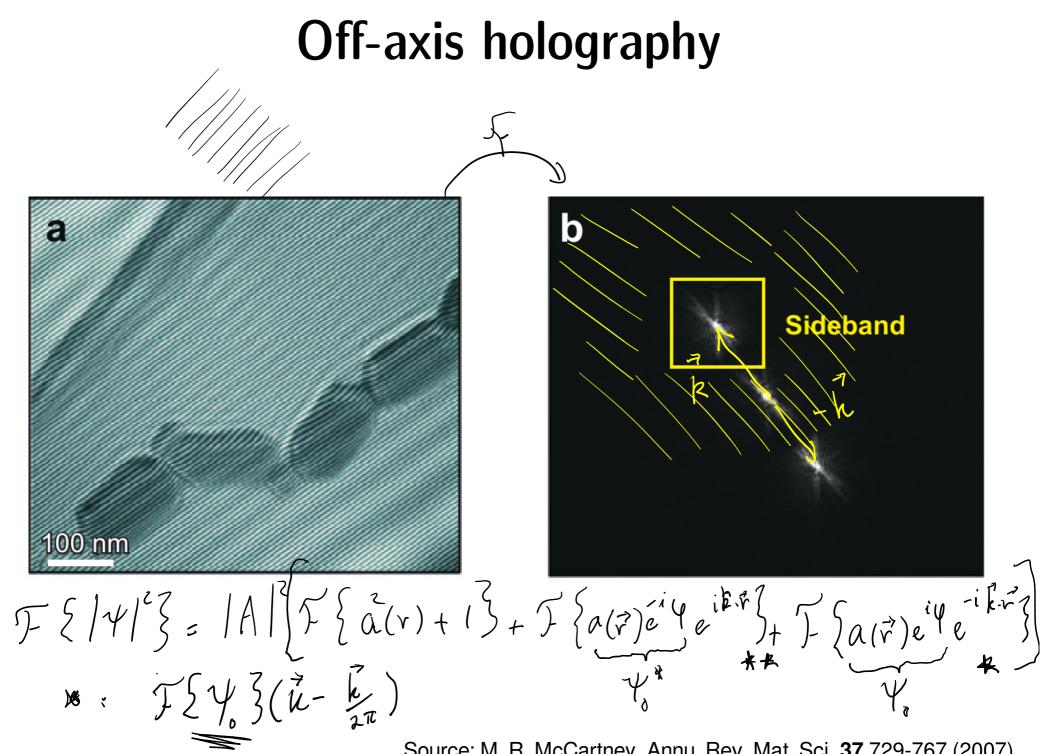


Source: M. R. McCartney, Annu. Rev. Mat. Sci. 37 729-767 (2007)

Fringe interferometry



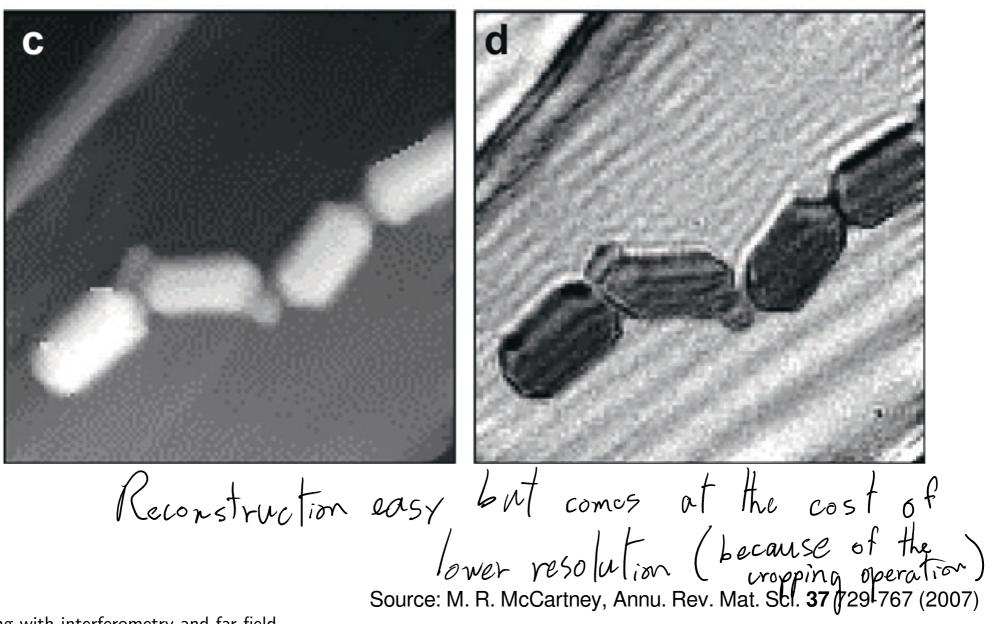
 $2 \alpha(\vec{r}) \cos(\vec{k}\cdot\vec{r} - \psi)$



Imaging with interferometry and far-field

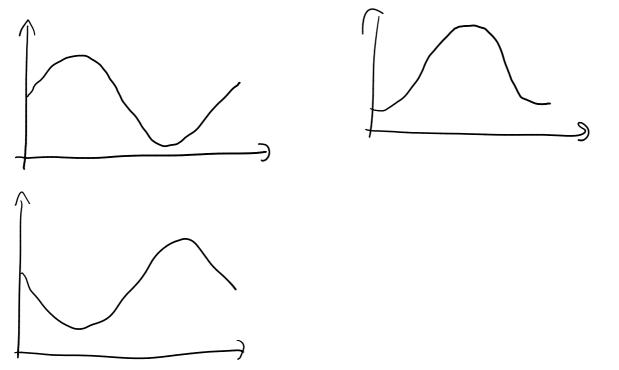
Source: M. R. McCartney, Annu. Rev. Mat. Sci. **37** 729-767 (2007)

Off-axis holography

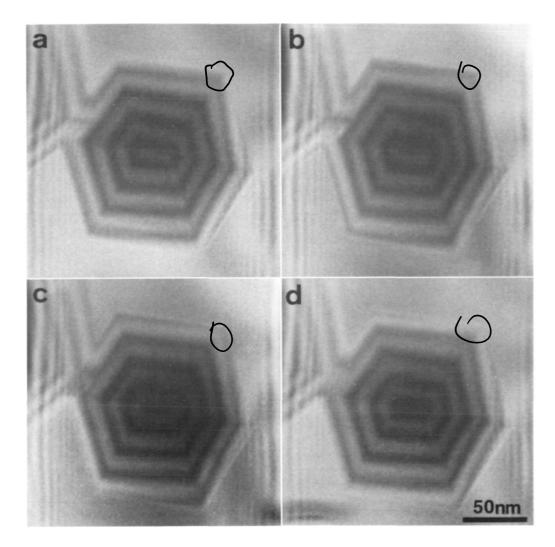


Phase stepping

- Encoding phase **and** amplitude in a single image has a price: resolution
 - \rightarrow Take more than one image, changing the reference in each.



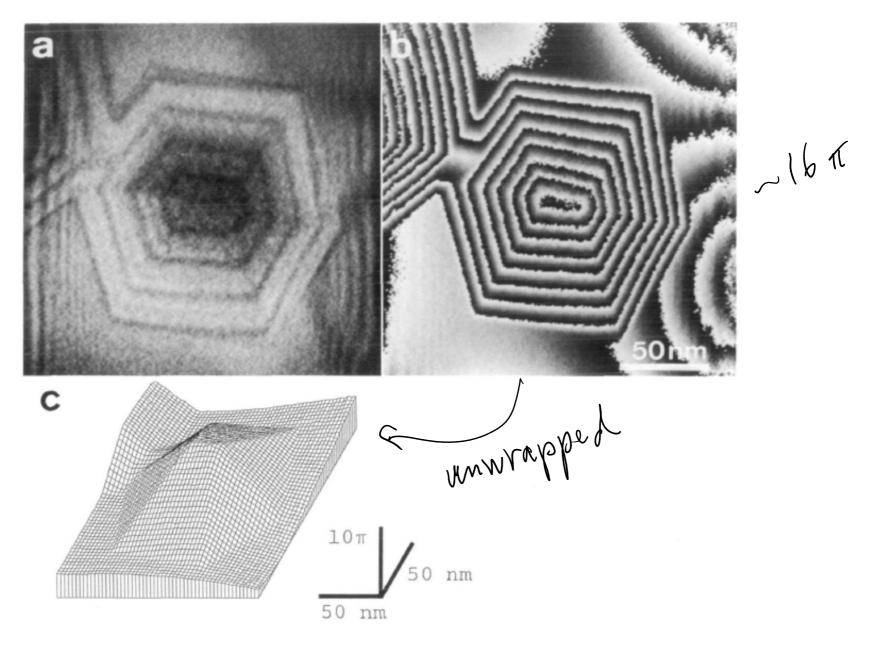
Fringe scanning



Electron microscopy

Source: K. Harada, J. Electron Microsc. 39 470-476 (1990)

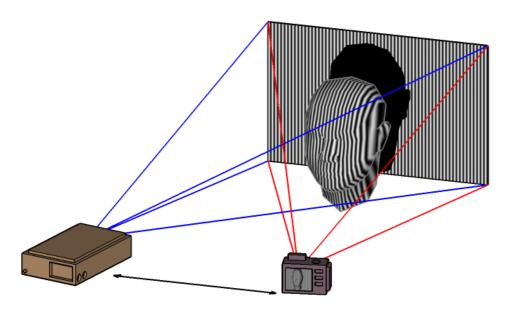
Fringe scanning

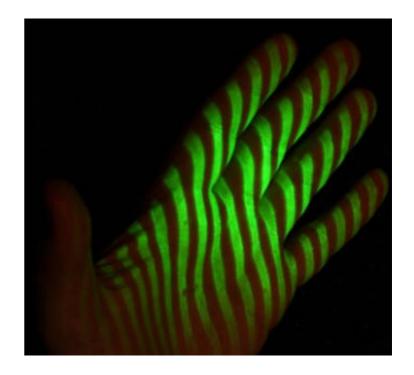


Source: K. Harada, J. Electron Microsc. 39 470-476 (1990)

Structured light sensing

- Project a structured light pattern onto sample
- Distortions of light pattern allow reconstruction of sample shape





Phase unwrapping

- Phase is measured only in the interval [0, 2π)
- Physical phase shifts (which can be larger) are wrapped on this interval

 \rightarrow Any multiple of 2π is possible

- Unwrapping: use correlations in the image to guess the total phase shift.
- Main difficulties:
 - aliasing: phase shifts are too rapid for the image sampling

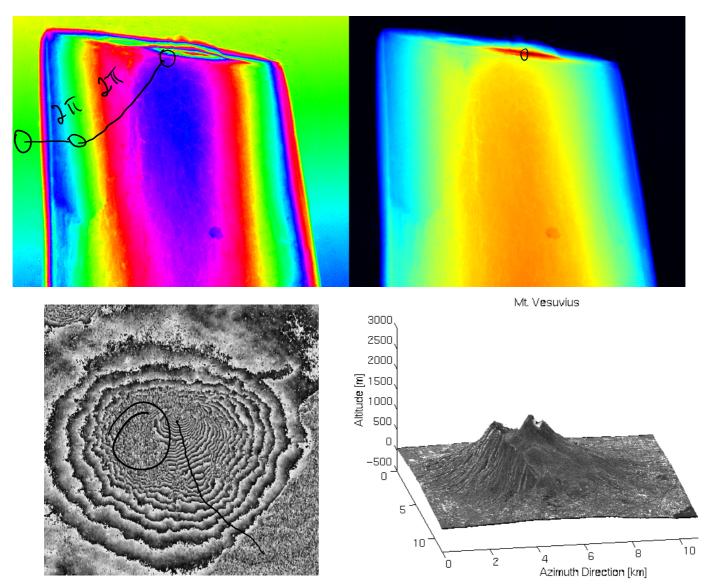
Sidentify phase vortices and connect them

- noise: produces local singularities (vortices)) path following methods - mixed by pixel by pixel

• Many strategies exist

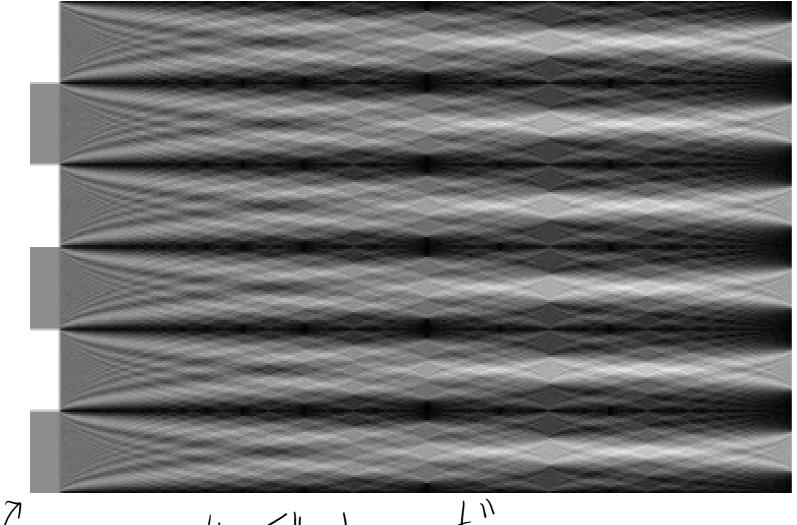
Complex-valued images

Phase unwrapping

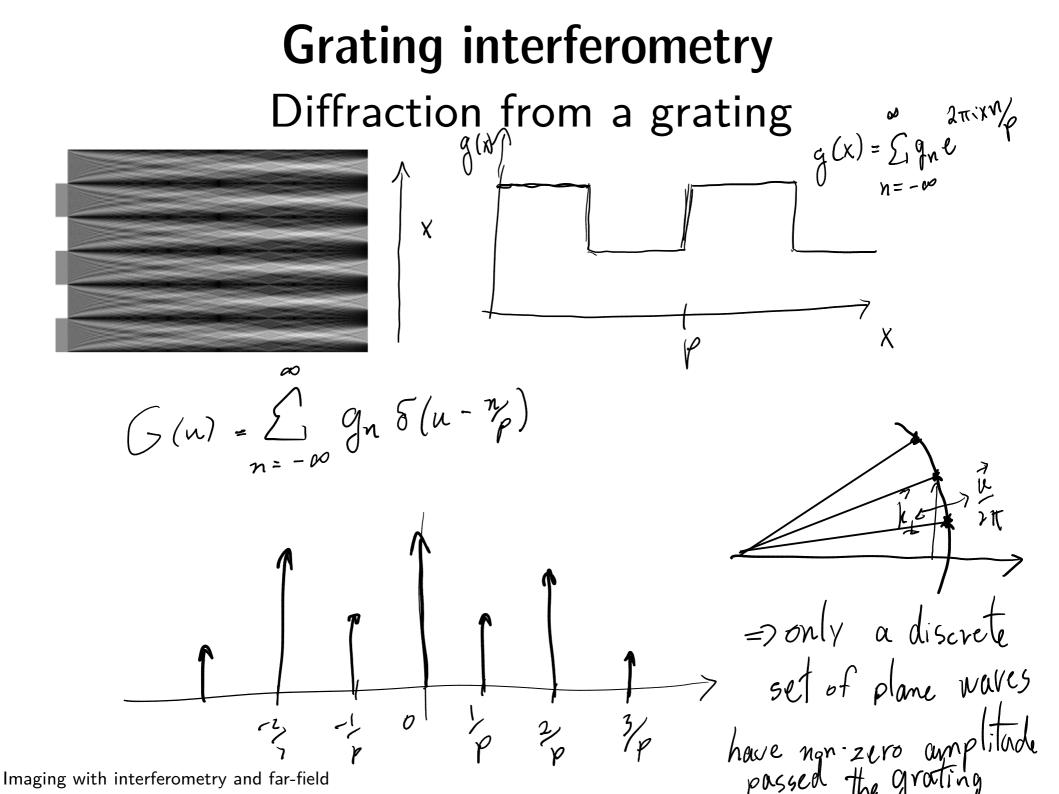


Source: http://earth.esa.int/workshops/ers97/program-details/speeches/rocca-et-al/

Grating interferometry Diffraction from a grating

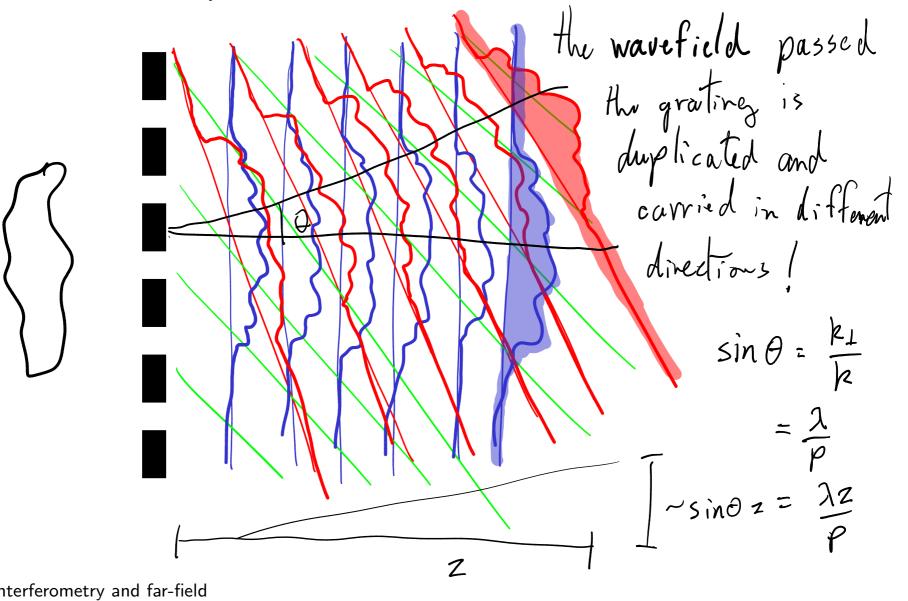


"Talloot carpet" phase throg



Grating interferometry

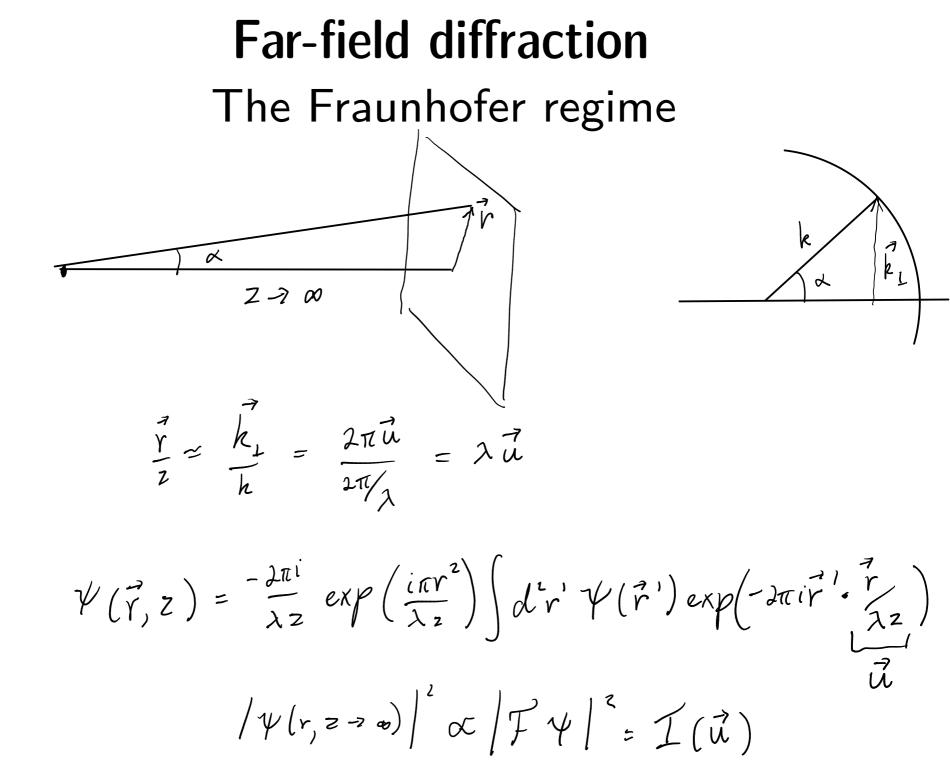
Observing the interference between two (slightly offset) copies of the same sample.



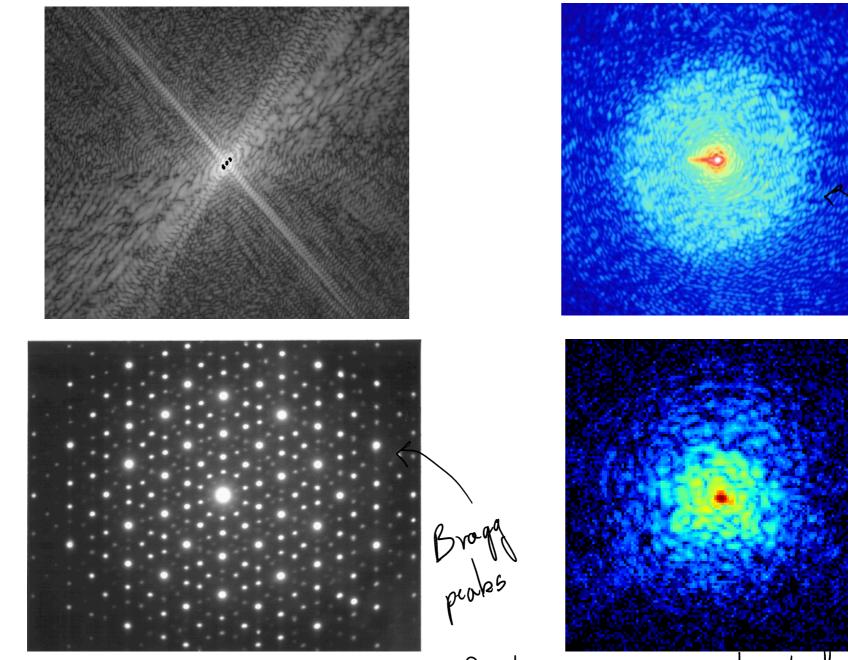
Grating interferometry

Observing the interference between two (slightly offset) copies of the same sample.

e.q. if only orders
$$\pm 1$$
 are relevant
 $\Psi(\vec{r};z) = \Psi_o(\vec{r} + \frac{\lambda z}{p}\hat{x})e^{2\pi i \frac{\chi}{p}}$
 $\psi(\vec{r};z) = \frac{1}{2} (\vec{r} - \frac{\lambda z}{p}\hat{x})e^{-2\pi i \frac{\chi}{p}}$
 $\psi(\vec{r} - \frac{\lambda z}{p}\hat{x})e^{-2\pi i \frac{\chi}{p}}$



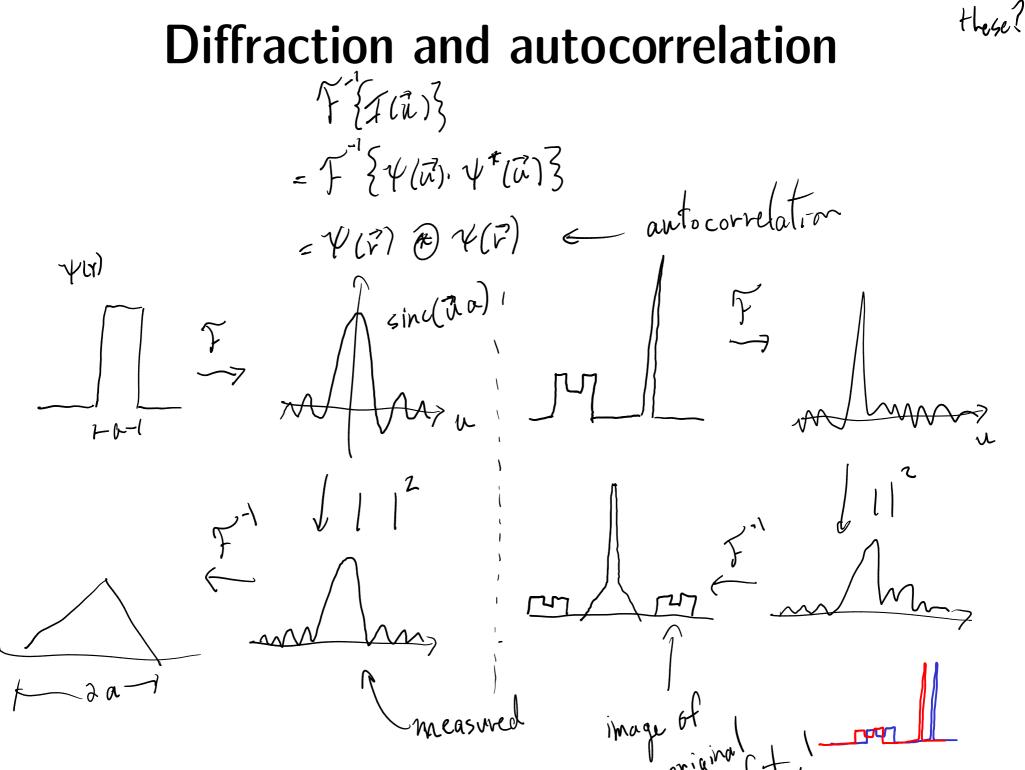
Diffraction patterns



Imaging with interferometry and far-field

Question: can we reconstruct the objects that

spechles



Fourier transform holography

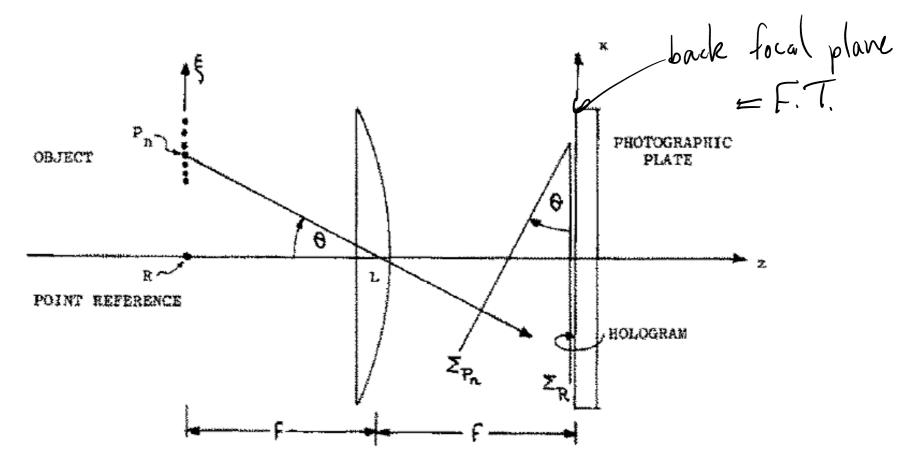
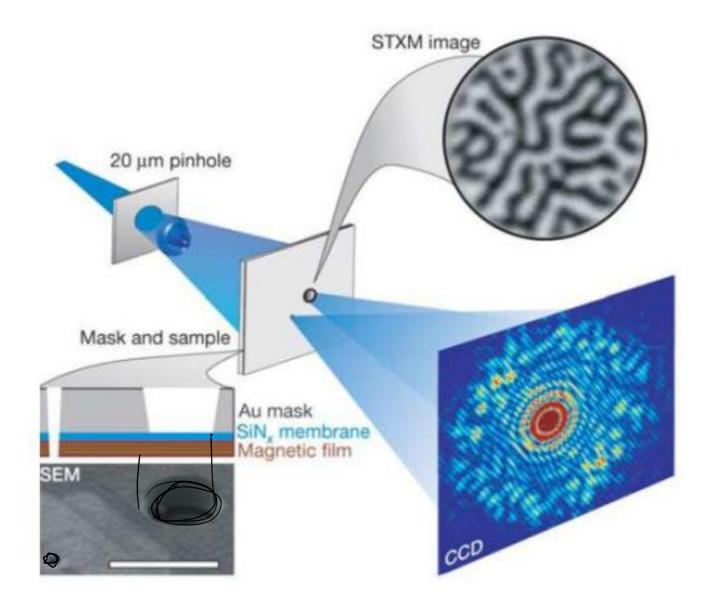


Fig. 1. Recording of a Fourier-transform hologram with a lens L. Σ_R = reference wavefront.

Source: G. Stroke, Appl. Phys. Lett. 6, 201-203 (1965).

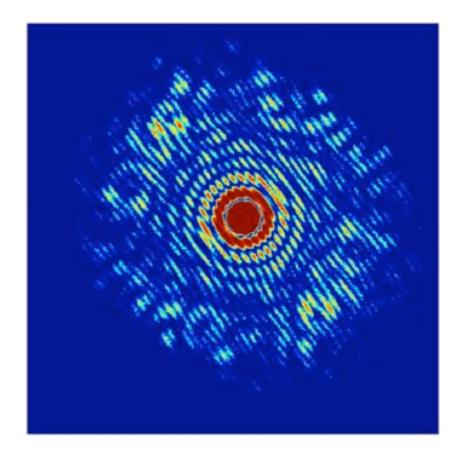
Fourier transform holography



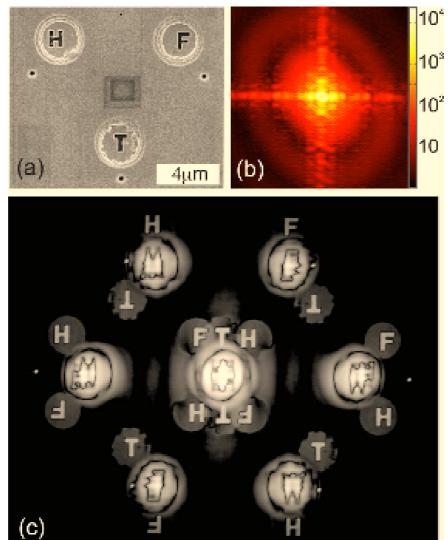
Source: S. Eisebitt et al., Nature **432**, 885-888 (2004).

Fourier transform holography $F.T. \left(\begin{array}{c} \Psi(\vec{r}) = \Psi_{r}(\vec{r}) + \Psi_{o}(\vec{r}) \\ \Psi(\vec{u}) = \Psi_{r}(\vec{u}) + \Psi_{o}(\vec{u}) \end{array} \right)$ $\mathcal{L}(\vec{u}) = \left| \mathcal{V}(\vec{u}) \right|^{1} + \left| \mathcal{V}(\vec{u}) \right|^{1} + \mathcal{V}(\vec{u}) \mathcal{V}(\vec{u}) + c.c.$ F⁻¹ { I (J)} = 404 + 404 + 404 + 404 cross-correlation

Fourier transform holography image of sample!

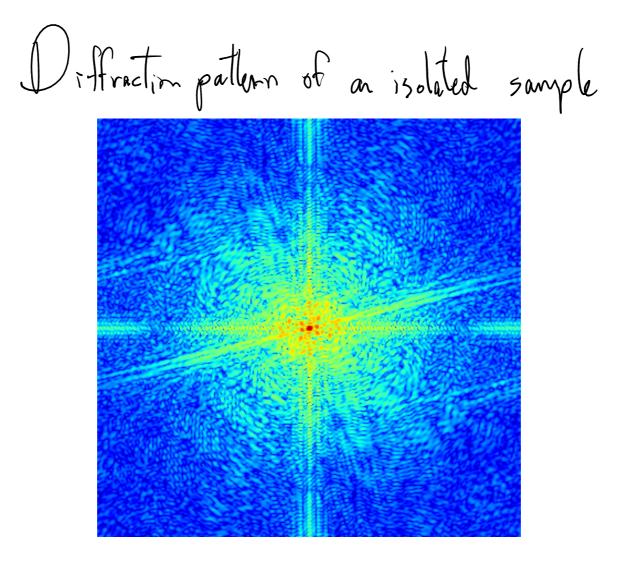


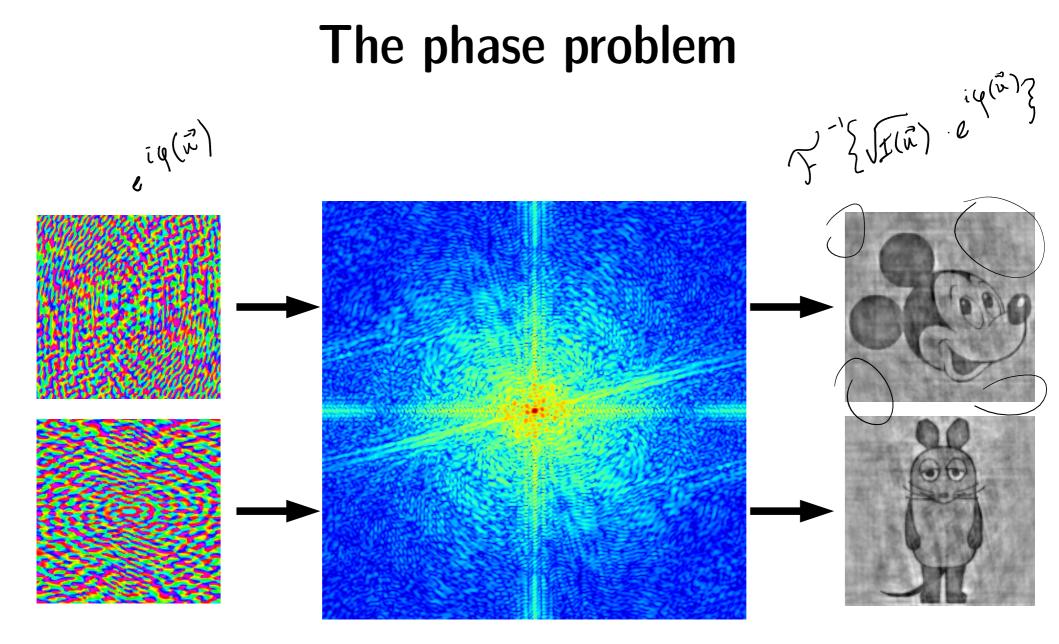
Fourier transform holography Multiple references



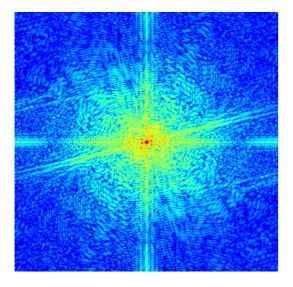
Source: W. Schlotter et al., Opt.. Lett. 21, 3110-3112 (2006).

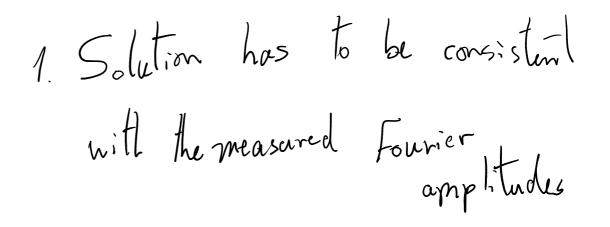
Coherent diffractive imaging

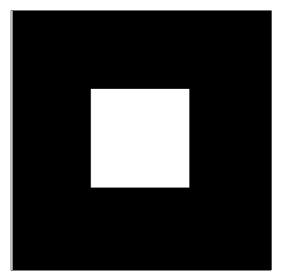




Coherent diffractive imaging

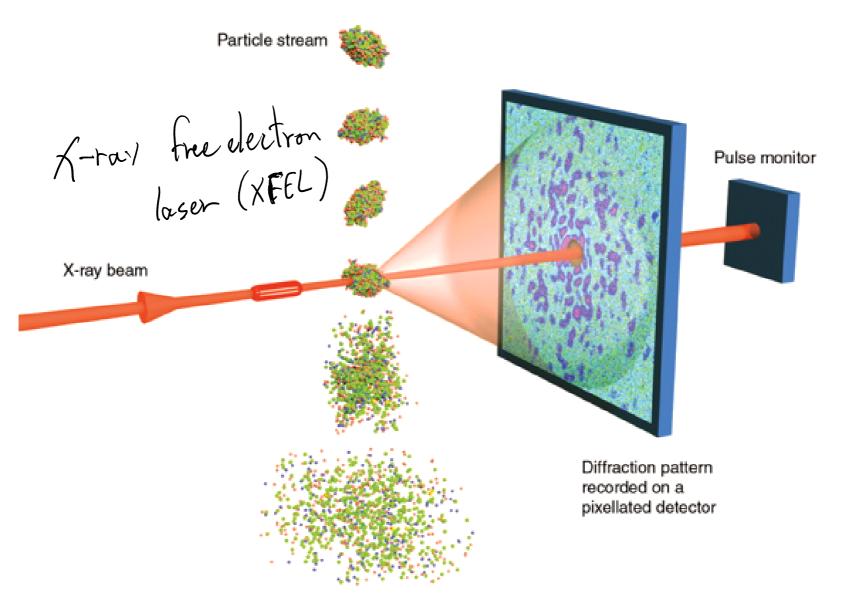






2. Solution is isolated

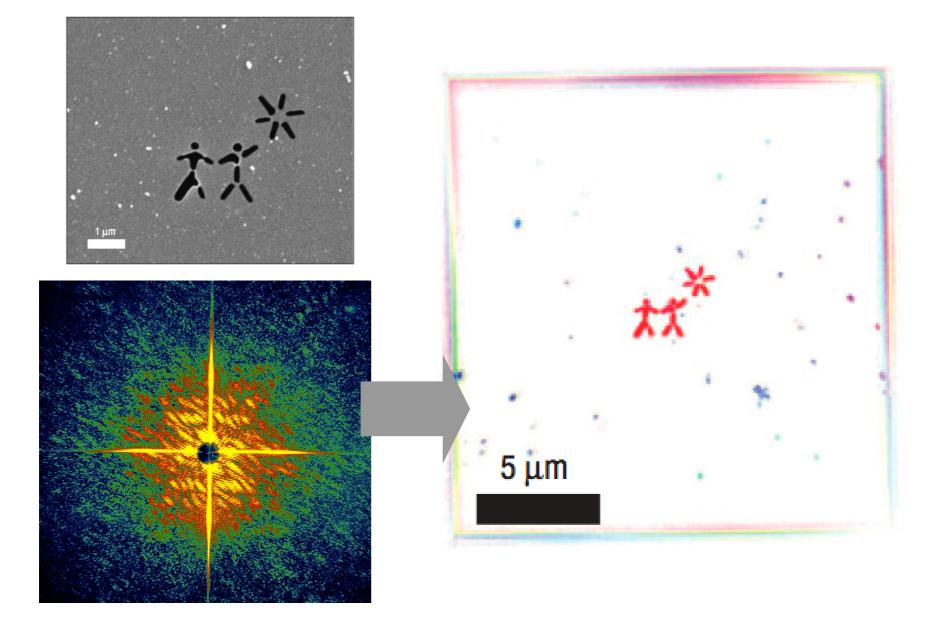
Radiation damage limits on radiation



R. Neutze et al, Nature 406, 752 (2000)

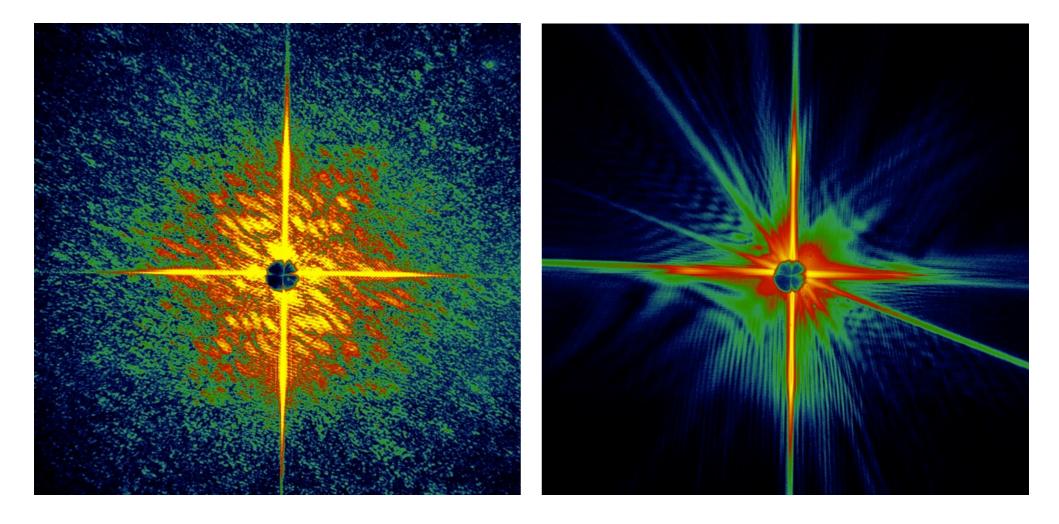
K. J. Gaffney et al, Science **316**, 1444 (2007)

"Diffraction before destruction"



H. N. Chapman *et al*, Nat. Phys. **2**, 839 (2006)

"Diffraction before destruction" The imaging pulse vaporized the sample



H. N. Chapman *et al*, Nat. Phys. **2**, 839 (2006)

Ptychography

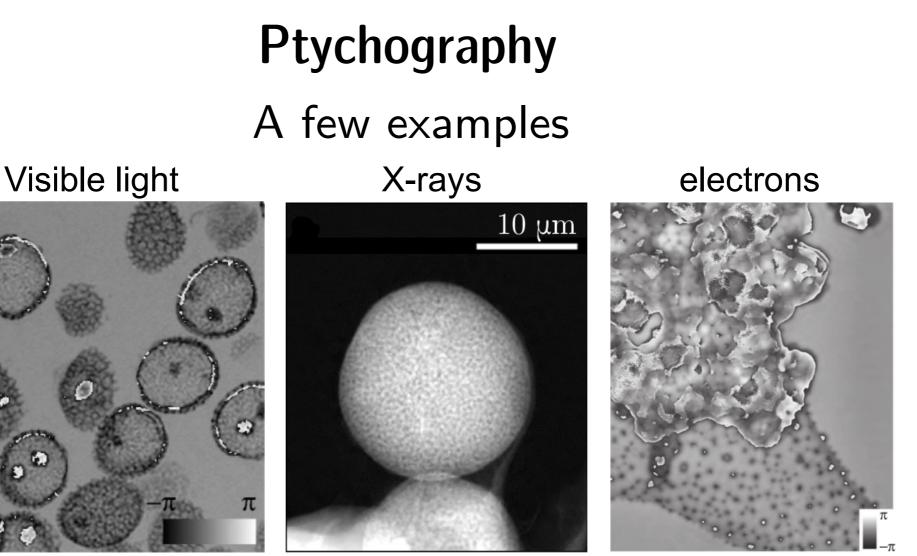
- Scanning an isolated illumination on an extended specimen
- Measure full coherent diffraction pattern at each scan point
- Combine everything to get a reconstruction

Dynamische Theorie der Kristallstrukturanalyse durch Elektronenbeugung im inhomogenen Primärstrahlwellenfeld

Von R. Hegerl und W. Hoppe

1970

Some time ago a new principle was proposed for the registration of the complete information (amplitudes and phases) in a diffraction diagram, which does not – as does Holography – require the interference of the scattered waves with a single reference wave. The basis of the principle lies in the interference of neighbouring scattered waves which result when the object function g(x, y) is multiplied by a generalized primary wave function p(x, y) in Fourier space (diffraction diagram) this is a convolution of the Fourier transforms of these functions. The above mentioned interferences necessary for the phase determination can be obtained by suitable choice of the shape of p(x, y). To distinguish it from holography this procedure is designated "ptychography" ($\pi \tau v \xi =$ fold). The procedure is applicable to periodic and aperiodic structures. The relationships are simplest for plane lattices. In this paper the theory is extended to space lattices both with and without consideration of the dynamic theory. The resulting effects are demonstrated using a practical example.

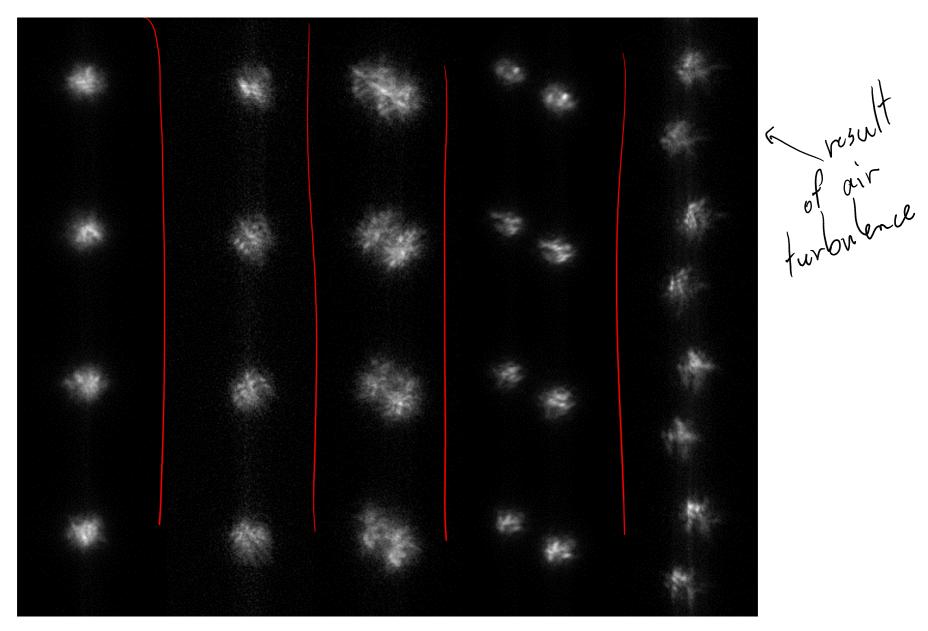


A. Maiden *et al.*, Opt. Lett. **35**, 2585-2587 (2010).

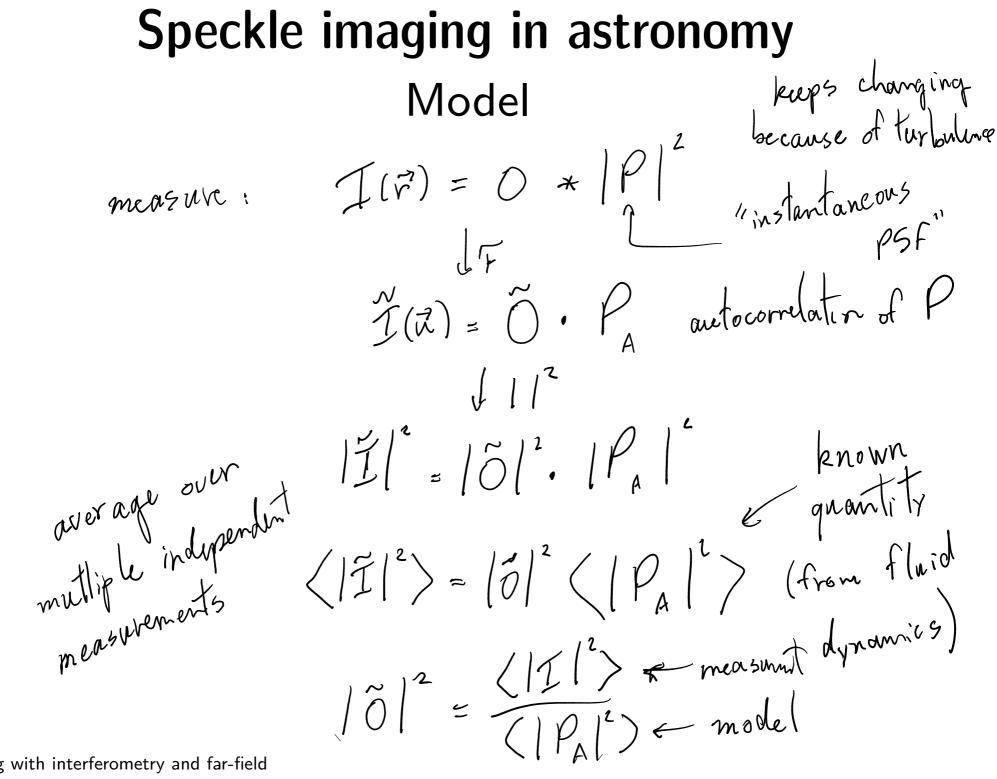
P. Thibault *et al.*, New J. Phys **14**, 063004 (2012).

M. Humphry *et al.*, Nat. Comm. **3**, 730 (2012).

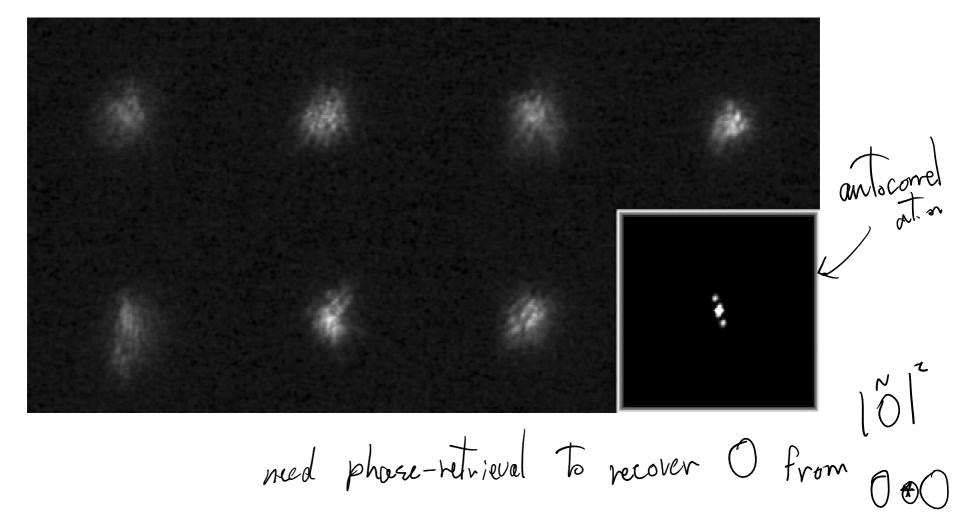
Speckle imaging in astronomy



Source:http://www.cis.rit.edu/research/thesis/bs/2000/hoffmann/thesis.html

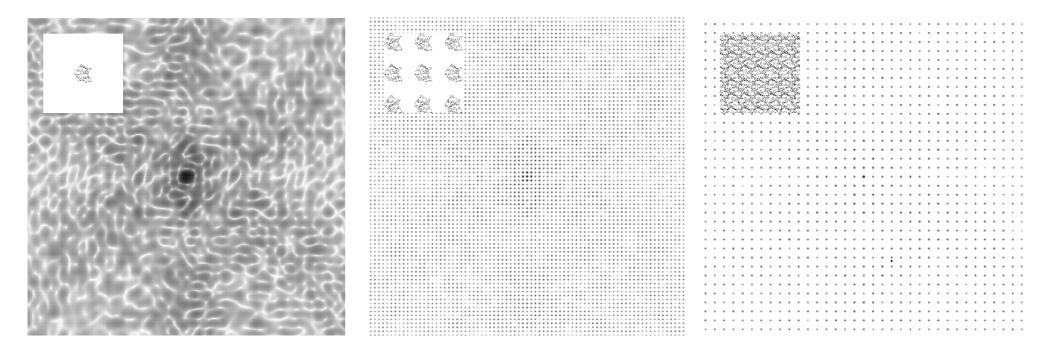


Speckle imaging in astronomy Retrieval of the autocorrelation

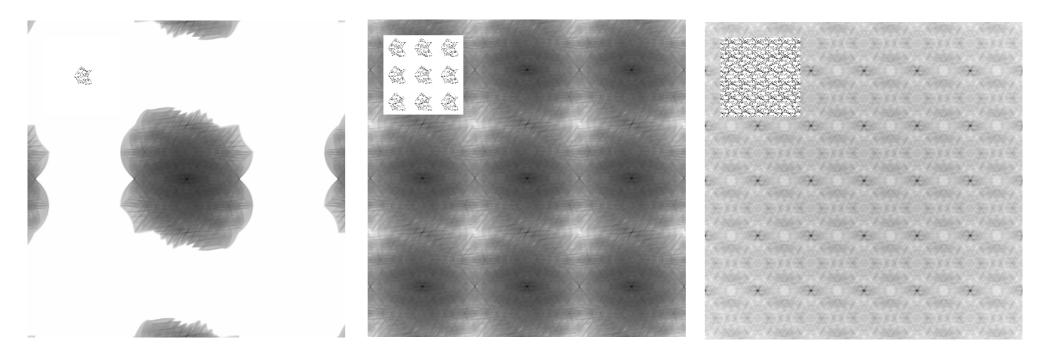


Source: http://www.astrosurf.com/hfosaf/uk/speckle10.htm

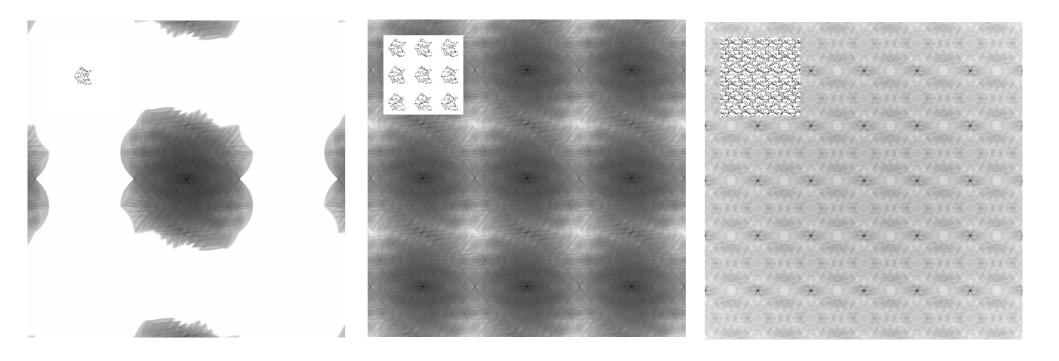
Crystallography Diffraction by a crystal: Bragg peaks

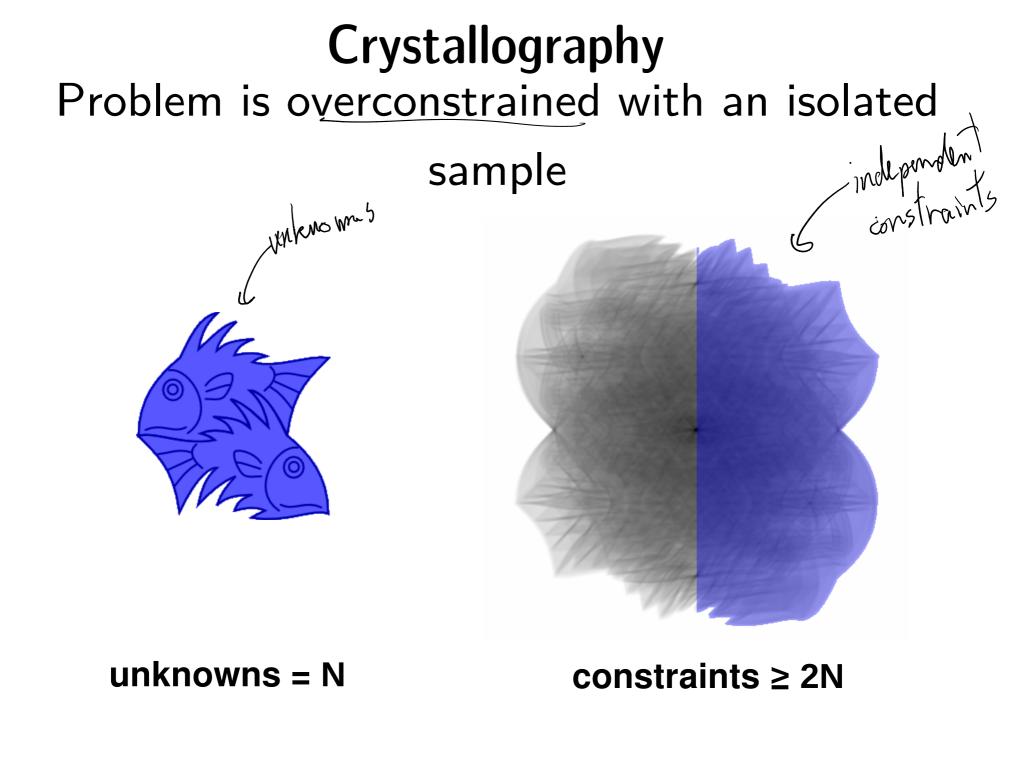


Crystallography Fourier transform of intensity: autocorrelation

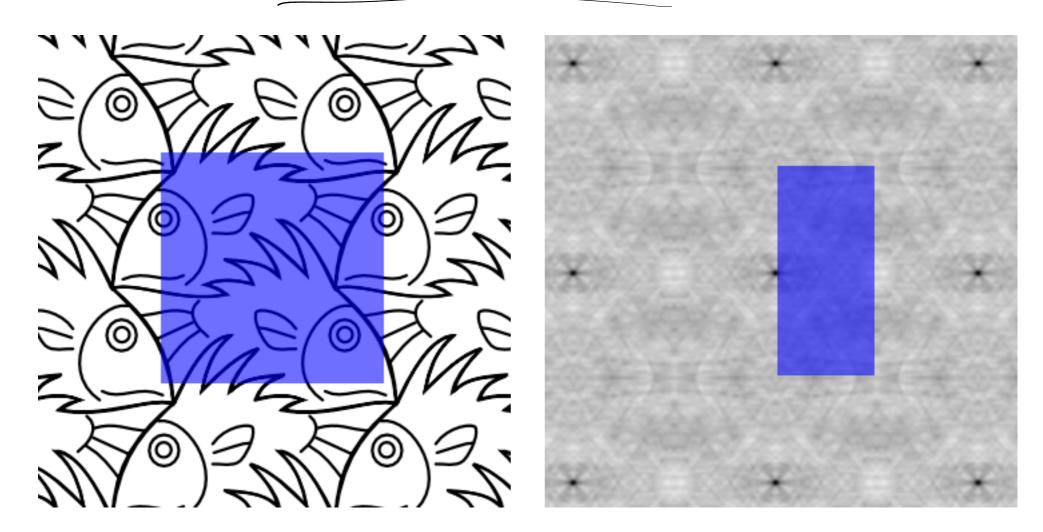


Crystallography





Crystallography Problem is **under**constrained with a crystal



unknowns = N

constraints = N/2

Crystallography Structure determination

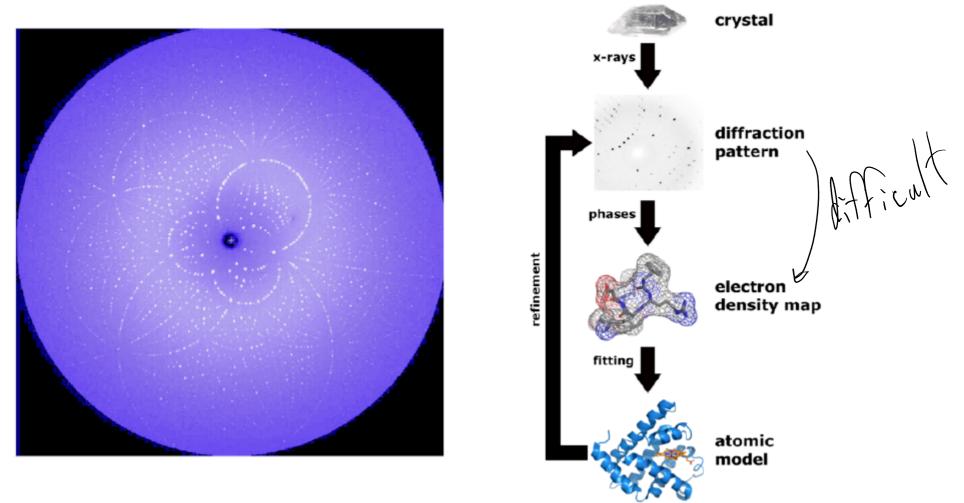


Image from Wikimedia courtesy Thomas Splettstoesser

Crystallography

Structure determination

- Hard problem: few measurements for the number of unknowns
- [–] Luckily: crystals are made of atoms \rightarrow strong constraint
- Also common: combining additional measurements (SAD, MAD, isomorphous replacement, ...)

Summary

Imaging from far-field amplitudes

- Used when image-forming lenses are unavailable (or unreliable) or to obtain more quantitative images.
- In general difficult because of the phase problem
- Solved with the help of additional information:
 - Strong a priori knowledge (e.g. CDI: support)
 - Multiple measurements (e.g. ptychography)