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BASICS OF WEB SEARCH

But first of all…



BASICS

TERMINOLOGY

• HTTP and HTTPS. Protocols used to transmit web pages. 

• HTML. The markup language used to encode web pages 

• URL. Universal resource locator, (protocol + hostname + resource). 
E.g, https://www.example.com/a/resource.html has 

• https: protocol 

• www.example.com: hostname 

• /a/resource.html: resource



LINKS

TERMINOLOGY

• Static web pages. The content does not change between multiple 
requests. 

• Dynamic web pages. Automatically generated pages, e.g., in 
response to a query to a database. 

• Anchor text. The text visualised for a link:  
<a href=URL>Anchor text</a>

• In-links: set of links that refer to a web page (notice that they are 
not contained in the web page). 

• Out-links: set of links from a web page (this can be obtained by 
looking at the web page)



AT DIFFERENT LEVELS

THE WEB AS A GRAPH

• The web can be seen as a graph on different levels: 

• A page is a node of the graph, with outgoing edges given by 
the links that it contains. 

• A PLD (pay-level-domain, like example.com, amazon.com, etc.) 
is a node with outgoing edges given by all the links contained in 
the pages on the PLD. 

• In both cases, the distribution of in-degrees and out-degrees of 
the nodes is far from the classical random graph model (the 
Erdős–Rényi model), it is more closely modelled by a power law 
distribution .f(x) = ax−k



STRUCTURE OF WEB LINKS

BOWTIE SHAPE

IN OUTSCC

Tendrils

Tube

• SCC. By following hyperlinks it is 
possible to reach each other page in 
SCC  

• IN. Pages that can reach SCC, but 
cannot be reached by pages in SCC. 

• OUT. Pages that can be reached from 
SCC, but cannot reach SCC. 

• Tubes. Direct links from IN to OUT 

• Tendrils. Pages reachable from IN that 
lead nowhere or that reach only pages 
in OUT.Disconnected



2012 WDC HYPERLINK GRAPH

SOME REAL-WORLD DATA

• The 2012 Web Data Commons (WDC) hyperlink graph includes 
about 3.5 billions of web pages and 128 billions of links. 

•  We will see the results on 

• The in- and out-degree distribution of the nodes. 

• The presence of a bow-tie shape. 

• All of this at the pay-level-domain (PLD) level.

Available at http://webdatacommons.org/hyperlinkgraph/2012-08/topology.html

http://webdatacommons.org/hyperlinkgraph/2012-08/topology.html


A GRAPH OF PLD



AT THE PLD LEVEL

DISTRIBUTION OF DEGREES

In-degree distribution 
(PLD level)

Out-degree distribution 
(PLD level)

While the exact distribution of incoming and outgoing links is not 
completely understood, a power law (i.e., ) seems a good 
approximation.

f(x) = ax−k

Both axes have a logarithmic scale



AT THE PLD LEVEL

THE BOWTIES STRUCTURE



THE PART OF THE WEB THAT IS DIFFICULT TO INDEX

THE DEEP WEB

• Web pages that are difficult or impossible to index are part of the 
deep or hidden web. 

• Not to be confused with the dark web/darknet, a small portion of 
the deep web that has been purposefully made inaccessible.  

• It is estimated to be larger than the conventional web. 

• Usually contains private sites (where login might be needed or 
there are no incoming links), form results, and scripted pages 
(e.g., were the links are generated by scripts).



WEB CRAWLERS



AKA SPIDERS

WEB CRAWLERS

• Web crawling is the process of gathering pages from the Web to 
index them. 

• The process is carried on by web crawlers, also called spiders. 

• While retrieving a single web page is simple… 

• …web crawling must take into account the scale of the web… 

• …and the fact that the content to index is not under the control 
of the people building the index.



THE UNSEEN WEB

URL FRONTIER

SEEN, UNSEEN, AND UNKNOWN PAGES

VISITING WEB PAGES

SET OF VISITED PAGES

SEED PAGES

A set of known web pages 
from which the crawling starts

Set of pages that the 
crawler has visited

Set of unvisited web pages 
for which the URL is not known

Set of pages with URL found 
by the crawler but not visited



EVERY WEB CRAWLER MUST HAVE THEM

ESSENTIAL PROPERTIES OF A WEB CRAWLER

• Robustness. A web crawler must not be blocked by spider traps, 
web pages built to force a crawler to fetch an infinite amount of 
pages from a specific domain. 

• Sometimes spider traps are not malicious. Just imagine a 
“calendar” page that every time allows to go to the “next 
month” and generates the new pages dynamically. 

• Politeness. A web crawler cannot overload a web server with 
requests. All requests to a domain must be adequately spaced in 
time and policies like the one in “robot.txt” must be adhered to.



WHAT WE CAN INDEX

ROBOT.TXT

User-agent: *  
Disallow: /cgi-bin/  
Disallow: /tmp/  
Disallow: /private/  
 
User-agent: BadBot  
Disallow: /  
 
User-agent: GoogleBot  
Disallow:  
 
Sitemap: http://www.example.com/sitemap.xml

A robot.txt file in a web server provides some information on what 
a crawler is allowed to index

Which crawlers should apply 
the following directives

Directories that should 
not be indexed

Directives for a specific bot: 
disallow everything

Directives for a specific bot: 
allow everything

File containing the set of URL 
available for crawling



A WEB CRAWLER SHOULD, IF POSSIBLE, HAVE THEM

GOOD PROPERTIES OF A WEB CRAWLER

• Distributed. Indexing the entire web from a single machine is 
infeasible, the web crawler should be able to execute from 
multiple machines 

• Scalable. It should be possible to increase the crawl rate by simply 
adding more machine and bandwidth. 

• Performance and efficiency. The crawler should try to make 
efficient use of system resources (e.g., by not blocking when 
waiting for the response from a server).



A WEB CRAWLER SHOULD, IF POSSIBLE, HAVE THEM

GOOD PROPERTIES OF A WEB CRAWLER

• Quality. The crawler should have a bias toward “useful” pages. 

• Freshness. The content on the web is always changing, thus the 
crawler should revisit already visited pages to obtain a fresh copy.  

• A crawler should visit a page with a frequency that approximate 
the rate of change of the page.  

• Extensible. There might be new data format, new protocols, etc. 
and the crawler should be able to be extended to handle them.



BASIC STRUCTURE

ARCHITECTURE OF A WEB CRAWLER

WWW

URL FRONTIER

FETCH PARSE
REMOVE 

DUPLICATE 
PAGES

FILTER 
URL

REMOVE 
DUPLICATE 

URL

DNS

Fingerprints
Robot.txt
Policies URL set



BASIC STRUCTURE

ARCHITECTURE OF A WEB CRAWLER

WWW

URL FRONTIER

FETCH PARSE
REMOVE 

DUPLICATE 
PAGES

FILTER 
URL

REMOVE 
DUPLICATE 

URL

DNS

Fingerprints
Robot.txt
Policies URL set

https://www.example.com/some_page.html

The fetch module retrive an URL to crawl from the URL frontier



BASIC STRUCTURE

ARCHITECTURE OF A WEB CRAWLER

WWW

URL FRONTIER

FETCH PARSE
REMOVE 

DUPLICATE 
PAGES

FILTER 
URL

REMOVE 
DUPLICATE 

URL

DNS

Fingerprints
Robot.txt
Policies URL set

1.2.3.4

The DNS resolver find which IP address corresponds to www.example.com

https://www.example.com/some_page.html



BASIC STRUCTURE

ARCHITECTURE OF A WEB CRAWLER

WWW

URL FRONTIER

FETCH PARSE
REMOVE 

DUPLICATE 
PAGES

FILTER 
URL

REMOVE 
DUPLICATE 

URL

DNS

Fingerprints
Robot.txt
Policies URL set

1.2.3.4

The fetch module asks for the web page to the server 

GET some_page.html



BASIC STRUCTURE

ARCHITECTURE OF A WEB CRAWLER

WWW

URL FRONTIER

FETCH PARSE
REMOVE 

DUPLICATE 
PAGES

FILTER 
URL

REMOVE 
DUPLICATE 

URL

DNS

Fingerprints
Robot.txt
Policies URL set

The fetch module receives the web page



BASIC STRUCTURE

ARCHITECTURE OF A WEB CRAWLER

WWW

URL FRONTIER

FETCH PARSE
REMOVE 

DUPLICATE 
PAGES

FILTER 
URL

REMOVE 
DUPLICATE 

URL

DNS

Fingerprints
Robot.txt
Policies URL set

The page is parsed, the links and the main content extracted

Links:… 
Content:…



BASIC STRUCTURE

ARCHITECTURE OF A WEB CRAWLER

WWW

URL FRONTIER

FETCH PARSE
REMOVE 

DUPLICATE 
PAGES

FILTER 
URL

REMOVE 
DUPLICATE 

URL

DNS

Fingerprints
Robot.txt
Policies URL set

Before indexing the page is checked with a set of “fingerprints” of other 
pages to verify if it is a duplicate.

Links:… 
Content:…



BASIC STRUCTURE

ARCHITECTURE OF A WEB CRAWLER

WWW

URL FRONTIER

FETCH PARSE
REMOVE 

DUPLICATE 
PAGES

FILTER 
URL

REMOVE 
DUPLICATE 

URL

DNS

Fingerprints
Robot.txt
Policies URL set

The newly extracted URL are normalised and filtered to eliminate the ones 
that should not be crawled.

Links:…



BASIC STRUCTURE

ARCHITECTURE OF A WEB CRAWLER

WWW

URL FRONTIER

FETCH PARSE
REMOVE 

DUPLICATE 
PAGES

FILTER 
URL

REMOVE 
DUPLICATE 

URL

DNS

Fingerprints
Robot.txt
Policies URL set

Finally, before being inserted into the URL frontier (the set of URL to visit), 
already visited URL are removed.

Links:…



REQUIREMENTS

SELECTION OF THE NEXT URL

• We need an architecture that allows to: 

• Keep only one connection open to the host. 

• Ensure a waiting time of at least a few second between 
requests. 

• Have a bias for pages with higher priority. 

• We present one possible architecture for achieving these goals. 

• Multiple threads can extract URL from the URL frontier.



THE URL FRONTIER

…

…

PRIORITISER

BIASED FRONT QUEUE SELECTOR 
BACK QUEUE ROUTER

BACK QUEUE SELECTOR

 front queuesF

 back queuesB

Manage 
Priority

Manage 
Politeness

HEAP



FOR PRIORITY AND POLITENESS

FRONT AND BACK QUEUES

• The prioritiser assign an integer priority between  and  to each 
new URL 

• There are  front FIFO queues (one for each priority). 

• Each of the  back queues has the properties that: 

• The queue is non-empty while crawling is in progress. 

• Each queue contains URL from a single host. 

• To do so we need to keep a mapping from hosts to queues.

1 F

F

B



FOR PRIORITY AND POLITENESS

FRONT AND BACK QUEUES

• We keep an heap that returns the minimum time to wait to 
contact again an host. 

• We extract the top of the heap, wait the required time, and 
extract a new URL from the corresponding queue. 

• If the queue is now empty, then a new URL is taken from the front 
queues in a biased manner (i.e., higher probability of being 
selected to higher priority queues). 

• If the URL is from an host with an already assigned queue then 
it is inserted in that queue, and the extraction is repeated.



AND HOW TO SELECT WHAT TO RE-CRAWL

FRESHNESS

• A HEAD request is a kind of request where the server send some 
information about a page, but not the page itself. Among the 
information there is the “Last-modified” time. 

• We can use HEAD requests to check pages for freshness. 

• However, it is impossible to constantly check all pages. 

• We must decide a policy on what pages to check. 

• We have two metrics: freshness and age.



A BINARY WAY OF MEASURING “OLD” PAGES

FRESHNESS

time

Fresh

Stale

update
crawl crawl 

update

A page is fresh if the crawler has the most recent copy of the page, 
otherwise the page is stale. 

Freshness = fraction of web pages that are currently fresh.



A BINARY WAY OF MEASURING “OLD” PAGES

FRESHNESS

• Should we optimise for freshness? 

• Actually there can be unintended consequences. 

• Suppose that a page updates very frequently (e.g., every minute). 

• You will almost always have a stale copy of the page. 

• If you have limited resources for crawling then a good strategy 
would be to never crawl that page again: it will always be stale 
after a very short time. 

• Which is not what the user want. Hence we can optimise for age.



A MORE REFINED WAY OF FINDING OUTDATED PAGES

AGE

time

Ag
e

update
crawl crawl 

update

A page start ageing when it is modified. Its age returns to 0 
when it is crawled again. 

Age = time passed since the first update after a crawl event.



A MORE REFINED WAY OF FINDING OUTDATED PAGES

AGE

Age(λ, t) = ∫
t

0
P(Change at time x)(t − x) dx

Suppose that a page is updated  times a day. 

Then its expected age at time  after it was visited last time is:

λ

t

The probability of a page changing at a certain time  can be estimated: 
according to studies, the updates to a web page follows a Poisson distribution, 
hence we obtain:

x

Age(λ, t) = ∫
t

0
λe−λx(t − x) dx



A MORE REFINED WAY OF FINDING OUTDATED PAGES

AGE

Notice that the rate of increase of the age function (its second derivative) is 
always positive for  (which is always the case). 

This means that not visiting a web page has an increasing cost the older the 
page gets. We will never conclude that we do not have to visit a web page.

λ > 0

Age(λ, t) =
t + λe−λt − 1

λ
∂2Age(λ, t)

∂t2
= λe−λt

By trying to minimise the expected age of a set of pages we will visit them all.



DUPLICATES AND NEAR-DUPLICATES



DUPLICATED WEB PAGES

THE PROBLEM

• Studies show that about 30% of the crawled pages are duplicates 
or near-duplicates of the other 70%1. 

• Duplicates can be created by spam or plagiarism… 

• …but also via mirror sites. 

• Duplicates or near-duplicates provide very little information to the 
user while consuming resources for crawling and indexing. 

• There exist algorithms to mitigate this problem, without 
comparing each document across all already-indexed documents.

1 Fetterly, Dennis, Mark Manasse, and Marc Najork. "On the evolution of clusters of near-duplicate web pages.”



CHECKSUMMING

DETECTING EXACT DUPLICATES

The detection of exact duplicate is relatively easy; 
it can be performed by comparing the checksums of the documents

"The quick brown fox jumps over the lazy dog”

84 104 101 32 113 117 105 99 107 32 … 32 100 111 103 4057Sum

One of the simplest kinds of checksums is 
to simply sum all the bytes in the document

There are more complex checksum algorithms where the position of the bytes 
is considered (like CRC - cyclic redundancy check),



WHAT THEY ARE AND HOW TO DETECT THEM

NEAR-DUPLICATES

• Detecting near-duplicates is more complex… 

• …but even defining them is more problematic: 

• E.g., same text but different advertising/formatting 

• Slight difference in text due to small edits 

• In general a similarity measure is defined… 

• …and two documents are considered near-duplicates above a 
certain threshold.



TWO SCENARIOS

NEAR-DUPLICATES

• Detecting near-duplicates can happen in two scenarios: 

• Search. When the goal is to find the duplicates of a given 
document. 

• Discovery. When, given a collection, the goal il to find all pairs of 
duplicates or near duplicates. 

• Similarity-based IR techniques can be used in the search scenario. 

• For the discovery scenario more efficient techniques are usually 
employed, e.g., fingerprints.



A POSSIBLE ALGORITHM

FINGERPRINTS

Web page

The quick brown fox jumps over the lazy dog

All non-word content is removed 
The document is parsed into words

The quick brown

quick brown fox

brown fox jumps

fox jumps over

jumps over the

over the lazy

the lazy dog

Words grouped in n-grams for some n

Continues 
in the next slide



A POSSIBLE ALGORITHM

FINGERPRINTS

The quick brown

quick brown fox

brown fox jumps

fox jumps over

jumps over the

over the lazy

the lazy dog

Words grouped in n-grams for some n
A subset of n-grams is selected

quick brown fox

fox jumps over

The n-grams are hashed

1490

1400

The hashes are stored 
in an inverted index



HOW TO SELECT A SUBSET

FINGERPRINTS

• Two documents are considered near-duplicates they share enough n-
grams (by measuring, for example, the Jaccard coefficient). 

• It is essential to have a “good” way of selecting which subset of  
n-grams to keep: 

• Random selection is a bad choice: the overlap between randomly 
selected n-grams of identical documents can be low! 

• A better choice is to select all n-grams starting with the same letter. 

• Another choice is to select all n-grams with hash value equal to 
 for some choice of .0 mod p p



A MORE RECENT FINGERPRINTING TECHNIQUE

SIMHASH

Web page

Continues 
in the next slide

The
Quick
Brown
Fox

2
1
1
1

Extract a set of features 
(e.g., words) each with 
a weight (e.g., frequency)

For each word compute a unique hash of  bits  
(the desired size of the fingerprint)

b

The Quick Brown Fox

0101 1100 1001 0001



A MORE RECENT FINGERPRINTING TECHNIQUE

SIMHASH

The
Quick
Brown
Fox

2
1
1
1

Start with a vector of size  with all positions initially set to b 0

The Quick Brown Fox

0101 1100 1001 0001

0 0 0 0



A MORE RECENT FINGERPRINTING TECHNIQUE

SIMHASH

The
Quick
Brown
Fox

2
1
1
1

The Quick Brown Fox

0101 1100 1001 0001

-2 +1 +1 -1

0 0 0 0

Look at the first bit of the hash of every word. 
Add the weight to the word if the bit is 1. 
Subtract the weight of the word if the bit is 0

-1



A MORE RECENT FINGERPRINTING TECHNIQUE

SIMHASH

The
Quick
Brown
Fox

2
1
1
1

The Quick Brown Fox

0101 1100 1001 0001

+2 +1 -1 -1

-1 0 0 0 We do the same for the second bit1



A MORE RECENT FINGERPRINTING TECHNIQUE

SIMHASH

The
Quick
Brown
Fox

2
1
1
1

The Quick Brown Fox

0101 1100 1001 0001

-2 -1 -1 -1

-1 1 0 0 We do the same for the third bit-5



A MORE RECENT FINGERPRINTING TECHNIQUE

SIMHASH

The
Quick
Brown
Fox

2
1
1
1

The Quick Brown Fox

0101 1100 1001 0001

+2 -1 +1 +1

-1 1 -5 0 We do the same for the fourth bit

0 1 0 1

We obtain a sequence of  bits by setting  
a bit to 1 for positive values and to 0 otherwise 

b

The hash value 
of the document 3



FINDING THE CONTENT



UNDERSTANDING THE PROBLEM

FINDING THE CONTENT

Main Content Block



TAGS AND TOKENS

HOW TO FIND WHERE THE CONTENT IS

• The main content of the page might be only a fraction of the total 
area. The rest is advertisement, navigation links, etc. 

• From the point of view of the user the rest is noise that can have a  
negative effect on the ranking. 

• We need a way to identify the non-main content of the page and 
either ignore it or reduce its weight. 

• An observation is that, usually, the main content of the page 
contains less tags than the rest of the page.



TAGS AND TOKENS

HOW TO FIND WHERE THE CONTENT IS

N
um

be
r o

f t
ag

s

Number of tokens

0

1000

40000

Document slope curve

Location of the main content

i j

How to find it?



TAGS AND TOKENS

HOW TO FIND WHERE THE CONTENT IS

Document as a binary vector of length  (the number of tokens) with:N

bk = {1 if the k-th term is a tag
0 otherwise

Find two “cutting points”  and  with  maximising:i j 1 ≤ i < j ≤ N

i−1

∑
k=1

bk +
j

∑
k=i

(1 − bk) +
N

∑
k=j+1

bk

Tags before content non-tags in the content Tags after content



LOOKING AT THE DOM

ANOTHER POSSIBILITY

• To parse a webpage a browser construct a representation using 
the HTML tags. 

• This representation is the DOM (Document Object Model) 

• It is a tree-like structure that can be navigated to find the major 
components of a web page. 

• A set of heuristics and filtering techniques can be used to remove 
images, advertising, and leave only the content. 

• It is also possible to analyse the visual feature of a page to 
identify the location of the main content.



LOOKING AT THE DOM

ANOTHER POSSIBILITY

This is the location of the main content of 
the example page, helpfully labeled  

with the class “article__content”



PAGERANK



BRIN, PAGE & GOOGLE

HISTORY

• PageRank is (part of) the algorithm used by Google in ranking the 
pages in its results. 

• Developed in 1996 with the first paper on it published in 19982: 
“we present Google, a prototype of a large-scale search engine 
which makes heavy use of the structure present in hypertext “ 

• Or, in other words,“we take advantage of the link structure of the 
Web to produce a global “importance” ranking of every web 
page.”1 

• The origin of PageRank can be traced back to methods in 
bibliometrics, sociometry, and possibly other fields.
1Page, L., Brin, S., Motwani, R. and Winograd, T., The PageRank Citation Ranking: Bringing Order to the Web, Stanford InfoLab, 1999

2 Brin, S. and Page, L., The anatomy of a large-scale hypertextual Web search engine,  Computer networks and ISDN systems, 30(1-7), pp.107-117, 1998



USING LINKS TO GET SCORES

MAIN IDEA

• We want to assign a value to each page that is independent from 
the query, i.e., a static score. 

• We model a user randomly following links across web pages. 

• What is the limit distribution of “where the user is” across all the 
pages? 

• A user is without any memory of the page from where he/she 
came… 

• …it seems like a case for using a Markov chain!



RANDOM WALK ON A GRAPH

A SIMPLE EXAMPLE

A

B

C

E

D

We are visiting page A, where can move either to page B or D. 
We select where to move uniformly at random.



RANDOM WALK ON A GRAPH

A SIMPLE EXAMPLE

A

B

C

E

D

We are visiting page B, where can move either to page C, D, or E. 
We select where to move uniformly at random.



RANDOM WALK ON A GRAPH

A SIMPLE EXAMPLE

A

B

C

E

D

We can formalise this random walk 
by defining a stochastic matrix

0 1
2 0 1

2 0

0 0 1
3

1
3

1
3

0 1
2 0 1

2 0
0 0 0 0 1
1 0 0 0 0

Probability of moving 
from node A to B



AND THE STATIONARY DISTRIBUTION

FORMALISATION AS A MARKOV CHAIN

Finding the probability distribution of the web page out idealised 
user is in then time tends to infinity

R =

0 1
2 0 1

2 0

0 0 1
3

1
3

1
3

0 1
2 0 1

2 0
0 0 0 0 1
1 0 0 0 0

Finding the stationary distribution of the Markov chain with the 
following transition matrix:

Is equivalent to



NODES WITHOUT OUTGOING EDGES

DANGLING NODES

A first problem that can appear in defining the stochastic matrix  is 
the presence of “dangling nodes”

R

B C

D Node without outgoing edges: 
how to assign probabilities to 
go to another page?

A simple fix is to suppose that the user will go somewhere else 
uniformly at random: [ 1

N
1
N ⋯ 1

N ]



PAGES WITHOUT INCOMING OR OUTGOING LINKS

PROBLEMS

A

B

C

E

D

Node without incoming edges: 
we have probability 0 of returning 
to it once we leave it

The same problem is also present 
for nodes D and E

Group of nodes without outgoing edges: 
we can never leave them once entered



HOW TO MAKE THE USER SMARTER

TELEPORTING

• It is common to have “sinks” where it is impossible to exit by only 
following the links… 

• …or pages that we cannot go back to. 

• This produces an imbalance in our scores, that can potentially be 
exploited. 

• In fact our idealised user can be a little bit smarter. At every page it 
can: 

• Move following one of the links in the page… 

• …or go to a random page



AND THE TRANSITION MATRIX

TELEPORTING

• Move to a linked page with probability  

• Move to random page with probability  

•  can be considered a “damping factor” or “probability that 
our user decides to go to another website”

1 − α

α

α > 0

P = α

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

+ (1 − α)

0 1
2 0 1

2 0

0 0 1
3

1
3

1
3

0 1
2 0 1

2 0
0 0 0 0 1
1 0 0 0 0



AND THE TRANSITION MATRIX

TELEPORTING

• We assign a probability of  of landing on any particular page. 

• The previous matrix can also be written as:

1
N

P = α

1
1
1
1
1

[ 1
5

1
5

1
5

1
5

1
5 ] + (1 − α)

0 1
2 0 1

2 0

0 0 1
3

1
3

1
3

0 1
2 0 1

2 0
0 0 0 0 1
1 0 0 0 0

“Jump vector”



AND THE TRANSITION MATRIX

TELEPORTING

P = α

1
1
1
1
1

[ 1
5

1
5

1
5

1
5

1
5 ] + (1 − α)

0 1
2 0 1

2 0

0 0 1
3

1
3

1
3

0 1
2 0 1

2 0
0 0 0 0 1
1 0 0 0 0

We usually write it as P = α1⃗T ⃗J + (1 − α)R

Can we find something about  that helps us in computing the 
PageRank of all pages (i.e., the stationary distribution)? 
Can we have a solution that is independent from any initial guess 
that we might have to perform?

P



AND THE STATIONARY DISTRIBUTION

TELEPORTING

• With this “teleporting” trick we can now go to any other web page 
in one step. 

• Which means that all entries of  are positive. 

• Which means that we can apply the Perron-Frobenius theorem 
(actually one reformulation of it): 

If  is a positive row (or column) stochastic matrix then: 

1. The eigenvalue  is the largest eigenvalue and has multiplicity  

2. There is a unique stochastic eigenvector for the eigenvalue 

P

P

1 1

1



USING THE PERRON-FROBENIUS THEOREM

COMPUTING PAGERANK EXACTLY

⃗πP = λ ⃗π

The PageRank vector of the transition matrix  is the unique 
stochastic eigenvector corresponding to the eigenvalue 

P
1

⃗πP = ⃗π

In out case , thus:λ = 1

Which is a linear system, we know how to solve it…

…except that  is a square matrix with a few billions of rows.P



A PRACTICAL APPROACH

COMPUTING PAGERANK ITERATIVELY

• Usually we do not solve exactly the PageRank for a set of web 
pages. 

• We use an iterative methods that, in fact, converges quite rapidly. 

• The main idea is that, if we start from a stochastic vector , maybe 
giving equal probability to each page… 

• …then  for a large enough  would be a good approximation of 
the exact solution .

⃗x

⃗xPt t
⃗π

See also: Pavel Berkhin, A Survey on PageRank Computing, Internet Mathematics Vol. 2, No. 1: 73-120, 2005



A PRACTICAL APPROACH

COMPUTING PAGERANK ITERATIVELY

In pseudocode this could be expressed as:

⃗x0 = random()
Start with a random 

probability distribution

⃗xt = ⃗xt−1 (α1⃗T ⃗J + (1 − α)R)
Update the vector 

by multiplying it by P

do 

while  | ⃗xt − ⃗xt−1|1 ≥ ε

Until the difference between the vectors 
in two consecutive iterations is below  ε > 0



USING PAGERANK FOR SPECIFIC TOPICS  

TOPIC-SPECIFIC PAGERANK

• In addition to computing PageRank scores for all pages we can 
limit the computation to single topics. 

• How?  

• Simply change the probability distribution for the “teleportation”, 
i.e., the “jump vector”. 

• Start with a (non-empty) set  of pages specific to a certain topic. 

• Your jumps can only be inside .

S

S



USING PAGERANK FOR SPECIFIC TOPICS  

TOPIC-SPECIFIC PAGERANK

P = α1⃗T ⃗JS + (1 − α)R

⃗JSi = {
1

|S |
if i ∈ S

0 otherwise

Given a set of pages , we consider a topic-specific jump vector  in 
the equation:

S ⃗JS

With the elements of  now defined as:⃗JS

We will find a set  of pages with positive PageRank, thus 
obtaining the solution  of “topic specific PageRank for ”

Y ⊇ S
⃗πS S



FOR DIFFERENT USERS

PERSONALISED PAGERANK

• We might want to add a special PageRank score for every user, 
depending on the topics he/she is interested in. 

• For example, based on a set of favorite web pages. 

• However, performing the PageRank computation for every user is 
too expensive. 

• We can use the linearity of PageRank.



AND LINEARITY OF PAGERANK

PERSONALISED PAGERANK

Let  and  be two disjoints of “topic specific” pages.S1 S2

Suppose that the corresponding PageRank scores are  and .⃗π1 ⃗π2

For a user that is interested in the first topic with weight  and 
in the second topic with weight , with  we can 
compute the corresponding PageRank scores as

w1 ≥ 0
w2 ≥ 0 w1 + w2 = 1

w1 ⃗π1 + w2 ⃗π2

Hence we can compute personalised PageRank scores with a 
weighted sum of pre-computed scores.



AND REL=NOFOLLOW

MANIPULATION OF PAGERANK

• There is an implicating conflict between the indexing (especially the 
one performed by Google) and the people managing the websites. 

• Google needs to keep the search results relevant to the user. 

• Normal and spam websites wants to rank high in the search results. 

• To mitigate some of the problems, the “rel=nofollow” attribute was 
added to HTML. 

• A link like: 
<a href="http://www.example.com/" rel="nofollow">Link</a> 
would not be considered for the purpose of computing the 
PageRank score.



HITS



TWO TYPES OF SCORES

HUBS AND AUTHORITIES

This page links a lot of other pages. 
It can be considered an hub.

This page is linked by a lot of other 
pages. It can be considered an 
authority.



TWO TYPES OF SCORES

HUBS AND AUTHORITIES

• Hubs are pages that are important not for their content, but for the 
links that they provide toward pages with interesting content. 

• Authorities are pages that are important for their content; 
therefore, they are linked by many pages. 

• The hyperlink-induced topic search (HITS) algorithm assigns two 
different scores to each page, an authority and a hub score. 

• The main idea behind the algorithm is: 

• A good hub points to pages with high authority score. 

• A good authority is pointed by pages with high hub scores.



TWO TYPES OF SCORES

HUBS AND AUTHORITIES

• Differently from PageRank, HITS is usually computed when the 
query is executed: 

• A set of pages is obtained by some other methods (e.g., by 
looking at the text content of the page). 

• We consider the subset of pages that we have retrieved (which 
will probably have very few links to each other) as a root set. 

• We add to the root set all pages pointed and pointing to it. 

• In this extended set we compute the two scores, that can now be 
used for ranking.



HUBS AND AUTHORITIES

HOW TO COMPUTE SCORES

The hub score  of a page  is defined as:h(x) x

h(x) = ∑
x→y

a(y)

The sum of the authority scores for all pages linked by .x

The authority score  of a page  is defined as:a(x) x

a(x) = ∑
y→x

h(y)

The sum of the hub scores for all pages that links to .x



HUBS AND AUTHORITIES

HOW TO COMPUTE SCORES

As with PageRank, we can compute the scores analytically. 
But here we illustrate an iterative method

h̄t(x) = ∑
x→y

at−1(y)

Start with all hub and authority scores set to . 
At each time step  update them as:

1
t > 0

āt(x) = ∑
y→x

ht−1(y)

But if we only perform this update we might not converge! 
We need to normalise the scores:

ht(x) =
h̄t(x)

∑y (h̄t−1(y))2
at(x) =

āt(x)

∑y (āt−1(y))2


