
INFORMATION
RETRIEVAL
Luca Manzoni
lmanzoni@units.it

Lecture 7-bis

mailto:lmanzoni@units.it

NEURAL NETWORKS IN IR

BECAUSE NEURAL NETWORKS ARE EVERYWHERE NOW

NEURAL NETWORKS AND IR

• Suggested reading:
Bhaskar Mitra, Nick Craswell
An Introduction to Neural Information Retrieval
Foundations and Trends in Information Retrieval, 2018

• We assume some knowledge of neural networks

• We will see (briefly) some of the possible applications of neural
networks in IR:

• Learning of term representation

• Recommender systems using NN

AND DIMENSIONALITY REDUCTION

AUTOENCODER

Encode Decode

⃗v ∈ ℝn ⃗v′ ∈ ℝn

⃗x ∈ ℝk

AND DIMENSIONALITY REDUCTION

AUTOENCODER

• Autoencoders are based on the information bottleneck method
and typically have a “hourglass” shape.

• The input is a vector , the output is also a vector .

• We want the output vector to be the same as the input vector
(i.e., the network learns the identity function).

• The loss function is usually .

• The “bottleneck” is a vector , with which represents
an encoding of in a lower dimensional space.

⃗v ∈ ℝn ⃗v′ ∈ ℝn

ℒautoencoder = ∥ ⃗v − ⃗v′ ∥2

⃗x ∈ ℝk k ≪ n
⃗v

A “SMOOTHER” AUTOENCODER

VARIATIONAL AUTOENCODER

Encode Decode

⃗v ∈ ℝn ⃗v′ ∈ ℝn

⃗x ∈ ℝk

⃗μ ∈ ℝk

⃗σ ∈ ℝk

Sampling

A “SMOOTHER” AUTOENCODER

VARIATIONAL AUTOENCODER

• Similar to an autoencoder, but the encoding part of the network
generates two vectors:

• of the means

• of the standard deviations

• The vector is obtained by sampling normal distributions with
mean a variance obtained by and : .

• This should allow to learn a “smoother” latent space.

⃗μ = (μ1, μ2, …, μk)

⃗σ = (σ1, σ2, …, σk)

⃗x k
⃗μ ⃗σ xi ∼ N(μi, σ2

i)

A “SMOOTHER” AUTOENCODER

VARIATIONAL AUTOENCODER

• The loss function should try to penalise setting the standard
deviations too close to zero.

• This means that there are two components in the loss function:

• Reconstruction error:

• Kullback–Leibler divergence with respect to a unit gaussian:

• The loss function is then:

ℒreconstruction = ∥ ⃗v − ⃗v′ ∥2

ℒKL−divergence =
k

∑
i=1

σ2
i + μ2

i − log(σi) + 1

ℒVAE = ℒreconstruction + ℒKL−divergence

A REPRESENTATION FOR COMPUTING SIMILARITY

SIAMESE NETWORKS

First network Second Network

⃗v1 ∈ ℝn ⃗v2 ∈ ℝn

⃗x1 ∈ ℝk

SIMILARITY
FUNCTION

⃗x2 ∈ ℝk

A REPRESENTATION FOR COMPUTING SIMILARITY

SIAMESE NETWORKS

• Autoencoders and VAE use a latent space representation that is
useful for reconstructing the original input…

• …but sometimes we are interested in a latent space
representation that is useful for computing similarities.

• Two networks (models) maps two inputs and into the same
latent space, obtaining and .

• We compute the similarity between and in the latent space
using a classical similarity measure, like cosine similarity.

⃗v1 ⃗v2
⃗x1 ⃗x2

⃗x1 ⃗x2

A REPRESENTATION FOR COMPUTING SIMILARITY

SIAMESE NETWORKS

• A possible way of learning for siamese networks is to consider
each input sample as a triple.

• We obtain three outputs: , , and .

• We know that should be more similar to that .

• We define the loss function to represent this relation:

•

where is a parameter, usually set to .

⃗x1 ⃗x2 ⃗y

⃗x1 ⃗y ⃗x2

ℒsiamese = log (1 + e−γ(sim(⃗y, ⃗x1)−sim(⃗y, ⃗x2)))
γ 10

LEARNING A LATENT REPRESENTATION

DOCUMENT AUTOENCODER

• Relevant paper:
Salakhutdinov, R. and G. Hinton. 2009. “Semantic hashing”.
International Journal of Approximate Reasoning. 50(7): 969–978.

• Idea: use auto-encoders to learn a latent-space representation of
a document.

• A network is trained using a one-hot encoding of the 2000 most
common terms (without stopwords) to produce a binary vector
encoding of the documents.

LEARNING A LATENT REPRESENTATION

DOCUMENT AUTOENCODER

• Similar documents with the same hash vector can be efficiently
retrieved.

• The auto encoder acts as an hash function where similar
documents ends up in the same “bin”.

• In other works also variational auto encoders were used.

• Main problem: a vocabulary of a few thousand words might be
too small in practical problems.

• Possible solution: use of trigraphs instead of words as input.

LEARNING BY DOCUMENTS AND QUERIES

SIAMESE NETWORKS

• One approach is to learn a representation using both documents
and queries at the same time.

• An approach using siamese networks is the Deep Semantic
Similarity Model (DSSM).

• Relevant paper:
Huang, P.-S., X. He, J. Gao, L. Deng, A. Acero, and L. Heck. 2013.
“Learning deep structured semantic models for web search using
clickthrough data”. In: Proc. CIKM. ACM. 2333–2338.

• Two models, one for the query and one for the documents.

LEARNING BY DOCUMENTS AND QUERIES

SIAMESE NETWORKS

Query modelDocument model

Latent space

RELEVANT
DOCUMENT

NON
RELEVANT

NON
RELEVANT

NON
RELEVANT

QUERY

LEARNING BY DOCUMENTS AND QUERIES

SIAMESE NETWORKS

• The document titles and the queries are represented as a collection
of trigraphs.

• Each sample consists of a query , a relevant document and a
set of non-relevant document randomly sampled from the full
collection.

• The cosine similarity was used as the similarity measure.

• The loss function used was:

⃗q ⃗d+

D−

ℒdssm(⃗q, ⃗d+ , D−) = − log
eγ cos(⃗d+ , ⃗q)

∑ ⃗d∈D−∪{ ⃗d+ } eγ cos(⃗d, ⃗q)

AND THE PROBLEM WITH RARE TERMS

LEXICAL AND SEMANTIC MATCHING

• Embeddings into a latent space as the ones produced by NN have
one problem: they tend to produce poor embeddings for rare
terms.

• For rare terms a “classical” lexical matching is more effective.

• But for other queries, looking at the semantics via the embedding
is more effective (the documents do not contain the same terms
as the query).

• In general, lexical and semantic matching tends to perform well on
different kinds of queries.

AN EXAMPLE

DNN FOR RECOMMENDER SYSTEMS

• It is possible to use a DNN to build a recommender system to
improve with respect to matrix factorisation:

• Input: a vector representing the user query. It can contain
sparse features (e.g., watch history, liked items) and dense
features (e.g., time of the last interaction with the system).

• Output is a probability distribution across all documents in the
corpus representing the probability that the user will like/be
interested/watch them.
This can be obtained using a softmax activation in the last layer.

⃗x

̂p

AN EXAMPLE

DNN FOR RECOMMENDER SYSTEMS

H
id

de
n

La
ye

rsUser history

Side features

Probability
distribution

over the
documents

Query embedding

The weights of this layer (the softmax layer)
forms the item embeddings

AN EXAMPLE

DNN FOR RECOMMENDER SYSTEMS

• How to compute the loss function?

• We might want to consider a function of the difference between
(the predicted distribution) and (the real one)…

• Except that we do not know the entirety of .

• We can try to compute the gradient only for the positive item of
(the one that the user liked)…

• …but we can have the problem of folding.

̂p
p

p

p

AN EXAMPLE

DNN FOR RECOMMENDER SYSTEMS

What we would like

Documents relevant
to Query 1

Query 2

Documents relevant
to Query 2

Query 1

Documents relevant
to Query 1

Query 2

Documents relevant
to Query 2

Query 1

Folding

AN EXAMPLE

DNN FOR RECOMMENDER SYSTEMS

• We use negative sampling.

• Instead of learning only from positive example we sample a set of
irrelevant documents as negative examples.
We can do it in two ways:

• Uniform sampling

• Higher probability of being sampled to items with a large
output value. They contribute more to the gradient.

ADVANTAGES AND DISADVANTAGES

DNN FOR RECOMMENDER SYSTEMS

• DNN can easily incorporate additional features for
personalisation.

• DNN can adapt to new queries.

• DNN are more difficult to scale to handle a very large corpus.

• WALS is less prone to folding than DNN.

• The item embeddings (weights of the last layer) can be stored,
but the query embedding (output of all layers but the last) must
be re-computed every time.

