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NEURAL NETWORKS IN IR



BECAUSE NEURAL NETWORKS ARE EVERYWHERE NOW

NEURAL NETWORKS AND IR

• Suggested reading:  
Bhaskar Mitra, Nick Craswell 
An Introduction to Neural Information Retrieval 
Foundations and Trends in Information Retrieval, 2018 

• We assume some knowledge of neural networks 

• We will see (briefly) some of the possible applications of neural 
networks in IR: 

• Learning of term representation 

• Recommender systems using NN



AND DIMENSIONALITY REDUCTION

AUTOENCODER

Encode Decode

⃗v ∈ ℝn ⃗v′ ∈ ℝn

⃗x ∈ ℝk



AND DIMENSIONALITY REDUCTION

AUTOENCODER

• Autoencoders are based on the information bottleneck method 
and typically have a “hourglass” shape. 

• The input is a vector , the output is also a vector . 

• We want the output vector to be the same as the input vector 
(i.e., the network learns the identity function). 

• The loss function is usually . 

• The “bottleneck” is a vector , with  which represents 
an encoding of  in a lower dimensional space.

⃗v ∈ ℝn ⃗v′ ∈ ℝn

ℒautoencoder = ∥ ⃗v − ⃗v′ ∥2

⃗x ∈ ℝk k ≪ n
⃗v



A “SMOOTHER” AUTOENCODER

VARIATIONAL AUTOENCODER

Encode Decode
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⃗μ ∈ ℝk

⃗σ ∈ ℝk
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A “SMOOTHER” AUTOENCODER

VARIATIONAL AUTOENCODER

• Similar to an autoencoder, but the encoding part of the network 
generates two vectors: 

•  of the means 

•  of the standard deviations 

• The vector  is obtained by sampling  normal distributions with 
mean a variance obtained by  and : . 

• This should allow to learn a “smoother” latent space.

⃗μ = (μ1, μ2, …, μk)

⃗σ = (σ1, σ2, …, σk)

⃗x k
⃗μ ⃗σ xi ∼ N(μi, σ2

i )



A “SMOOTHER” AUTOENCODER

VARIATIONAL AUTOENCODER

• The loss function should try to penalise setting the standard 
deviations too close to zero. 

• This means that there are two components in the loss function: 

• Reconstruction error:  

• Kullback–Leibler divergence with respect to a unit gaussian: 

 

• The loss function is then: 

ℒreconstruction = ∥ ⃗v − ⃗v′ ∥2

ℒKL−divergence =
k

∑
i=1

σ2
i + μ2

i − log(σi) + 1

ℒVAE = ℒreconstruction + ℒKL−divergence



A REPRESENTATION FOR COMPUTING SIMILARITY

SIAMESE NETWORKS

First network Second Network

⃗v1 ∈ ℝn ⃗v2 ∈ ℝn

⃗x1 ∈ ℝk

SIMILARITY 
FUNCTION

⃗x2 ∈ ℝk



A REPRESENTATION FOR COMPUTING SIMILARITY

SIAMESE NETWORKS

• Autoencoders and VAE use a latent space representation that is 
useful for reconstructing the original input… 

• …but sometimes we are interested in a latent space 
representation that is useful for computing similarities. 

• Two networks (models) maps two inputs  and  into the same 
latent space, obtaining  and . 

• We compute the similarity between  and  in the latent space 
using a classical similarity measure, like cosine similarity.

⃗v1 ⃗v2
⃗x1 ⃗x2

⃗x1 ⃗x2



A REPRESENTATION FOR COMPUTING SIMILARITY

SIAMESE NETWORKS

• A possible way of learning for siamese networks is to consider 
each input sample as a triple. 

• We obtain three outputs: , , and . 

• We know that  should be more similar to  that . 

• We define the loss function to represent this relation: 

•   

where  is a parameter, usually set to .

⃗x1 ⃗x2 ⃗y

⃗x1 ⃗y ⃗x2

ℒsiamese = log (1 + e−γ(sim( ⃗y, ⃗x1)−sim( ⃗y, ⃗x2)))
γ 10



LEARNING A LATENT REPRESENTATION

DOCUMENT AUTOENCODER

• Relevant paper:  
Salakhutdinov, R. and G. Hinton. 2009. “Semantic hashing”. 
International Journal of Approximate Reasoning. 50(7): 969–978.  

• Idea: use auto-encoders to learn a latent-space representation of 
a document. 

• A network is trained using a one-hot encoding of the 2000 most 
common terms (without stopwords) to produce a binary vector 
encoding of the documents.



LEARNING A LATENT REPRESENTATION

DOCUMENT AUTOENCODER

• Similar documents with the same hash vector can be efficiently 
retrieved. 

• The auto encoder acts as an hash function where similar 
documents ends up in the same “bin”. 

• In other works also variational auto encoders were used. 

• Main problem: a vocabulary of a few thousand words might be 
too small in practical problems. 

• Possible solution: use of trigraphs instead of words as input.



LEARNING BY DOCUMENTS AND QUERIES

SIAMESE NETWORKS

• One approach is to learn a representation using both documents 
and queries at the same time. 

• An approach using siamese networks is the Deep Semantic 
Similarity Model (DSSM). 

• Relevant paper:  
Huang, P.-S., X. He, J. Gao, L. Deng, A. Acero, and L. Heck. 2013.  
“Learning deep structured semantic models for web search using 
clickthrough data”. In: Proc. CIKM. ACM. 2333–2338. 

• Two models, one for the query and one for the documents.



LEARNING BY DOCUMENTS AND QUERIES

SIAMESE NETWORKS
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LEARNING BY DOCUMENTS AND QUERIES

SIAMESE NETWORKS

• The document titles and the queries are represented as a collection 
of trigraphs. 

• Each sample consists of a query , a relevant document  and a 
set of non-relevant document  randomly sampled from the full 
collection. 

• The cosine similarity was used as the similarity measure. 

• The loss function used was:

⃗q ⃗d+

D−

ℒdssm( ⃗q, ⃗d+ , D−) = − log
eγ cos( ⃗d+ , ⃗q)

∑ ⃗d∈D−∪{ ⃗d+ } eγ cos( ⃗d, ⃗q)



AND THE PROBLEM WITH RARE TERMS

LEXICAL AND SEMANTIC MATCHING

• Embeddings into a latent space as the ones produced by NN have 
one problem: they tend to produce poor embeddings for rare 
terms. 

• For rare terms a “classical” lexical matching is more effective. 

• But for other queries, looking at the semantics via the embedding 
is more effective (the documents do not contain the same terms 
as the query). 

• In general, lexical and semantic matching tends to perform well on 
different kinds of queries.



AN EXAMPLE

DNN FOR RECOMMENDER SYSTEMS

• It is possible to use a DNN to build a recommender system to 
improve with respect to matrix factorisation: 

• Input: a vector  representing the user query. It can contain 
sparse features (e.g., watch history, liked items) and dense 
features (e.g., time of the last interaction with the system). 

• Output  is a probability distribution across all documents in the 
corpus representing the probability that the user will like/be 
interested/watch them.  
This can be obtained using a softmax activation in the last layer.

⃗x

̂p



AN EXAMPLE

DNN FOR RECOMMENDER SYSTEMS
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AN EXAMPLE

DNN FOR RECOMMENDER SYSTEMS

• How to compute the loss function? 

• We might want to consider a function of the difference between  
(the predicted distribution) and  (the real one)… 

• Except that we do not know the entirety of . 

• We can try to compute the gradient only for the positive item of  
(the one that the user liked)… 

• …but we can have the problem of folding.

̂p
p

p

p



AN EXAMPLE

DNN FOR RECOMMENDER SYSTEMS
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AN EXAMPLE

DNN FOR RECOMMENDER SYSTEMS

• We use negative sampling.  

• Instead of learning only from positive example we sample a set of 
irrelevant documents as negative examples. 
We can do it in two ways: 

• Uniform sampling 

• Higher probability of being sampled to items with a large 
output value. They contribute more to the gradient. 



ADVANTAGES AND DISADVANTAGES

DNN FOR RECOMMENDER SYSTEMS

• DNN can easily incorporate additional features for 
personalisation. 

• DNN can adapt to new queries. 

• DNN are more difficult to scale to handle a very large corpus. 

• WALS is less prone to folding than DNN. 

• The item embeddings (weights of the last layer) can be stored, 
but the query embedding (output of all layers but the last) must 
be re-computed every time.


