Geometria

Foglio di esercizi 6

1) Determinare le equazioni parametriche e cartesiane della retta passante per le seguenti coppie di punti di \mathbb{R}^2 :

$$\begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$$
 e $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -7 \end{pmatrix}$ e $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

2) Determinare le equazioni parametriche e cartesiane della retta passante per le seguenti coppie di punti di \mathbb{R}^3 :

$$\begin{pmatrix} -1\\3\\2 \end{pmatrix} e \begin{pmatrix} 4\\1\\0 \end{pmatrix}, \qquad \begin{pmatrix} 5\\-3\\3 \end{pmatrix} e \begin{pmatrix} 1\\1\\-1 \end{pmatrix}.$$

3) Verificare nei seguenti casi che i tre punti di \mathbb{R}^3 non sono allineati e determinare le equazioni parametriche e cartesiane del piano passante per essi:

$$\begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} e \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} 5 \\ -3 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} e \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}.$$

4) Determinare per quali $\alpha \in \mathbb{R}$ i seguenti tre punti sono allineati e in tali casi scrivere le equazioni parametriche e cartesiane della retta che li contiene:

$$\begin{pmatrix} \alpha \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ \alpha \\ 2\alpha \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ \alpha - 2 \end{pmatrix}.$$

Negli altri casi determinare per quali valori di α il piano passante per i tre punti passa anche per (1, 1, 4) e scriverne l'equazione cartesiana.

5) Sia L_A l'applicazione lineare determinata dalla matrice reale

$$\begin{pmatrix} 1 & 1 & 3 \\ 2 & 0 & -1 \end{pmatrix}.$$

Scrivere $L_A(x, y, z)$ e determinare il rango di L_A , la dimensione del nucleo e una base per l'immagine e per il nucleo.

1

- 6) Siano V e W due \mathbb{K} -spazi vettoriali e sia $f:V\to W$ un'applicazione lineare biiettiva. Dimostrare che l'applicazione inversa f^{-1} è lineare (si dice che f è un isomorfismo di spazi vettoriali).
- 7) Siano $f: V \to U$ e $g: U \to W$ applicazioni lineari tra \mathbb{K} -spazi vettoriali. Dimostrare che $g \circ f$ è lineare (composizioni di applicazioni lineari sono lineari).
- 8) Siano $f \colon V \to U$ e $g \colon U \to W$ applicazioni lineari tra \mathbb{K} -spazi vettoriali di dimensione finita. Dimostrare che $\operatorname{rg}(g \circ f) \leq \min(\operatorname{rg}(g), \operatorname{rg}(f))$.