



# Università degli studi di Trieste

### LAUREA MAGISTRALE IN GEOSCIENZE Classe Scienze e Tecnologie Geologiche

**Curriculum: Esplorazione Geologica** 

Anno accademico 2022 - 2023

Analisi di Bacino e Stratigrafia Sequenziale (426SM)

# Docente: Michele Rebesco





# Modulo 3.7 Contourites and sediment drifts Docente: **Michele Rebesco**

Outline:

- Introduction
- Sediment drifts
- Sedimentary structures
- Examples form cores
- Facies Model
- Exploration & Production case studies





# Introduction

**Bottom currents,**'persistent' water current near the sea-floor, are influenced by a series of factors and pervasively affect the seafloor sediments.

**Contourites,** sediments deposited or significantly affected by bottom current, begin to be perceived as a fundamental component of deep sea depositional systems.

**Contourite drifts** generally composed of fine sediments, are large sedimentary accumulations produced by bottom currents, which can allow us to reconstruct their evolution and paloceaonography.

The **sedimentary facies** are manifold and the diagnostic sedimentary characteristics are still under discussion.

Bottom currents and contourites are of **great importance** for paleoclimatic reconstructions, investigations on continental slopes and their stability, the exploration of hydrocarbons and polymetallic nodules, definition of the "extended continental shelf", ecological health of deepwater ecosystems, accumulation of microplastics and contaminants .





Rebesco (2005)



Bottom currents are capable of building thick and extensive accumulations of sediments ("contourite drifts"). Similarly to channel-levee systems generated by turbidity currents, such large bodies normally have a noticeable mounded geometry, which is generally elongated parallel, or lightly oblique to the margin. Besides this, bottom currents and associated processes generate also a wide range of other depositional and erosional or nondepositional structures at different scales.

Istituto Nazionale di Oceanografia

e di Geofisica Sperimentale







(Fonnesu et al., 2019)





# Methods to study contourite deposits









## Three scale approach

Diagnostic criteria are their **facies and ichnofacies, texture and sequences, microfacies and composition**. **Sedimentary structures** are also "diagnostic indicators", but for their interpretation its full context should always be considered. **Medium-scale criteria** (hiatuses and condensed deposits, variation in the thickness, geometry, palaeowater depth, geological context) can be definitive. **Large-scale criteria** (palaeoceanographic features and continental margin reconstructions) are essential, but generally more problematic to apply on outcrops.



Recognizing contourite deposits in ancient sedimentary series presently exposed on land, is a difficult task. The distinction between contourites and reworked turbidites is controversial.







Large scale (overall architecture): I-order elements (major changes in current strength and sediment supply): External geometry, Bounding reflectors, Gross internal character.

Medium scale (internal architecture): II-order seismic elements (reflecting smaller fluctuations): lens-shaped, upward-convex geometry; uniform stacking pattern; down-current migration or aggradation; downlapping reflector terminations

Small scale (internal acoustic character): III-order seismic elements: facies analysis (continuous, (sub)parallel, wavy, structureless), and attribute analysis (bedforms).



**OGS** Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

This updated compilation of **contourite occurrence** was done specifically for the present review, but was subsequently archived and visualised on the Marine Regions website (<u>http://www.marineregions.org</u>). It demonstrates that contourite features are ubiquitous within the oceanic basins (different settings and different water masses from the outer shelf to the abyssal plains. The highest numbers of described large contourite depositional and erosional features are located in the western side of the largest oceanic basins, but not exclusively.









Sediment drift types and inferred bottom-current paths. From Rebesco (2005) after Stow et al., 2002).





Miramontes et al., 2021. Contourite and mixed turbiditecontourite systems in the Mozambique Channel (SW Indian Ocean): Link between geometry, sediment characteristics and modelled bottom currents. Marine Geology 437, 106502.

#### CONTOURITES







Faurgères and Stow, 2008: Factors controlling drift location, morphology and depositional pattern

- Large-scale features of drifts are controlled by a number of interrelated factors, including
- (1) the bathymetric framework (water depth and morphological context),
- (2) the current conditions (velocity, variability, and Coriolis force),
- (3) the sediment supply (amount, type, source, input, variability),
- (4) interaction with other depositional processes (in time and space),
- (5) sea level and sea-level fluctuations,
- (6) climate and climate change,
- (7) tectonic setting and activity and
- (8) the length of time over which these various processes and controls have operated and varied.
- It is not a simple matter to disentangle these various controls as many clearly overlap and are interrelated. Neither is it always certain just what effect a particular control exerts.





contourite drifts: A) Eirik Drift, Greenland margin, northern hemisphere (Hunter et al, 2007);

Examples of large

B) Faro-Albufeira Drift, Gulf of Cádiz margin, northern hemisphere (courtesy of REPSOL Oil);

C) Agulhas Drift, Transkei Basin, southern hemisphere (Niemi et al., 2000).



Balance Constraints and the second se

Large-scale **erosional features** are also common in Contourite Depositional Systems, though less studied with respect to depositional ones. Most commonly they occur just in association with contourite drifts, but may also characterize a broad area of continental slopes. We propose here a reconsideration of the only systematic classification of large-scale erosional features attempted so far (Hernández-Molina et al., 2008; García et al., 2009).









Three-dimensional (3D) coherence volume showing unidirectionally migrating deep-water channels (C1 to C7). B) Facies and architecture within unidirectionally migrating deep-water channel 3 (C3). Five channel-complex sets (CCS1 to CCS5), are identified, each of which comprises **bottom-current reworked sands** (BCRS) in the lower part, grading upward into slumps and debris-flow deposits and, finally, into shale drapes. The BCRS are represented by subparallel and high-amplitude reflections with external lens shapes and are systematically nested in the direction of channel migration (Gong et al., 2013; with permission from the AAPG).

BCRS from previous turbiditic deposits may represent a pragmatic alternative to the application of conventional turbidite concepts, and a new concept for understanding the origin and predicting the distribution of deep-water sandstones. BCRS frequently contain different seismic facies and sedimentary structures.







Various depositional and erosional bedforms are generated by bottom currents. hey are highly variable in terms of sediment composition, morphology and dimension, from decimetres to kilometres. The detection of bedforms can be important for the reconstruction of bottom-current velocity and for geohazard assessment (where velocities can damage seafloor infrastructure, including pipelines and telecommunications cables). From Stow *et al.*, 2013.



Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

Rebesco et al (2021) Bottom current-controlled Sediment waves Quaternary sedimentation at the foot of the Malta Escarpment (Ionian Basin, Mediterranean) Marine Geology, 441, art. no. 106596,



1) Creep folds do not display lateral migration and sediments on either flank of individual folds are identical.

2) Creep folds show clear evidence of displacement along fault planes and individual reflections cannot be traced across the troughs.

3) Creep folds are oriented parallel to the slope and are generally arcuate in plane view, without bifurcation.

1) most turbidity current waves occuring in turbidite environments, are situated on channel levees, which are not identified in the "turbidite valley" (Gutscher et al., 2016; San Pedro et al., 2017) at the base of the sediment-starved Malta Escarpment; 2) turbidity current waves are scarce in basin floor environments, where their crest alignment is normally slope-parallel or oblique to the regional slope if found on levee backslopes, whereas in this case the crest alignment is almost perpendicular to the Malta Escarpment; 3) turbidity current waves usually show a progressive decrease in dimension downslope, which is not observed here; 4) in turbidity current wave fields, the stratigraphic interval over which the waves occur often shows a progressive downslope thinning (up to 40-60%) associated to upslope sourcing, which is not observed here;





Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

|                     | Type of deposits                        | Grain size                                        | Characteristics                                                                                                                                                                                                                                                                                                  | Sed. Structures                                                                                                                                                                                    | Examples                                                         |
|---------------------|-----------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| CLASTIC CONTOURITES | Muddy contourites                       | 5 - 11 Ø<br>< 0.31 mm                             | 50 % Clays<br>< 15 % of sands<br>≤ 20 -30 % of bioclastic and / or carbonate components<br>Homogeneous & highly bioturbated<br>Poor sorting                                                                                                                                                                      | Rare laminations<br>Bioturbatiion<br>Indistinct mottled appearance                                                                                                                                 | Rockal Trough (Kow & Fougeeres, 2008)                            |
|                     | Silty contourites                       | 4 - 8 Ø<br>0.063-0.004 mm                         | 40 - 60 % Silts<br>Interbedded between muddy & sandy contourites<br>Poor sorting<br>Sharp to irregular tops and bases                                                                                                                                                                                            | Tractive structures (ripples, sed.waves)<br>Bioturbational mottling<br>Ichonofacies                                                                                                                | Cold of Cold (Som & Fragersh 2008)                               |
|                     | Sandy contourites                       | -1 - 4 Ø<br>2 - 0.063 mm<br>Normally does not     | Sheeted to wedge beeding<br>Well-sorted deposits, but can be poor to moderate<br>Mixed siliciclastic / biogenic composition<br>Heavy mineral concentration<br>Both positive & negative grading<br>Gradational or erosive contacts                                                                                | Tractive structures (e.g.: horizontal<br>lamination, cross-lamination, ripples, etc)<br>Bioturbation (sub.vertical burrows)<br>Massive layers (structureless)<br>Erosional or gradational contacts | Guiltof Cedit (store & Fauptiers, 2303)                          |
|                     | Bottom current<br>reworked sands (BCRS) | exceed fine sands                                 | From previous turbiditic deposits<br>Rhytmic layers<br>Lenticular bedding<br>Well sorted<br>Coarsening upward sequences<br>Sharp to gradational bottom contact and sharp<br>(nonerosiona) upper contact!                                                                                                         | Tractive sturctures (e.g.: horizontal<br>lamination, low-angle cross lamination;<br>mud-offshoots in ripples,<br>mud-drapes, flaser, etc)                                                          | Top<br>1 cm                                                      |
|                     | Gravel contourites                      | <-1 Ø<br>>2 mm                                    | Winnowing & erosion (channels, moats, etc)<br>Irregular layer and lenses<br>Poorly to very poorly sorted                                                                                                                                                                                                         | Sandy gravel lag                                                                                                                                                                                   |                                                                  |
|                     | OLCANOCLASTIC<br>CONTOURITES            | Mud, silt or sands                                | Similar to the siliciclastic facies<br>Composition is dominated by volcaniclastic material                                                                                                                                                                                                                       | Similar to the clastic contourites                                                                                                                                                                 | Hawaii (Puga bernabdu, A., Fers. Comm.)<br>Votor digitir 400 m   |
| S<br>SF             | HALE-CLASTS OR<br>IALE-CHIP LAYERS      | Shale clasts generally<br>mm in size              | Developed in muddy & sandy contourite facies<br>From substrate erosion by strong bottom currents<br>Burrowing on the nondeposition surface                                                                                                                                                                       | Clats axes sub-parallel both to beeding<br>and to the current direction                                                                                                                            | 3 cm                                                             |
| SUC                 | Calcareous muddy & silty contourites    | > 4 Ø<br>< 0.063 mm<br>Silty clay to clavey silts | >70 % of bioclastic and / or carbonate components<br>Dominant biogenic input<br>Poorly sorted<br>Distint sand-size fractions (biogenic particles)<br>Composition: pelagic to hemipelagic, including<br>nannofossils & foraminifers as dominat elements<br>Admixture of siliciclastic or volcanicclastic material | Bedding is indistint, but may be enhanced<br>by cyclic variations in composition / grain<br>size.<br>Bioturbation                                                                                  | Orlead Sue Depart Control Coded                                  |
| LCAREC              | Calcareous sandy<br>contourites         | -1 - 4 Ø<br>2 - 0.063 mm<br>Sands                 | Equivalent of sandy contourites<br>Both well-sorted to poorly sorted<br>Particles from pelagic, benthic, off-shelf & off-reef sources<br>Admixture of siliciclastic, volcanic & silicieous material                                                                                                              | Thin-bedded cross-laminated foraminera<br>contourite. Lenticularity<br>Hardgrounds.non de'positional surfaces<br>Bioturbation & burrowing                                                          |                                                                  |
| 25                  | Calcareous gravel<br>lag contourites    | <-1 Ø<br>>2 mm<br>Gravel                          | Clasts or chips derived from erosion of the subtrate                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |                                                                  |
| SIL                 | ICEOUS BIOCLASTIC<br>CONTOURITES        | Mud, silt or sands                                | Rich in diatomaceous & radiolarian material                                                                                                                                                                                                                                                                      | Laminated and / or cross-laminated sands                                                                                                                                                           | Hala Jahana Basin (DSDA) Siev SB4,<br>Shendan et al 1983)<br>Top |
| GENIC               | Manganiferous<br>contourites            |                                                   | Manganiferous or ferro-manganiferous horizonts<br>Areas with ferro-manganese nodules & pavements                                                                                                                                                                                                                 | Bioturbation & burrowing                                                                                                                                                                           | 2 Citizan (Sourcher et al. 2003)                                 |
| CHEMO               | Chemogenic<br>gravel-lag contourites    |                                                   | Deep-water chenoherms (chemical - biogenic precipitates)<br>of metal - carbonate chimneys, mounds & encrustations<br>Winnowed and aligned into chemogenic gravel-lags                                                                                                                                            | Strewn od debris<br>Alineation of gravel-lag                                                                                                                                                       |                                                                  |

Stow and Faugères (2008) + BCRS from Shanmugam, 2012





# Martín-Chivelet et al., 2008 Traction structures

### 40 years of controversy

1950s: discovery of current ripples = establishment of the contourite facies 1970s: discovery of fine-grained turbidites = seed of controversy since similar sedimentary structures of contourites.

1980s: concept that bioturbation destroy traction structures = reinterpretion of contour-current deposits as fine-grained turbidites

1990s: few workers provided convincing evidence of traction structures = most workers reject this criterium

### Setting the stage for sedimentary structures in contourites

In the time interval between deposition and significant lithification, burrowing can be sufficiently intense to destroy previous traction structures.

Traction structures are abundant on recent ocean floors.

Traction structures are more abundant and easily preserved in sandy contourites.

Thermohaline circulation in older, greenhouse times, was probably driven by active sinking of saline waters in intertropical seas

studies from boreholes or small outcrops might be biased by partial observation of bedform geometry, internal architecture and lateral arrangement.

turbidity currents are sediment gravity flows contour currents are water flows.





Various **sedimentary** structures have been described for contourites in present and ancient deposits (Martín-Chivelet *et al.*, 2008). However, in areas of intense bioturbation from benthic activity, the preservation potential of some of these structures can be low.

| Sketch                                                  | Sed. structures                                                                               | Dominant<br>grain size                                   | Enviromental<br>implications                                                                  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| E                                                       |                                                                                               | Fine sand, silt & mud<br>< 2 Ø<br>< 0.250 mm             | Low current strength<br>Predominance of deposition<br>from suspension                         |
| ٤<br>٤<br>٤<br>٤                                        |                                                                                               | Fine sand, silt & mud<br>< 2 Ø<br>< 0.250 mm             | Alternating flow conditions,<br>low to moderate current<br>strength, winnowing                |
| 5j                                                      | Wavy bedding,<br>flaggy chalks                                                                | Fine sand, silt & mud<br>< 2 Ø<br>< 0.250 mm             | Alternating flow conditions,<br>low to moderate current<br>strength                           |
| ۳<br>۲-                                                 | Flaser bedding,<br>mud offshoots                                                              | Fine sand to silt<br>8 - 2 Ø<br>0.004 - 0.250 mm         | Alternating flow conditions,<br>Current speed = 10 - 40 cm / s                                |
| 5<br>(subcritical to<br>supercritical)                  |                                                                                               | Very fine to medium sands<br>4 - 1 Ø<br>0.063 - 0.5 mm   | Current speed = 10 - 40 cm / s<br>High suspension load                                        |
| E<br>Cross-bedding,<br>megaripples, dunes,<br>sandwaves |                                                                                               | Medium sands<br>2 - 1 Ø<br>0.250 - 0.5 mm                | Current speed = 40 - 200 cm / s<br>Barchan dunes usually form<br>at 40-80 cm / s              |
| ٤]                                                      | Parallel lamination<br>(upper stage plane beds),<br>presence of primary<br>current lamination | Very fine to medium sands<br>4 - 1 Ø<br>0.063 - 0.5 mm   | Current speed = 40 - 200 cm / s                                                               |
| <u>د معمد معمد معمد معمد معمد معمد معمد مع</u>          | Minor erosive surfaces,<br>mud rip-up clasts,<br>upper sharp contacts                         | Sand, silt & mud<br>< -1 Ø<br>< 2 mm                     | Alternating flow conditions,<br>low to moderate current<br>strength                           |
| 1-5 cm                                                  | Sole marks:<br>flutes, obstacle scours<br>& longitudinal scours,<br>cut & fill structures     | Sand, silt & mud<br>< -1 Ø<br>< 2 mm                     | Flow speed peaks                                                                              |
| <u>ه</u> ا                                              | Longitudinal ripples                                                                          | Coarse sandy muds<br>(20 % sand)                         | Low current speed = 2 - 5 cm / s<br>Winnowing                                                 |
|                                                         | Bioturbation<br>(strongly variable)                                                           | Sand, silt & mud                                         | Low current speed<br>Strong paleoecological control,<br>Low to moderate accumulation<br>rates |
| 3-20 cm                                                 | Normal & reverse<br>grading at different scales<br>and within different types of<br>deposits  | From coarse sand to mud<br>Usaully fine sand, silt & mud | Gradual changes in flow strengt                                                               |
| 0.1 - 2 cm                                              | Pebble lags, furrows                                                                          | Coarse sand,<br>microconglomerate                        | Current speed over 200 cm / s                                                                 |











Horizontal Bedding



Cross-Bedding



Climbing-Ripple Cross-Bedding



Lenticular Bedding

5 cm

5

ŝ

Fine Sand



Rhythmic Bedding



Sharp Upper Contact

Mud



Most of these structures are also present in other deepwater deposits (*e.g.* turbidites), but some have been suggested to be a clear diagnostic feature for bottom-current deposits, such as: *negative grading*; longitudinal triangular ripples; and double mud layers and *sigmoidal cross-bedding*, which are unique to deep-water tidal deposits in submarine canyons (Shanmugam, 2006; 2012).

Istituto Nazionale di Oceanografia

e di Geofisica Sperimentale

Shanmugam et al., 1993

5 cm





Istituto Nazionale di Oceanografia e di Geofisica Sperimentale









Sedimentary structures in bottom-current reworked sands (BCRS): A) **Discrete thin** sand layers with sharp upper contacts; B) **Rhythmic layers** of sand and mud, inverse grading, and sharp upper contacts; C) Horizontal lamination with gradational upper contact; D) Convex-up and concave-up laminae; E) Flaser bedding; and F) Double mud.

### Shanmugan, 2008; Shanmugam et al., 1993; Shanmugam, 2012







Highly bioturbated (mottled with burrows). Rare primary indistinct lamination (marked by colour change and/or irregular winnowed concentrations of coarser material). Rarely, remnants of thin cross-laminated beds. Silty–clay grain size and poor sorting, with dominantly siliciclastic composition with some biogenic fraction. Either local and fartravelled components Stow and Faurgères, 2008: Silty-Muddy contourites Homogeneous, featureless, poorly bedded units in some cases showing cm-dm banding marked by subtle colour and core logging changes.







# Sandy contourites





Both positive and negative grading may be present. A mixed siliciclasticbiogenic composition is typical, with evidence of abrasion, fragmented bioclasts and iron-oxide staining.

Either as thin irregular layers and much thicker units within the finer grained facies, may display either distinct or gradational contacts. Thoroughly bioturbated, appear massive (structureless). The mean grain size normally does not exceed fine sand (apart from coarser grained horizons and lags), and sorting is mostly poor to moderate, in part due to bioturbational mixing.







# Laminated sandy contourites



Less common than their bioturbated counterparts and have been rarely documented, but do occur where highenergy (high-velocity) bottom currents are especially dominant and larger-scale bedforms (e.g. dunes) are evident on the sea floor. The few examples observed to date are thick to very thick-bedded and distinctly laminated. The lamination is relatively broad and diffuse, enhanced by slight colour variation, and parallel at the scale of the cores, although this may also be part of large-scale cross-bedding. Bioturbation is rare, but large sub-vertical burrows have been noted. The mean grain size is mediumgrained sand, with moderately good sorting. The sediment has a mixed siliciclastic/biogenic composition, with evidence of abrasion, fragmented bioclasts and iron-oxide staining.





# Gravel-rich contourites and gravel-bearing contourites



Common in drifts at high latitudes (ice-rafted debris). Under relatively low-velocity currents, IRD remains and is not subsequently reworked. This facies is often indistinguishable from glaciomarine hemipelagites.

Concentration of the coarser fraction occurs under higher-velocity currents and more extensive winnowing, yielding irregular layers and lenses of poorly to very poorly sorted, sandy gravel-lag.

#### Similar coarse-grained

concentrations and gravel pavements are locally developed in response to high-velocity bottom-current activity in shallow straits, narrow contourite moats and passageways.





The standard

## The creation of a definitive **facies model** for contourites





**OGS** Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

Facies and facies sequences associated to contourites vary greatly, making any singular, systematic characterisation of facies rather difficult for the moment. Stow et al. (2002) slightly modified the standard sequence by using five principal divisions (C1–C5), and Stow and Faugères (2008) later proposed a model for partial sequences ,which are equally or more common than the full bi-gradational sequence.





õ

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

Examples of the principal sedimentary facies for the contourites recovered during **IODP Expedition 339** (Hernández-Molina et al., 2013).

Preliminary results are in agreement with the previously proposed idea that there is a greater variety of facies sequences for bottom current deposits than what is presently represented in the most commonly accepted contourite facies model. Additionally, remarkable interactions between contourite and turbidite processes have been reported that are completely new and different from the current facies models.





e di Geofisica Sperimentale The main criticism for considering the Faro Drift deposits as the standard contourites facies sequence relates to two facts: this drift is predominantly muddy, and it is located in the distal part

of a huge CDS. Moreover, other facies in other parts of the same depositional system have recently been reported, but it is difficult to apply the conceptual model to them.

Most of the contacts between the classical contourite facies (mottled, fine sand, and coarse sand) are sharp rather than transitional.



Gravely contourite in the Gulf of Cádiz. Core log, X-ray, grain size, and indurated thin sections under natural light and fluorescence. (Mulder et al., 2013).



Natural light

Fluorescence



laminated

Istituto Nazionale di Oceanografia



(CFF)



## **Preliminary contourite facies tract (?)**

In the Campos Basin, bottom currents played a major role since late Cretaceous in reworking and redistributing turbidite fine sands derived from basin margins.



(CFB) M-thick well- sorted horizontally laminated fine and very fine sand

Flow direction



(CFC) M-thick well-sorted fine and very fine sand with large ripples with internal sigmoidal laminae

(CFD) Alternating cm-thick packages of ripplelaminated fine-grained sand and bioturbated muddier units with sand streaks

cycles of the classic Stow's model (Stow et al., 2002)



Flow direction

Mutti &

2015

Carminatti,



Currently available models for deep-water sedimentation are inadequate to describe and interpret the complexity of depositional patterns developed by the interaction of bottom currents and sediment gravity flows.



bioturbated terrigenous, mixed and biogenic (calcareous) Highly mudstones





# Photos of Contourite Facies A-F



Mutti & Carminatti, 2015



Location map

**Basin within** 

of Santos

Brazilian

sediment

turbidity

bottom

currents

resuting in

which are

oil reservoirs

Contourites

currents was

removed by



# E & P case study: Santos Basin Location map

Peroá ngoá Margin where MG Gollinho Brazil arapó Canapu Espírito Santo transported in Basin in Bicuda suspension by Cachalote a Azı Caxanór Manganga Catuá Fields Discovered before 1984 *ioncado* SP Fields Discovered 1984-2001 RJ Garoupa Albacora Namorado ields Discovered 2002-2005 Badeio Martim Fields Discovered 2006-2014 São Paulo Rio de Janeiro Barracuda Discoveries under evaluation Pampo Carapicu Carata Shallow waters Deep waters Xerelete Papa-Terra Uruguá Tambaú Ultradeep waters Pirapitanga-Campos Basin Mexilhão Tambuatá and Turbidites Carapiá Libra Area de Iracema CURRENTS IN THE OLIGOCENE OF SANTOS RASI Merluza Búzios Lagosta uaiamá 🔊 highly prolific Júpiter Piracacá / Bem-te-vi Lapa Sul de Lula Baúna Tubarão Sapinhoá caha Estrela-do Mar Caramba Ceral 20 Ba una Sul Caravela. Transfer of Rigths Areas Cavalo Marinho Santos Basin SC 100 km Florianópolis





# Santos Basin sandy contourites

Example of barchan dunes, sand waves, sand furrows and ribbons in plan view: evidence of bottom current action







# Santos Basin:

# seismic section through sandy contourites

Seimic section showing that these large bedforms migrated on a flat seabottom under the action of high velocity bottom currents

PETRÓLEO BRASILEIRO S.I PETROBRAS

The seismic expression of these sediments suggests that they formed primarily as features with cross-sectional and plan-view geometry that indicates the migration of large bedforms (sandwaves, barchan dunes, sand ribbons) over an essentially flat sea-bottom. Amplitude maps show that these depositional features are closely associated with linear erosional features (sand and/or gravel furrows and more generally linear scours) produced by higher velocity currents







SHALE



The well log shows the large thickness of the sand bodies and the photos show that sandstone is very well sorted (low depositonal matrix) with good porosity and permability thanks to winnowing away of mud.

(Mutti et al.*,* 2014)

# Santos Basin: well log and petrophysical properties



DEVELOPED.

MODIFIED FROM BULHOES ET AL., 2012





# **Campos Basin Location map**

Location map of Campos **Basin within** Brazilian Margin where there are clear evidence of bottomcurrent reworking of hydrocarbon -bearing turbidites







# Campos Basin: Contourites occur primarily in 3 settings:

within channels where bottom currents moved up and down



COARSE-GRAINED TURBIDITE BEDS REWORKED BY TIDAL BOTTOM CURRENTS (HYBRID FACIES ASSOCIATION)

in open slope settings, with quasi-permanent geostrophic thermohaline flow



CYCLICALLY STACKED THIN-BEDDED CONTOURITES

patterns controlled by local and regional topography that moved large amounts of fine sand through migrating largescale sand-dune fields and sand waves, and smaller bedforms. within channels or in turbidite fan remnants



CURRENT-LAMINATED SANDY CONTOURITES





Location map of Espirito Santo Basin within Brazilian Margin where the preliminary contourite system tract of Mutti and Carminatti (2012) was conceived (Mutti et al., 2014)



# Espirito Santo Basin Location map







# **Espirito Santo:**

# Basin hybrid facies associations

(Mutti et al., 2014)

SEDIMENT FAILURE

Turbidite sands winnowed, eroded and redistributed by deep-marine bottom currents to form contourite sands which are difficult to explain with currently turbidite-dominated models for deep-water sedimentation







# Tanzania

# Location map

Location map of the Tanzanian margin where Hybrid turbiditecontourite systems have been identified



(Sansom, 2018)









# Tanzania: migrating channellevee complexes

Istituto Nazionale

di Oceanografia

e di Geofisica Sperimentale

In response to flow-stripping of the suspended load of the turbidity current, the northern levee migrates upstream with respect to contour current, and the channel displaced to the south





(Sansom, 2018)





# Mozambique: Location map







# Mozambique: Ocean floor bathymetry

(B) Shaded relief map overlain by bathymetry of modern deep-water fans and deep undercurrents flowing northwards along the continental slope.



The basin is located in the offshore of northern Mozambique, within the Mozambique Channel.

(D) Detail of seafloor featuresincluding large-scale scour marks(flutes and crescent) created bynortherly directed bottom currents

km







# Seismic section through the Coral sequence

Main stratigraphic surfaces (above) and seismic facies interpretation (below). Overall southwards migration and offset stacking pattern with channel complexes flanked by prominent asymmetric drift-mounds on the N side of the fans.

The reservoir shows a systematic internal organization linked to 4th and 5th order base level

Drift-mound

Mud/Fine-grained dominated









# Block-diagram of depositional processes affecting the Coral system



(Fonnesu et al., 2019 after Fonnesu, 2013)





Most of the **future perspectives** in contourite research strongly depend on continuous technological advances.

Use of numerical or sand-box modelling, indurated thin sections, Ichnological Digital Analysis Images Package, CT scanning, HR 3D seismics, observations from AUV, seismic oceanography, fingerprinting of water masses using isotopic tools are steadily expanding techniques.

A more intensive collaboration between physical oceanographers and geologists!!!

### Scale will be an especially important factor:

- high-resolution to elucidate the relationship currents and smaller contourite deposits;

- increased resolution to detail spatial and temporal variability within a single deposit;

- larger-scale perspective on CDS sharing the same basin, water masses and time scale.

The advances expected in contourite research should lead to the establishment of better diagnostic criteria for contourite identification.





### **Future discoveries?**







# CONCLUSIONS

Contourite processes are not as simple as initially thought.

Contourite nomenclature might need to be reconsidered.

New facies models must be established.

More work is needed to understand sandy contourites.

Integrated studies will be essential for an holistic perspective.

Pervasiveness of bottom-water circulation to be reconsidered.





| Unit | Topic                                                                | Teacher        | Date     |
|------|----------------------------------------------------------------------|----------------|----------|
| 1.1  | Introduction to the course                                           | Rebesco        | 03/10/22 |
| 1.2  | Methods (geophysics, but not only)                                   | Volpi/Rebesco  | 06/10/22 |
| 6.1  | Visit to the icebreaker Laura Bassi (along with Geologia Marina)     | Rebesco        | 10/10/22 |
| 1.3  | Mechanisms of basin formation (geodynamics, tectonics)               | Lodolo         | 13/10/22 |
| 1.4  | Seismic interpretation, facies and primary structures                | Rebesco        | 17/10/22 |
|      | No lesson: 20 <sup>th</sup> October                                  |                |          |
| 2.1  | Sedimentary processes in river & deltas                              | Rebesco        | 24/10/22 |
|      | No lesson: 27 <sup>th</sup>                                          |                |          |
| 2.2  | Action of tides and waves, wind and ice                              | Rebesco        | 31/10/22 |
|      | No lesson: 3 <sup>rd</sup> November                                  |                |          |
| 2.3  | Density currents, bottom currents and mass transport                 | Lucchi/Rebesco | 07/11/22 |
| 1.5  | Energy storage & CCUS                                                | Volpi/Donda    | 10/10/22 |
| 3.1  | Alluvial deposits, lakes and deserts                                 | Rebesco        | 11/11/22 |
|      | No lesson: 14 <sup>th</sup> November                                 |                |          |
| 3.2  | Barrier systems and incised valleys                                  | Rebesco        | 17/11/22 |
| 3.3  | Continental shelves (wases, storms, tsunamis)                        | Rebesco        | 21/11/22 |
| 3.4  | Mass transport deposits                                              | Ford           | 24/11/22 |
| 3.5  | Abyssal plains (hemipelagic fallout) and continental margins         | Rebesco        | 28/11/22 |
| 3.6  | Submarine fans (gravity flows on the continental slope)              | Lucchi         | 01/12/22 |
| 3.7  | Sediment drifts (bottom currents along the continental slope)        | Rebesco        | 05/12/22 |
|      | No lesson on Thursday 8 <sup>th</sup> December                       |                |          |
| 3.8  | Glacial depositional systems                                         | De Santis      | 12/12/22 |
| 3.9  | Carbonatic environments, faults, volcans                             | Rebesco        | 15/12/22 |
| 4.1  | Sequence stratigraphy: introduction                                  | Rebesco        | 19/12/22 |
|      | No lessons from 23 <sup>rd</sup> December to 8 <sup>th</sup> January |                |          |
| 4.2  | Sequence stratigraphy: closer view                                   | Rebesco        | 09/01/23 |
| 4.3  | Sequence stratigraphy: applications (e.g. hydrocarbon reservoirs)    | Rebesco        | 12/01/23 |
| 5    | Excercise                                                            | Rebesco        | 13/01/?? |
| 6.2  | Visit to OGS and SEISLAB (along with Geologia Marina)                | Rebesco        | 20/01/?? |
| 6.3  | Visit to CoreLoggingLAB (along with Geologia Marina)                 | Rebesco        | 24/02/?? |







# Esercitazioni

Shan Liu, F. Javier Hernández-Molina, Gemma Ercilla, David Van Rooij, 2020, Sedimentary evolution of the Le Danois contourite drift systems (southern Bay of Biscay, NE Atlantic): A reconstruction of the Atlantic Mediterranean Water circulation since the Pliocene, Marine Geology 427, 106217





