
Motion in a uniform E field

( ) (0)

d
e

dt

e
t t

! "

! "

k
E

E
k k

!

!

Filled bands are inert

if the band is filled an applied electric field cannot change k

! no current is induced by an applied electric field 
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electron velocity oscillates ! electron motion is oscillatory 

as an electron approaches a Bragg plane, the Bragg reflected component increases

at the boundary it becomes equal to the forward component and the wave becomes standing wave, v = 0

with further increase of k in the repeated-zone scheme the reflected component dominates
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Motion in a uniform H field  (i)

for free electrons
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orbits that enclose empty states are hole orbits: motion of holes of charge +e

open orbits are topologically intermediate between electron orbits and hole orbits 

near the top of an almost-filled band
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Motion in a uniform H field  (ii)

134 Chapter 6 Free electrons in a solid: The Fermi gas

Motion of electrons in a magnetic field: electron orbits, hole orbits and
open orbits

Figure 6.21: Motion in a magnetic field of the wave vector of an electron on the Fermi
surface, in (a) and (b) for Fermi surfaces topologically equivalent to those of Fig. 6.20.
In (a) the wave vector moves around the orbit in a clockwise direction; in (b) the wave
vector moves around the orbit in a counter-clockwise direction. The direction in (b) is
what we expect for a free electron of charge −e: the smaller k values have the lower
energy, so that the filled electron states lie inside the Fermi surface. We call the orbit
in (b) electronlike. The sense of the motion in a magnetic field is opposite in (a) to that
in (b), so that we refer to the orbit in (a) as holelike. A hole moves like a particle of
positive charge e. In (c) for a rectangular zone we show the motion on an open orbit in
the periodic zone scheme. This is topologically intermediate between a hole orbit and
an electron orbit. [from Kittel, Einführung in die Festkörperphysik (1999); Abb.9.12].

Figure 6.22: (a) Vacant state at the corners of an almost-filled band, drawn into
a reduced zone scheme. (b) In the periodic zone scheme the various parts of the
Fermi surface are connected. Each circle formes a holelike orbit. The different circles
are entirely equivalent to each other, and the density state is that of a single circle.
(The orbit needs not to be true circles: for the lattice shown it is only required that
the orbits have fourfold symmetry.) [from Kittel, Einführung in die Festkörperphysik
(1999); Abb.9.13].
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3D: the projection of the real space orbit in a plane 

perpendicular to the field is the k-space orbit 

rotated through 900 about the field direction 

and scaled by the factor

2D: the real space orbit is the k-space orbit rotated through 900 and scaled by the factor 
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(where r⊥ is the projection of r on a plane ⊥H, and Ĥ = H/H)

From the eqs. of motions it follows:
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e
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× H = −

eH
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× Ĥ

i.e. r and k evolve following orbits ⊥ one to the other:

Motion in a uniform H field  (iii)
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metals and insulators

types of configurations of the ground state:

1 – a certain number of bands are completely filled, all other remains empty

because the number of levels in a band is equal to the number of primitive 

cells in the crystal and each level can accommodate two electrons 

a configuration with a band gap 

can arise only if number of 

electrons per primitive cell is even

solids with Eg>> kBT are insulators

solids with Eg ~ kBT are semiconductors

2 – some bands are partly filled

solids with Fermi surface are metals

the band gap

filled bands

empty bands
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(this is case for an odd number of el.; 
could be also with an even number  

of electrons but in presence  
of a band crossing)



two atoms per unit cell => 10 valence electrons per unit cell 
=> insulator OR metal ?

Bi   Z=83, group VA  ; structure: RHL

Bi has:

- the highest Hall coefficient, RH = -1/(nec), is several 
orders of magnitude higher than expected with that n. 
- the second lowest thermal conductivity (after Hg) 
- a high electrical resistance (or low electrical 
conductivity) 
(look for instance at Tab 1.2 and 1.6 of A&M)

Why? 
Is the “effective” electron concentration n for some 
reason much lower than the calculated one?

An example of semi-metal
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Figure 1: Electronic structure of Bismuth. (a) Bulk band dispersion in di↵erent directions of the
Brillouin zone (b) Schematic band structure of the bands crossing the Fermi energy. (c) Density
of states.

Here we simplify this by assuming that n = p so that

RH =
µ2
h
� µ2

e

en(µh + µe)2
. (2)

This expression does not only contain the electron (or hole) concentration but also
the mobilities. In any event, both n and p are very small such that the denominator is
small, too, giving rise to a high RH . This e↵ect would, however, disappear for equal
electron and hole mobilities because this would lead to a vanishing numerator.

Online note to accompany the book “Solid State Physics - An Introduction”, Wiley VCH. Copyright
(C) 2014 by Philip Hofmann.

2

Bi   Z=83, group VA ; rhombohedral structure (RHL)

a nearly perfect “compensated semi-metal”


with small electron and hole pockets;


low carrier density;


small Fermi surface

very small DOS(EF)

Adapted from:

Online note to accompany 
the book “Solid State Physics 
- An Introduction”, Wiley, by 
Philip Hofmann 



Bi   Z=83, group VA  ; structure: RHL

The effect of the presence of both holes and electrons on the Hall constant can be 
understood qualitatively from the expression for RH:

Hall e↵ect in Bismuth

Table 5.1 illustrates the curious Hall e↵ect in Bismuth: If we make the apparently
reasonable assumption that every Bi atom contributes to the metallic state with 5
valence electrons, the Hall constant RH = �1/(ne) is several orders of magnitude
higher than expected. A possible explanation for this could be that the electron
concentration n is for some reason much lower and this is also the case. This
note explains this in more detail and it also gives a good illustration of the electron
counting arguments that we have used in the text in order to determine if a solid
is a metal or a semiconductor.

Bi atoms have 5 valence electrons, two s electrons and 3 p electrons. The bulk
crystal structure of Bi is a bit complicated but for us the only important thing is
that there are two atoms per unit cell. This makes 10 electrons per unit cell. Since
this is an even number, Bi could technically be a semiconductor but we need to
keep in mind that having an even number of valence electrons per unit cell is only
a necessary criterion for having a semiconductor. It is not su�cient. In the case
of Bi, we have an electronic situation that is very close to being a semiconductor -
but not quite.

This is illustrate in Figure 1(a) which shows the band structure of Bi. The two
lowest bands can be viewed as s-derived. The are well separated from the higher
p-type bands and fully occupied by the 4 s electrons in the unit cell. this leaves
6 p electrons which could exactly fill three more bands. A superficial look on the
band structure appears to confirm this. When zooming in as schematically done
in Figure 1(b), however, we see that the upper “valence band” crosses the Fermi
energy the T point of the Brillouin zone whereas the lowest “conduction band”
drops below the Fermi energy at the L point. The valence band is thus almost
completely filled apart from a very small concentration of holes and the conduction
band is completely empty apart from a very small concentration of electrons. The
total electron and hole concentration must the the same, of course, so that the Bi
remains charge neutral. An impressive illustration of the small carrier concentration
is shown in density of states shown Figure 1(c). At first glance the density of states
appears to go to zero near the Fermi energy such that a gap is formed. But this is
so only superficially. The density of states does not actually go to zero. It is just
very small.

The e↵ect on the Hall constant can now be seen qualitatively from the expression
for the Hall e↵ect in the presence of both holes and electrons (see Problem 7.6)

RH =
pµ2

h
� nµ2

e

e(pµh + nµe)2
. (1)

1
(see: Ashcroft-Mermin: problem 12.4
or
written test of 11/04/2007)

if n, p (here: n=p) are very small 
=> small denominator => high RH 

No longer true if pμh2=nμe2       

since also the numerator vanishes
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written test of January 16, 2012 - problem n. 3

Exercise 2: E↵ective masses and density of levels

Consider bulk Silicon, whose conduction band minima Ec are near the Brillouin zone boundary

along h100i directions. Assume a parabolic conduction band with ellipsoidal constant energy

surfaces around the minima, described by:

E(k) = Ec +
h̄2

2

 
k2
`

m⇤
`

+
k2
t

m⇤
t
+

k2
t

m⇤
t

!

(t=transverse, `=longitudinal, with m⇤
`= 0.98m0 m⇤

t= 0.19m0, where m0 is the free electron

mass; ~k is with respect to the location of the minima).

1. How many equivalent minima there are?

2. Write the expression of the density of states g(E) around one of the conduction band

minima, in terms of Ec,m⇤
` ,m

⇤
t .

3. Calculate the number of states per unit energy for an energy 100 meV above the

conduction band bottom, in a 100 ⇥ 100 ⇥ 10 nm piece of silicon. Write the result

in units of eV �1
.

Exercise 3: Semi metals

Bismuth is a ”semi metal”; it has the second lowest

thermal conductivity (after mercury) and the highest Hall

coe�cient, a high electrical resistance (or low electrical

conductivity) (look for instance at Tab 1.2 and 1.6 of A&M

book!).

The unit cell is rhombohedral with two atoms (see Tab 7.5

A&M book), so it could be an insulator. However, there

is a little band overlap that makes the situation similar to

the case of a divalent metal with simple cubic lattice, whose

Fermi-surfaces in (kx, ky) plane is shown in the figure. We

refer therefore for simplicity to this case.

1. Make the same picture using the repeated zone scheme. Which part of the Fermi-surface

can be described as electron-like and which as hole-like?

2. By which factor is the specific heat of the electrons at low temperatures (kBT << EF )

smaller than the electronic specific heat in the model of free electrons? For numerical

estimations use the following data: the radius of the electronic Fermi-sphere is ke = 0.1G0,

where G0 is the shortest reciprocal lattice vector; the bands in the vicinity of EF are

parabolic with e↵ective masses me = mh = 0.1m0.

3. Why is the conductivity of such metals smaller than in the model of free electrons?

(qualitative picture!)

The 3D empty square lattice model

k3
F = 2π2n =

6π2

a3
⇒ VFermi sphere = ( 2π

a )
3

= V1st Bz

Z = 2 e/cell



11

Distorting the Fermi Surface 

2nd zone                  3rd zone                    3rd zone in periodic 
zone scheme

Distortion due to weak periodic potential
2nd zone                              3rd zone

3D Fermi Surface 

web page: http://www.phys.ufl.edu/fermisurface/ 

Na                              Ca                              Al

1 valence e- 2 valence e- 3 valence e-

BCC FCCFCC



Silicon bands and anisotropic effective masses


