Motion in a uniform E field E(k) zone boundary zone boundary $\hbar \frac{d\mathbf{k}}{dt} = -e\mathbf{E}$ $\sum \mathbf{k}(t) = \mathbf{k}(0) - \frac{e\mathbf{E}}{\hbar}t$ v(k)without collisions or for $t \ll \tau$ **≫** k with collisions **k** saturates at $\mathbf{k}_{avg} = -\frac{e\mathbf{E}}{\hbar}t_{avg} = -\frac{e\mathbf{E}}{\hbar}\tau$ zone boundary without collisions or for $t \ll \tau$ <u>electron velocity oscillates \rightarrow electron motion is oscillatory</u> t zone boundary **Bloch** oscillations

But: if the band is filled an applied electric field cannot change k \rightarrow no current is induced by an applied electric field

Motion in a uniform H field (i) +

 $\mathbf{v}_n = \dot{\mathbf{r}} = \frac{1}{\hbar} \frac{\partial E_n}{\partial \mathbf{k}}$ velocity equation of motion $\hbar \dot{\mathbf{k}} = -e\left(\mathbf{E} + \frac{1}{c}\mathbf{v}_n \times \mathbf{H}\right)$ $\hbar \frac{d\mathbf{k}}{dt} = -\frac{e}{\hbar c} \frac{\partial E_n}{\partial \mathbf{k}} \psi \times \mathbf{H}$ **k** evolves \perp to $\frac{\partial E_n}{\partial \mathbf{k}}$ and **H**: electrons in a static magnetic field move on a curve of <u>constant energy</u> on a plane normal to **H** ==an electron on the Fermi surface will move in a curve on the <u>Fermi surface</u>

Motion in a uniform H field (ii)

Motion in a uniform H field (iii)

real space orbit vs k-space orbit

From the eqs. of motions it follows:

$$\frac{d\mathbf{k}}{dt} = -\frac{e}{\hbar c} \frac{d\mathbf{r}_{\perp}}{dt} \times \mathbf{H} = -\frac{eH}{\hbar c} \frac{d\mathbf{r}_{\perp}}{dt} \times \mathbf{\hat{H}}$$

(where \mathbf{r}_{\perp} is the projection of \mathbf{r} on a plane $\perp \mathbf{H}$, and $\hat{\mathbf{H}} = \mathbf{H}/H$) i.e. \mathbf{r} and \mathbf{k} evolve following orbits \perp one to the other:

Motion in a uniform H field (iv)

metals and insulators

(this is case for an <u>odd</u> number of el.; could be also with an <u>even</u> number of electrons but in presence of a band crossing)

An example of semi-metal

```
Bi Z=83, group VA ; structure: RHL
```

two atoms per unit cell => 10 valence electrons per unit cell => insulator OR metal ?

Bi has:

- the **highest Hall coefficient**, RH = -1/(nec), is several orders of magnitude higher than expected with that *n*.

- the second lowest thermal conductivity (after Hg)

- a **high electrical resistance** (or low electrical conductivity) (look for instance at Tab 1.2 and 1.6 of A&M)

Why?

Is the "effective" electron concentration *n* for some reason much lower than the calculated one?

Bi Z=83, group VA ; rhombohedral structure (RHL)

a nearly perfect "compensated semi-metal"

with small electron and hole pockets;

low carrier density;

small Fermi surface

Adapted from:

Online note to accompany the book "Solid State Physics - An Introduction", Wiley, by Philip Hofmann

Figure 1: Electronic structure of Bismuth. (a) Bulk band dispersion in different directions of the Brillouin zone (b) Schematic band structure of the bands crossing the Fermi energy. (c) Density of states.

Bi Z=83, group VA ; structure: RHL

The effect of the presence of both holes and electrons on the Hall constant can be understood qualitatively from the expression for R_{H_2}

$$R_{H} = \frac{p\mu_{h}^{2} - n\mu_{e}^{2}}{e(p\mu_{h} + n\mu_{e})^{2}}$$
 (see: Ashcroft-Mermin: problem 12.4 or written test of 11/04/2007)

if *n*, *p* (here: n=p) are very small => small denominator => high R_H

No longer true if $p\mu_h^2 = n\mu_e^2$ since also the numerator vanishes

The 2D empty square lattice model

The 2D empty square lattice model

The 3D empty square lattice model

3D Fermi Surface

web page: http://www.phys.ufl.edu/fermisurface/

Silicon bands and anisotropic effective masses

