Image Processing for Physicists

Prof. Pierre Thibault pthibault@units.it

Tomography

 \mathcal{R}

Overview

- Fundamentals of tomography
	- Physics & geometry
- Analytic formulation
	- Radon transform
	- Filtered back-projection
- Algebraic formulation

Examples of tomographic imaging Computed (X-ray) Tomography (CT)

2000, 512x512 pixels, spiral CT

Examples of tomographic imaging

Positron emission tomography (PET) + CT Single-Photon Emission

Computed Tomography (SPECT)

Seismic tomography Examples of tomographic imaging

source: Sambridge et al. G3 Vol.4 Nr.3 (2003)

Ultrasonography/tomography (US/UST) Examples of tomographic imaging

Magnetic resonance imaging/tomography (MRI/MRT)

Reconstructions from projections

Radon trans

Rotated coordinate system

$$
\begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
$$

-1

Radon transform

$$
p(G, r) = \int f(x=rcos\theta-ssin\theta, y=scos\theta +rsin\theta) ds
$$

$$
=\int\int f(x,y)\delta(r-(x\cos\theta+y\sin\theta))dxdy
$$

$$
f(x,y) = ? \quad \text{given } p(a,r)
$$
\n
$$
\lim_{n \text{verse}} \text{Radon transform}
$$

Tomograp

$$
\rho(a,r) = \int f(x = r\omega s\theta - ssin\theta, y = s\omega s\theta + rsin\theta) ds
$$

=
$$
\int \int f(r\omega s\theta - ssin\theta, scos\theta + r'sin\theta) \delta(r-r') ds dr'
$$

=
$$
\int \int f(x,y) \delta(r-(x\omega s\theta + y sin\theta)) dx dy
$$

Sinogram

Representation of projection measured by a single detector line as a function of angle

 Θ

a

 $\mathsf b$

Filtered back-projection
 $\begin{array}{ccc}\n\sqrt{2} & \pi & \pi \\
\hline\n\sqrt{2} & \pi & \pi\n\end{array}$ $f(x,y) = \int_{0}^{1} \int_{0}^{\pi} f(u,v) \}$ = $\int^{\infty} \int^{\infty} f(u,v) e^{2\pi i (u_{\lambda}+v_{\gamma})} du dv$ $u = 5 \cos \theta$ dudv=sdsdo Polar coordinates: $V = 5sin\theta$ $f (x,y) = \int_{0}^{\pi} \sqrt{\frac{\omega}{\Gamma(s \cos \theta, s \sin \theta)}} e$ atis(xcos θ + γ sin θ) $Ispdsd\zeta$ 715 θ = 90° (for instance) oly difference frequency domain
 $\int_{-\infty}^{\infty} F(\circ, s) e^{2\pi i s y} ds$ corresponds to ramp filter

= almost T_{1D}^{-1} to get projection $\int f(x,y) dx$ frequency domain

Filtered back-projection
\n
$$
\oint_{\text{other}} f(x, y)
$$
\n
$$
\oint_{\text{other}} f(y, y)
$$
\n
$$
\oint_{\text{other}} f(y, y)
$$
\n
$$
\oint_{\text{other}} f(x, y
$$

Filtered back-projection

Recipe:

\n(1) FFT of sinogramal along r (the spatial dimension, not the angle')

\n(2) multiply with filter 151

\n(3) In the angle of 0, for each angle
$$
\theta
$$
, for the line of 0, and the line

Filtered back-projection $\mathsf{lin}\mathcal{L}$ $U = 5650$ Take a slice of $F(u,v)$ $V = 56.76$
 $V = 55.176$ that passes through the origin $F(scos\theta, ssin\theta)$ $T^{-1}\Big\{\Gamma(u,v)\delta(u\sin\theta-v\cos\theta)\Big\}$ Compute its 10
bock-projection $\int\int f(u,v) \delta(nsin\theta-vcos\theta) d\theta$
conc beam parallel beam

Filtered back-projection

- Filter can be tuned to achieve image enhancement
- Trade-off between noise and sharpness

Geometries

Algebraic formulation

Tomography can be formulated as a set of linear equations

Weighting coefficients

Differences in calculation effort, smoothness, noise sensitivity, ...

Tomography

source: Buzug, Springer, 1st ed. 2008

System Matrix

source: Buzug, Springer, 1st ed. 2008

Matrix (pseudo)-inversion

 ρ seudo inverse, 1 1

wad because

Han FBP.

 T omographic reconstruction $=$ linear system inversion

Iterative methods:

- Herative methods:
 $\begin{bmatrix} 1 \\ M \end{bmatrix} \begin{bmatrix} 1 \\ M \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \text{ in } 80^\circ \text{m/s} \\ 7 \text{ in } 1000 \times 1000 = 10^6 \text{ (and } 10 \text{ m/s} \\ 5 \text{ in } 1000 \times 1000 = 10^6 \text{ (or } 10 \text{ m/s} \\ 6 \text{ in } 10 \text{ m/s} \end{bmatrix}$
- SART Simultaneous algebraic reconstruction technique
- SIRT Simultaneous iterative reconstruction technique
- ofter more • MART Multiplicative algebraic reconstruction technique orien mond flexible
- MLEM Maximum likelihood expectation maximization
- OSEM Ordered subset expectation maximization (then FBP.
• ... and many, many more
graphy the recordination process.
He recordinated more thanks)
- ... and many, many more

FBP vs algebraic methods

Filtered backprojection 100% dose iterative 40% dose

source: Kachelries, http://www.dkfz.de/en/medphysrad/workinggroups/ct/ct_conference_contributions/BasicsOfCTImageReconstruction_Part2.pdf

Artifacts

Detector imperfections \rightarrow ring artifacts

Missing projections \rightarrow "streak" artifacts

Also: sample motion, beam hardening, ...

Tomographic Display

source: http://wikipedia.org source: W. Kalender, Publicis, 3rd ed. 2011

Volume rendering display

Summary

- Computed tomography: reconstruction from projections
- Analytic approach:
	- Projections and tomographic slices are related by the Fourier slice theorem
	- Standard algorithm uses filtered back-projection
- Algebraic approach:
	- Tomography as a system of linear equations
	- Iterative methods are used for large matrix inversions
	- More powerful but computationally more costly
- Imperfect data leads to artifacts