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Introduction

This is a 5-weeks, 10-lectures, swim-or-drown introduction to algebraic
geometry, inspired by the book of Kempf, Algebraic geometry: this means
that most of the proofs are copied from there, but the material is presented
in a somewhat different way. We cover much less material.

If you like algebraic geometry done this way, and want or need to learn it
seriously, the standard reference is Hartshorne, Algebraic Geometry, GTM
52. For that, you will need to learn or believe lots of commutative and
homological algebra. If you don’t like algebraic geometry done this way,
you’re not alone. Switch to Griffiths—Harris, Principles of algebraic geom-
etry; they’ll assume you only know holomorphic functions. Don’t be to
squeamish if some (or most) of the plus/minus signs are wrong. If you find
all those texts too difficult and would like something more elementary with
lots of hands-on examples, get a copy of Reid’s Undergraduate Algebraic
Geometry; be sure to read the last chapter on the history of the subject,
maybe comparing it with chapter [.8 of Hartshorne.

The appendix on commutative algebra may or may not be enough for
your needs and tastes; when I have time I will include a commented list of
reference books.

We will fix an algebraically closed field K throughout. The reader who
finds it comforting to assume that K = C is encouraged to do so.

The notes are in a preliminary version, but they’re supposed to be ready
soon. Questions, comments and criticism welcome. The parts which are still
incomplete are, or will be, labelled POP! so that I can more easily find them
and fix them.

lPrima O Poi.



CHAPTER 1

Algebraic varieties: topology

We start by introducing the objects of our study, namely algebraic va-
rieties. We could do this like for manifolds, as topological spaces together
with an atlas of charts. We prefer however to choose a different language,
which is also the standard one employed for schemes, namely that of spaces
with functions (this is a simplified version of ringed spaces, which we will
meet when we define schemes).

In this lecture we will introduce the notion of space with function and
start describing the local models of algebraic varieties, namely affine va-
rieties, as topological spaces. In the next lecture we will define regular
functions and complete the definition of algebraic variety.

We will fix an algebraically closed field K throughout. The reader who
finds it comforting to assume that K = C is encouraged to do so.

1. Spaces with K-functions

DEFINITION 1.1. A space with K-functions is the datum of a topological
space X and, for every open subset U of X, of a subset Ox(U) of the
functions from U to K, called regular functions. These data is required to
satisfy the following conditions:

(1) given an open cover {U;}ics of an open subset U, a function f :
U — K is regular if and only if f|y, is regular for every i € I;

(2) constant functions are regular; if f,g are regular functions on U,
then f+g¢g and fg are also regular; 1/f is also regular if it is defined
(i.e., if f(z) # 0 for every z € U);

(3) for every open subset U and every regular function f on U, the
subset f~1(0) is closed in U.

DEFINITION 1.2. A morphism of spaces with K -functions is a continuous
map
F:(X,0x)— (Y,0Oy)
such that for every open subset V of Y and for every f € Oy (V) one has
foF € Ox(F~Y(V)). An isomorphism of spaces with K-functions is a
morphism with a two-sided inverse.

EXERCISE 1.3. Prove that spaces with K-functions and their morphisms
form a category: i.e., show that the identity is a morphism and that com-
position of morphisms is a morphism.

EXERCISE 1.4. Check that on a one-point set P there is a unique struc-
ture of space with K functions given by Op(P) = K. Prove that any map
of a space with K-functions X from and to a point is a morphism.

6



1. SPACES WITH K-FUNCTIONS 7

EXAMPLE 1.5. (1) For any topological field K and any topological
space the continuous K-valued functions give X the structure of a
space with K-functions.

(2) Let K =C. A C" (or C*, or complex) manifold is a space with K-
functions by requesting that C" (or C*°) complex valued functions
be regular. A morphism of spaces with K-functions among them
is a C" (or C*°, or holomorphic) map. holomorphic functions is a
space with K-functions.

(3) Let X be a space with K-functions and Y C X an open subset.
Define a structure of space with K-functions on Y as follows: for
every open subset U of Y, Oy (U) := Ox(U). Prove that this
definition makes Y into a space with K-functions. See also exercise
1.8 below.

(4) An n-dimensional C* manifold is a space with C-functions whose
underlying topological space is Hausdorff and paracompact and
which is locally isomorphic to the unit open ball in R” with C*
functions; same for C".

(5) An n-dimensional complex manifold is a space with C-functions
whose underlying topological space is Hausdorff and paracompact
and which is locally isomorphic to the unit open ball of C* with
the holomorphic functions.

Hence, spaces with K-functions provide an alternative language to the
usual one of charts and atlases to define manifolds; it is the preferred one
in algebraic geometry since it is the one which extends more easily to cover
the case of schemes.

DEFINITION 1.6. Let (X, Ox) be a space with K-functions, Y a subspace
of X. Define a structure of space with K-functions on Y by saying that (for
every U C Y open) a function ¢ : U — X is regular iff for every p € U
there is an open neighborhood V' in X and a regular function ¢ € Ox (V)
such that 9¥|yny = ¢|lvnr. Le., a function is regular on Y if it is locally the
restriction of a regular function on X.

EXERCISE 1.7. Prove that in this way (Y, Oy) becomes a space with
K-functions; we call this the induced space with K -functions structure. We
also say that Y is a subspace with K-functions of X. Prove that for any
other space with K-functions Z a set map F': Z — Y is a morphism iff ;o F’
is, where ¢ : Y — Z is the inclusion. Prove that this space with K-functions
structure on Y is the unique one with this property.

EXERCISE 1.8. Prove that if ¥ C X is an open subspace with K-
functions, then for every open subset U of Y one has Oy (U) = Ox (U).

DEFINITION 1.9. Let f : X — Y be a morphism of spaces with K-
functions. We say it is a closed embedding if it is an isomorphism of X with
its image as a closed subspace of Y'; analogously we define open and locally
closed embeddings.

EXERCISE 1.10. Prove that an embedded submanifold is a subspace with
C functions.
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EXERCISE 1.11. Let X be a space with K-functions, and 7 : X — Y a
surjective map of sets. Prove that there is on Y a unique structure of space
with K-functions such that 7 is a morphism and for any other space with
functions Z, and any set map ¥ : Y — Z, 9 is a morphism iff ¢ o 7 is a
morphism. Hint: Give Y the quotient topology and decalre a function f to
be regular on U iff f o 7 is regular on 7~ (U).

DEFINITION 1.12. Let X be a space with K-functions, and 7: X — Y a
surjective map. Call Y with the structure of space with functions described
in the previous exercise the quotient spaces with K functions.

EXERCISE 1.13. Let X be a space with K-functions, 7 : X — Y a
surjective map, Z a subset of Y and W = 77!(Z). Prove that the two
natural structures on Z (as quoteint of W, itself a subspace of X, and as
subspace of Y, itself a quotient of X) agree.

EXERCISE 1.14. Prove that complex projective space (as a complex
manifold) has the structure of quotient space with C-functions induced by

C {0l

EXERCISE 1.15. (For future algebraic geometers) Find out what a sheaf
is, and prove that regular functions are a sheaf. Prove that the every stalk
is a local ring with residue field K.

2. Definition of Zariski topology

Fix a field K. We want to define a topological space A} (we will also
write just A" when no confusion can arise).

As a set A" is just K™. For every p € A" and every f € K[x1,...,zy,]
it makes sense to talk about the value of f at p. This suggests a way to go
back and forth between subsets of A" and of K[z, ...,x,].

For a subset S of K[x1,...,x,], its zero locus is

Z(S) ={peA"[f(p) =0Vf € S}
For a subset X of A", its equation set is
E(X):={f € K[z1,...,z,)| f(p) =0Vp € X}.

That is f € E(X) iff f|x =0.
LEMMA 1.16. (1) Z(K[z1,...,z,]) = 0;

(2) Z({0}) = A";

(3) 7 (Ujes $3) = Njes 2(8);

(4) Z(S1) N Z(S2) = Z(S3) where S := {fg|f € S1,9 € Sa2}.
DEFINITION 1.17. The Lemma implies that the subsets of A” of the form

Z(S) are the closed sets of a topology on A", which is called the Zariski
topology.

REMARK 1.18. We list some easily proven properties of the operations
FE and Z. Here S and S;’s are always subsets of K|[z1,...,z,] and X and
X; are always subsets of A™.
e 51 CS = Z(SZ) C Z(Sl);
e X1 C Xy = E(XQ) - E(Xl),
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o X C Z(E(X));
o S C E(Z(S)).

Note that for every X C A", the subset E(X) of K[x1,...,zy] is an ideal.
In fact, it is a radical ideal, that is for every f € K][zy,...,z,] such that
f™ e E(X) for some m > 0, then f € E(X). It is immediate from Remark
1.18 to prove that for a closed subset X of A" we have Z(E (X)) = X.

3. Nullstellensatz

If K were an arbitrary field, in general E(Z(I)) # I even for radical
ideals I. However, it is a fundamental result that equality holds (and thus,
closed subsets and radical ideals are in natural bijection via E and Z) if K
is algebraically closed.

Nullstellensatz is german and means Theorem (about the) zero locus.

THEOREM 1.19 (Hilbert Nullstellensatz — NSS). Let K be an algebraically
closed field. Then for every radical ideal I C K|z1,...,z,] we have E(Z(I)) =
I

PrOOF. Note that the condition that K be algebraically closed is ob-
viously necessary. The proof assumes some facts from algebra, many of
which are proven in this notes. Let I C KJz1,...,z,]| be a radical ideal,
and g € K[z1,...,z,] but not in I. We want to prove that there exists
p € Z(I) such that g(p) # 0. Let A = Klzy,...,z,]/I; recall that to
give a K-homomorphism ¢ : A — K means precisely to choose a point
(p1,---,pn) € Z(I) (namely, p; = ¢(x;)): in other words, we want to find a
¢ such that ¢(g) # 0. Let A’ = Ay = Aly]/yg — 1. Note that A is a finitely
generated algebra, and it’s not zero since g is not nilpotent in A (since I
is radical). Use Noether normalization' Lemma, to find B C A’ isomorphic
to K[x1,...,x,] such that A" is a f.g. B-module. Choose any K homomor-
phism B — K and lift it by A.18 to a K homomorphism A" — B. Compose
with the natural map A — A’ to get ¢ : A — K. Since g is invertible in A’,
its image in K must be nonzero. O

COROLLARY 1.20. E and Z induce a bijection between closed subsets of

A" and radical ideals of K|x1,...,zy].

It is easy to see that points in A" are closed: in fact, p = (p1,...,pn) is
the zero locus of the ideal (z1 — p1,...,%n — Pn)-

COROLLARY 1.21. Mazimal ideals of Klz1,...,zy,] are in one-to-one

correspondence with points of A™.

PRrOOF. Let m be a maximal ideal. By NSS, since m is proper, its zero
locus is nonempty; let p € Z(m). Then m C E(p) and therefore m = E(p) by
maximality. Conversely, if p is a point, its ideal is the kernel of the morphism
Klzy,...,z,] = K defined by f — f(p); this morphism is clearly surjective,
and its kernel is by definition E(p) which is therefore maximal. O

REMARK 1.22. In fact, points of A” are also in one-to-one correspon-
dence with Homg (K|[z1,...,z,], K).

1An algebraically closed field is always infinite. If you don’t know why, try to figure
it out.
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DEFINITION 1.23. An ideal is called principal if it is generated by one
element; hence it is constituted by the multiples of that element. An open
set in A" is called principal if its complement is the zero locus of a principal
ideal.

We call principal also the induced open sets in any subspace of A”.

EXERCISE 1.24. Show that principal open sets are a basis for the topol-
ogy of A". Show that if an ideal is principal then the polynomial generating
it is unique up to scalar multiplication by an element of K* = K \ 0.

EXERCISE 1.25. Show that the Zariski topology on A! is the finite com-
plement topology. Show that the Zariski topology on A? is not the product
topology Al x Al.



CHAPTER 2

Algebraic varieties: regular functions

1. Regular functions on closed subsets of A"

We want to define on A" a structure of space with K-functions. We take
the minimal one for which polynomials are regular.

Recall that to every polynomial f € K[zi,...,x,] we can associate a
function A" — K which we also denote by f (since K is algebraically closed
it is infinite, hence the polynomial f can be reconstructed from its induced
function; therefore it makes sense to use the same letter for them).

DEFINITION 2.1. Let U be an open subset of A”. We say that a function
¢ : U — K is regular if for every p € U there exists polynomials f, g € K|[x]
and an open subset V of U disjoint from Z(g) such that ¢|v = (f/g)|v.
That is, a function is regular if it is locally rational.

EXERCISE 2.2. Let T be a topological space, S C T a subset. Prove
that S is closed in T if and only if there is an open cover U; of T such that
S NU; is closed in U;. Prove the same with open instead of closed.

LEMMA 2.3. If ¢ is reqular on U, then ¢=1(0) is closed in U.

PRrOOF. Being closed is a local property by Exercise 2.2, hence we can
assume that there are polynomials f, g € K[z1,...,z,] such that ¢ = (f/g).
Then ¢~1(0) = Z(f) N U which is closed by definition. O

DEFINITION 2.4. We define A", called affine n—space, as a space with K—
functions by giving it the Zariski topology and the regular functions defined

above. We also consider the induced structure on every locally closed subset
of A™.

The following result is very important; it says that in a significant case,
the only global regular functions are the polynomial ones.

THEOREM 2.5. If X C A" is closed, then every reqular function on
X is the restriction of a polynomial. In particular Ox(X) is canonically
isomorphic to K[xy,...,z,|/E(X).

PROOF. Let A C Ox(X) be the algebra of polynomial functions. We
want to prove that A = Ox(X). Let ¢ € Ox(X). Let

J=Af € Klzy,...,z,)]| flx - ¢ € A}.
J is clearly an ideal. Moreover, J contains E(X) (since if f € E(X) then
flx =0). Let p € X, and ¢ = f/g near p. Then one can find h such
that ¢ = f/g on X}, and p € X} (because principal open sets are a basis
of the topology). Therefore (gh)|xp = (fh)|x is in A, and gh € J. Hence
p ¢ Z(J). As p was arbitrary, Z(J) N X = 0; since E(X) C J we have

11



12 2. ALGEBRAIC VARIETIES: REGULAR FUNCTIONS

Z(J) C X, hence Z(J) = () and by weak Nullstellensatz J = K|[z1,...,Zy].
Therefore 1 € J,and 1-¢p = ¢ € A. O

2. Definition of algebraic variety

DEFINITION 2.6. An affine (algebraic) variety is a space with K-functions
which is isomorphic to (X, Ox) for a closed subset X of some affine space.
If we want to stress that we have chosen the isomorphism, or equivalently
the induced morphism to A", we talk about embedded affine varieties.

DEFINITION 2.7. An algebraic variety is a space with K-functions which
has a finite cover by open subspaces which are affine varieties. A morphism
of algebraic varieties is a morphism of spaces with K-functions.

LEMMA 2.8. Let X be an algebraic variety, Y a closed subspace. Then
Y is an algebraic variety; it is called a closed subvariety of X.

PrROOF. The statement is local, so we can reduce to the case where X
is affine and in fact a closed subspace of some A™. The result then follows
immediately from Exercise 1.7. 0

PROPOSITION 2.9. Let X be a space with K-functions. To give a mor-

phism from X to A" is the same as to give an n-tuple of global reqular
functions (f1,..., fn) on X.

PROOF. Let F: X — A" be a morphism. Then f; = z; o F' is by defi-
nition a regular function on X. Conversely, let fi,..., f, be global regular
functions, and define F' : X — A" by F(z) = (f1(z),..., fo(z)).

To prove that F is continuous, it is enough to prove that F~'(Z(g)) is
closed in X for every g € K|x1,...,7,]. But F~1(Z(g)) = ¢~1(0) where
¢ : X — K is the regular function go F' = g(f1,..., fn) (it is regular because
regular functions are a K-algebra, hence every polynomial in regular func-
tions is a regular function). We are done since ¢~1(0) is closed by definition.
To prove that F' maps regular functions to regular functions, it is enough
(since regularity is a local property) to consider the case of rational functions
g/h, g,h € K[z1,...,1z,] defined where h # 0; as before, go F and ho F are
regular, hence so is their ratio where h o F' is nonzero. D

COROLLARY 2.10. For every subspace X of A" and every space with K -
functions Y, a set map F :' Y — X is a morphism of spaces with K-functions
iff its components F; = x; o F' are reqular functions on Y.

PROPOSITION 2.11. Let ¢ : X — Y be a morphism of affine varieties,
and ¢* : K[Y]| — K[X] the induced homomorphism of coordinate rings.
(1) ¢ has dense image iff ¢* is injective;
(2) ¢ is a closed embedding iff ¢* is surjective.

PrROOF. To be added, but it’s a useful result. O

EXERCISE 2.12. Let f1,..., fm € K|z1,...,2,] be polynomials. Define
amap ¢ : A" — A" by f(x;) = (z1,..., %0, f1(2),..., fm(z)). Prove
that the image of f is a closed subset X of A"t™ and that f : A" — X is
an isomorphism. Hint: use 9¥(y1,...,Yn+m) = (Y1,.-.,Yn) to construct an
inverse.
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EXERCISE 2.13. Prove that translations and linear maps define mor-
phisms. Deduce that every finite dimensional K vector space and affine
space has a natural structure of affine algebraic variety.

LEMMA 2.14. Let X be a closed subvariety of A™, f € K[zy,...,z,].
Then the subspace U = X N Z(f) is an affine variety, isomorphic to Y, the
closed subvariety of A" defined by Y = Z(E(X),zni1f — 1).

Proor. We will give an explicit isomorphism. Define F' : U — Y by
F(z) = (z1,...,%n,1/f(z)). It is immediate to check that for every z € U
F(z) € Y, and the components are clearly regular functions. The inverse of
Fis G:Y — U defined by G(z1,...,Tn, Znt1) = (X1,...,2y). Again, it is
immediate to check that this is a morphism, and that F' and G are inverse
of each other. O

COROLLARY 2.15. If X is an algebraic variety, every open and every
locally closed subspace of X is also an algebraic variety, which we call open
or locally closed subvariety.

If X is an algebraic variety which is isomorphic to a locally closed sub-
space of some affine space, it is called quasiaffine. This concept is less
common then affine.

3. Specmax

Let X be an affine variety; we can associate to it its ring of global regular
functions, Ox (X); it is also denoted K[X] and called the coordinate ring of
X. If E(X) is an equation set for X in A", then K[X] is the quotient ring
Klzy,...,z,]/E(X), therefore it’s a finitely generated K algebra which is
reduced (i.e., it has no nilpotents). Given an affine variety X, the choice of
an embedding of X as a closed subvariety of A™ is equivalent to the choice
of n generators for K[X] (the images of z1,...,z,).

LEMMA 2.16. Let X be an affine variety, Y a ringed space; to a mor-
phism F : Y — X we associate a homomorphism of K algebras F* : K[Y] —
Ox(X). Then F — F* induces a bijection between the set of morphisms
Y — X and the set of K-algebra homomorphisms K[Y] — Ox(X).

Proovr. This follows immediately from Corollary 2.10. 0
This specializes to

COROLLARY 2.17. Let X be an affine variety. Then points of X are in
bijection with Homk (K[X], K).

We now want to show how to recover an affine variety from its coordinate
ring.

Let A be a finitely generated K algebra with no nilpotents. We can
construct an affine variety X with A as coordinate ring as follows: the points
of X are the maximal ideals of A; the closed subsets are parametrized by
ideals I of A, associating to I the locus Z(I) = {m € X|I C m}; a K
valued function is regular if it is locally of the form f/g for f,g € A, where
flg(m) = ¢ (f)/bdm(g), and ¢, : A — K is the unique morphism of K-
algebras having m as kernel.

The ringed space X is called mazimal spectrum of A, or Specmax(A).
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EXERCISE 2.18. Let X be an affine variety, and A = K[X] its coordinate
ring. Show that X is canonically isomorphic to Specmax A via p — ker v,
where v, : K[X] = K is the homomorphism v,(f) = f(p).

COROLLARY 2.19. The category of affine varieties is equivalent to the
category of finitely generated K -algebras without nilpotents with arrows re-
versed.



CHAPTER 3

Projective and quasiprojective varieties

1. Projective space

As a set projective n-space P" is the quotient of A"T! \ {0} by the
K*(:= K \ {0}) action given by A(zo,...,z,) = (Azo,...,Azy,); in other
words, it is the set of one dimensional linear subpaces of A"t = K7+l
One can analogously! define P(V) for any finite-dimensional K-vector space
V.

DEFINITION 3.1. Let Aj*! be the algebraic variety A™ \ {0} and let
7 APt — P™ be the structure map. We define projective n-space P™ to be

the quotient space with functions.

This means that U C P" is open iff 7~!(U) is open in AJ*! and that
for an open U and a map f : U — K, f is regular iff f o 7w is regular on
—1
m H(0).

EXERCISE 3.2. Check that if X is any space with K-function, Y a set,
and 7 : X — Y a map, we can define on Y a unique structure of space
with K functions such that for any space with functions Z and any map
g:Y — Z, g is a morphism iff g o 7 is a morphism. We say that 7: X — Y
defines Y as a quotient of X. Check that 7 : Ag“ — P” mnakes P” into a
quotient of Ag‘“.

EXERCISE 3.3. Let m : X — Y be a morphism which makes Y into a
quotient of X. Let V C Y with the induced subpace structure, and let
U =7~ Y(V). Prove that the map 7 : U — V makes V into a quotient of U.

THEOREM 3.4. The space with functions P is an algebraic variety.

PROOF. We introduce some notation. Let V; = {z € AJ*! |z; # 0}
and V; = {z € AM! |z; = 1}. Note that V; is affine, with coordinate ring
Klzg,...,7,)[z; ], and V; is isomorphic to A". Let U; = 7(V;); one has
V; = m1(U;). Give U; the structure of space with functions induced by P",
and note that {U;} is a finite open cover of P". To conclude, it is enough
to prove that the morphism 7; : V; — U; induced by 7 is an isomorphism
of spaces with functions. An inverse to m; can be constructed explicitly by
letting o;([v]) = v;' - v. One can check that «; is well defined and a set-
theoretic inverse to 7;; it is a morphism since a; o m; : 7~ H(U;) — V; is a
morphism, since its components v;/v; are regular functions. O

DEFINITION 3.5. A projective (resp. quasiprojective) variety is an alge-
braic variety which is isomorphic to a closed (resp. locally closed) subvariety
of some PV.

INote that in many books P(V) is the space of hyperplanes in V, i.e. of lines in V.

15
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2. Projective Zariski topology

Let f € K[zo,...,z,] be a monomial, f = azg} - ... zir. Its degree
is deg f = ) ij. A polynomial f € Klxzo,...,zy] is called homogeneous of
degree d if every monomial in it has degree d. Homogeneous polynomials
form a vector subspace Sy of S = K[zy,...,z,]. In fact, they make S into a
graded algebra, since Sy - Se C Sgie- Any polynomial f can be decomposed
uniquely as sum of homogeneous polynomials of different degrees, called its

homogeneous components; i.e., S = @¢>054.

DEFINITION 3.6. An ideal I is called homogeneous if it can be generated
by homogeneous elements; equivalently, if for every f € I each homogeneous
component of f is also in 1.

DEFINITION 3.7. A (closed) cone in A"*! is a closed subset which con-
tains zero and is invariant under multiplication by scalars. Equivalently, it
is the inverse image of a closed subset in P" united with zero.

LEMMA 3.8. There is a natural bijection between closed subsets of P"
and closed cones in A" given by Z — 7 1(Z) U {0}.

THEOREM 3.9. Projective NSS. The map Z — E(n '(Z)) induces a
bijection between closed subsets of P and radical homogeneous ideals, with
the exception of (£g,...,Tn).

Because of this (xg,...,z;,) is sometimes called the irrelevant ideal.

COROLLARY 3.10. Let I C K|z, ...,x,] be a homogeneous ideal. Then
we can define its zero locus Z(I) as a closed subset in P™. It is empty if and
only if the radical of I contains the irrelevant ideal, or equivalently if there
exists N > 0 such that :L“fv €I for everyi=0,...,n.

ProposITION 3.11. Let f,g € Klzg,...,x,| be nonzero homogeneous
polynomials of the same degree d. Then the regular function f/g on A"T1\
Z(g) is the pullback via m of a regular function on P™\ Z(g), which we also
denote by f/g. Conversely, every reqular function on an open subset of P"
can be obtained this way.

REMARK 3.12. Let f € Sy € K[z, ...,z,] be a homogeneous polyno-
mial of degree d > 0. Then D(f) =P"\ Z(f) is an open subset. As in the
affine case, such subsets are a basis of the topology of P".

EXERCISE 3.13. Classify endomorphisms of P'. In particular, show that
every automorphism can be written as f(zo,21) = (agoZo + @121, ¢10Z0 +
a11x1) where ¢ is an invertible matrix.

EXERCISE 3.14. Prove that given any three distinct points p1, p2, p3 in
P! there is a unique automorphism ¢ of P! such that ¢(p;) = 0 := (1,0),

¢(p2) =1:= (17 1)7 ¢(p3) = 00 = (07 1)'

PROPOSITION 3.15. Let fo,..., fr € K[z, ...,z,] be homogeneous poly-
nomials of degree d, and let U C P, the open subset whose complement is
Z(fo,..., fr). Then the morphism f : 7~ (U) — ASH defined by (fo,- .., fr)

induces a morphism U — P", which we also denote by f.
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3. Veronese embedding

Fix n > 0 and d > 0, and let N = < n;i;d) — 1. Choose a basis
foy- -, fn of the vector space Sy C K|z, ...,z,] of degree d homogeneous

polynomials (for instance, you could take all monic monomials in a suitable
order, eg lexicographic). Note that Z(fo,..., fn) = 0, since among the f;’s
are all monomials z.

DEFINITION 3.16. Let f : P* — PV be the morphism defined by (fo, ..., fx).
It is called Veronese embedding of degree d.

We index the coordinates in PV by multiindices I = (4g, ..., 4, ) such that
> ix = d. In particular we write I} for the multiindex with kth component
d and all others equal to zero.

LEMMA 3.17. Let X be the image of the Veronese morphism. Then X
s contained in

Uy # 0}
k=0

PROOF. Let Y C PV be the zero locus of the polynomials (y? —11 y}i),

for all multiindices I. Clearly Y contains X, so it contains X. It is enough
to prove that for every y € Y there exists k with y;, # 0. We know that
there exists I such that yr # 0. Choose k such that i; # 0; then y7, must
also be nonzero, since it is a factor of y?. O

THEOREM 3.18. Let f : P* — X be the Veronese morphism. It is an
isomorphism, and the image is closed in PN .

PROOF. Let Uy = {y € PV |y, # 0}; let X = X NU; and V}, =
f1(X}y). By the lemma it is enough to prove that X}, is closed in Uy and
that f : Vi — X} is an isomorphism. By symmetry we can assume k = 0.
Vo = {x € P*|xd # 0} = {z € P"|z¢ # 0}. Hence Vj is isomorphic to
A" with coordinates t; = x;/x¢, Uy is isomorphic to AN and the morphism

f: Vo = Upis given by (t1,...,t,,...). Here t; appears as ratio (xg_lxi/xg).
We are done by [give a reference herel]. 0
COROLLARY 3.19. Let f € Sq C K[xg,...,Zy] be a nonzero homogeneous

polynomial of degree d. Let X C P™ be a closed subset. Then X \ Z(f) is an
affine variety, and every regular function on it can be written as g/f" for
some r > 0 and some homogeneous polynomial g of degree dr.

DEFINITION 3.20. The image of the d-th Veronese embedding of P! is
called rational normal curve of degree d in P?.

EXERCISE 3.21. Let Cy be the rational normal curve of degree d. Show
that one can write explicit homogeneous equations for Cy; by

rank(?/o Yy - yd—1>§1‘
Yyr Y2 - Yd

Show that they generate the ideal of Cj. Deduce that the ideal of Cyj can
be generated by polynomials of degree 2 (i.e, Cy is cut out by quadrics).
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EXERCISE 3.22. Consider the degree 2 Veronese embedding of P”. Prove
that the image can be seen as the projectivization of the locus of rank 1
symmetric (n + 1) X (n + 1) matrices, and that the Veronese map can be
written as © — x-x'. Deduce that also in this case the image of the Veronese
embedding is cut out by quadrics.

PROPOSITION 3.23. Let g € Sg be a homogeneous polynomial of degree
d. Then the open subset U = D(f) =P"\ Z(f) is affine, and every regular
function on U can be written as g/ f" where r > 0 and g is a homogeneous
polynomial of degree dr.

PROOF. Let ¢ be the Veronese embedding of degree d; then U is iso-
morphic to the image of ¢ intersected with the complement of a hyperplane
H in P". Hence it is isomorphic to a closed subset of PV \ H, which is
affine. The second statement follows from the fact that every regular func-
tion on U yields a regular function on its inverse image in Ag"'l, which is
just A” \ Z(f). Hence there exists an r and a polynomial g such that the
function has the form g/f". Since it must be invariant under multiplication
by A, it follows that f must be homogeneous of the same degree as f". [

4. Projective subspaces

Let V' C P™ be a closed subvariety defined as Z(g1,...,g,) where the g;
are homogeneous polynomials of degree 1; we may assume that they are also
linearly independent. Such a V is naturally isomorphic to P”~" and si called
a projective or linear subspace of P, of dimension (n — r) and codimension
r. The cone over a projective subspace is a vector subspace of A"*!, and
conversely. Note that a projective subspace of dimension (—1) is just the
empty set, and one of dimension zero is a point. A projective subspace of
dimension 1 is called a line; a projective subspace of codimension 1 is called
a hyperplane.

LEMMA 3.24. The set of hyperplanes in P" is in natural bijection with
(P™)V, the dual projective space.

EXERCISE 3.25. Assume that Py, ..., P, are points in P” which are not
contained in any subspace of dimension r — 1. Then they are contained
in a unique subspace of dimension r. In particular two distinct points are
contained in a unique line.

EXERCISE 3.26. If V.W C P" are projective subspaces of codimensions
r and s, their intersection is a projective subspace of codimension < r + s;
in particular if 7 + s < n, then V N W is nonempty. In particular a line
and a hyperplane always intersect, and if the line is not contained in the
hyperplane they only intersect in one point.

DEFINITION 3.27. Let p € P” be a point and H C P a hyperplane with
p ¢ H. Define the projection with center p to be the map ¢ : P\ {p} - H
as ¢(q) = l(pq) N H, where I(pq) is the line containing p and gq.

EXERCISE 3.28. Prove that the projection with center p is welldefined
and a morphism; prove that if we replace H by some H', and define the
corresponding projection ¢’ : P" \ {p} — H’, there is a unique isomorphism
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A : H — H' such that ¢’ = X o ¢. Hint: choose coordinates such that
p=1(0,...,0,1) and H = {z,, = 0}.

EXERCISE 3.29. Let Cy C P? be the rational normal curve of degree d.
Let p € C4, and H a hyperplane not containing p. Prove that the projection
from center p induces an isomorphism between Cy \ p and its image; prove
that the isomorphism extends to an isomorphisms of the closures, and that
the closure of the image is Cy_;.

DEFINITION 3.30. Let X C P” be a closed subvariety. A projective cone
over X with center p is a closed subvariety of P"*! which is the closure of
7 1(X), where 7 : P"*1\ p — P" is the projectioon from p and we choose
an isomorphism of H with P".

EXERCISE 3.31. Prove that the Veronese surface of degree 2 in P° is not
contained in an hyperplane. Prove that it can be isomorphically projected
to a hyperplane. It is indeed the only surface in P° with this property, but
we will not prove this.

5. Hypersurfaces

DEFINITION 3.32. A hypersurface of degree d in P" is a closed subvariety
whose defining ideal is generated by a homogeneous polynomial of degree d.
A hypersurface of degree 2 is called a quadric.

To do the following exercise, you will need to know that K|xg,...,z,] is
a unique factorization domain. In particular, you should know the definition
of UFD; see appendix.

EXERCISE 3.33. Let f € K|xg,...,z,] be a homogeneous polynomial of
degree d. Prove that Z(f) is a hypersurface. Prove that it has degree d if
and only if f does not have multiple factors. Prove that if X is a hypesurface
of degree d its defining equation is unique up multiplication by a nonzero
scalar.

DEFINITION 3.34. Let f € K|z, ...,zy] be a homogeneous polynomial
of degree 2 and assume that char K # 2; f defines a quadratic form, whose
rank r we call the rank of the quadric. One has 2 <r <mn+1 (if r = 1 then
f is the square of a linear form). If the rank is n + 1 we call the quadric
smooth.

EXERCISE 3.35. Prove that two quadrics of the same rank in P" are
isomorphic. In fact, the converse is also true as we will prove later.

EXERCISE 3.36. Prove that C; is a quadric of rank 3 in P?; deduce that
every smooth quadric in P? is isomorphic to P'.

EXERCISE 3.37. Prove that a cone over a hypersurface of degree d is a
hypersurface of degree d. Prove that a quadric is a projective cone if and
only if it is not smooth.



CHAPTER 4

Products

1. Products of algebraic varieties

We are all familiar with the notion of product; product of sets, but also
of groups, vector spaces, topological spaces, and manifolds.

DEFINITION 4.1. Let X and Y be spaces with K-functions. For any
algebraic varieties A, B denote by Mor(A, B) the set of morphism from A
to B'. A product of X and Y is a space with K functions Z together with
projection morphisms p: Z — X and ¢ : Y — Z such that, for every space
with functions W, the natural map of sets

Mor (W, Z) — Mor(W, X) x Mor(W,Y)
given by f +— (po f,qo f) is bijective.

EXERCISE 4.2. Prove that a product of X and Y, it it exists, is unique
up to canonical isomorphism. In particular, prove that if you can give the
set X XY a structure of space with functions such that the two projections
make it into a product for X and Y, then such a structure is unique.

LEMMA 4.3. Let X = A" and Y = A™. Let Z = A" x A™ and give
it the structure defined by identifying the product with A"*™. Then Z is a
product (hence, the product) of X and Y.

PROOF. An easy exercise, using that morphisms from any space with
functions W to A" are in bijection with Oy (W)". O

PROPOSITION 4.4. Let X and Y be spaces with functions, and assume
that X XY has a product structure. Let U C X and V C Y be subspaces.
Then the structure induced on U XV by X XY makes U XV into a product
for U and V.

PrOOF. Just diagram checking, together with all the universal proper-
ties. ]

COROLLARY 4.5. Let U and V be affine varieties. Then U X V has a
product structure, and is affine.

PRrROOF. Assume U is a closed subspace of X = A" and V is a closed
subspace of Y = A™. Then U x V is closed in A"™, O

THEOREM 4.6. Let X and Y be algebraic varieties. Then X XY has a
structure of algebraic variety making it into a product for X and Y as spaces
with K functions.

Lif this sounds like category theory to you, it’s because it s category theory.

20



2. PRODUCTS OF QUASIPROJECTIVE VARIETIES 21

PrOOF. Cover X with open affines {U;}ic; and Y with open affines
{Vj}jes. Then we have a natural structure of product on the subset Z;; :=
Ui x Vj of X xY. On any intersection Z;;, N Zj;,, the two structures agree,
and the intersection is open in both Z;; and Z,, (by uniqueness of the
product structure andf the fact that it commutes wiuth the induced subspace
structure). Hence the Z;; glue to give a global structure of space with
functions to X x Y. It is then an exercise to check that this is really a
product of X and Y, and the Z;; provide a finite open cover. O

2. Products of quasiprojective varieties

Fix positive integers m,n > 0, and let N =nm+n+m = (n+1)(m +
1) — 1. Define a morphism f : P* x P™ — proj" via f(z;,y;) = (ziy;)-

THEOREM 4.7. The morphism f is well defined and is an isomorphism
with its image, which is a closed subset in PV, It is called the Segre embed-
ding.

PROOF. We can identify PV with the projective space associated to
(n+1) x (m + 1) matrices. It is an easy exercise in linear algebra to prove
that f is injective, and its image is the locus of rank one matrices; this proves
that it is closed, since a matrix has rank one iff all the 2 x 2 minors vanish,
and each minor is a homogeneous polynomial in the entries (of degree 2).
To prove that it is an isomorphism with the image is a local statement in
PN, So it is enough to check it in each coordinate chart, and by symmetry
it is enough to look at the open set where the first coordinate is nonzero. Its
inverse image in P x P™ is Uy x Vj, where Uy = {zo # 0} and Vj = {yo #|0}.
We can replace Uy and V| with affine spaces by setting zo = yo = 1. Then
the morphism f becomes f(z,y) = (1,21,...,Zn,Y1,--.,Yn, Z;y;). Thisis a
graph and we are done by the following exercise. O

EXERCISE 4.8. Let X C A", and f : X — A™ be a morphism. Let
g: X — A"™ be defined by g(z) = (z, f(z)). prove that the image of ¢
(the graph of f) is closed and that g : X — g(X) is an isomorphism.

In fact, the image of the Segre embedding is cut out by quadrics, i.e.,
its ideal is generated by elements of degree 2.

EXERCISE 4.9. Prove that P! x P! is a rank 4 quadric in P3. Prove that
P! x P" is cut out by quadrics.

COROLLARY 4.10. The product of projective varieties is projective. The
product of quasiprojective varieties is quasiprojective.

We will now give an alternate description of the topology in P" x P™.
Let f € K[zg,...,Zn,Y0,---,Ym] be a monomial. We say that it is bihomo-
geneous of bidegree (d, e) if it is homogeneous of degree d in the z;’s and of
degree e in the y;’s. We say that any polynomial is bihomogeneous of bide-
gree (d, e) if every monomial in it is so. The set of bihomogeneous polinomi-
als of given bidegree is a subpace Sy, and K|[zo,...,Zn,%0,--.,Ym| = ®Sy.e-
For example, 22173y, — x3ys is bihomogeneous of bidegree (3,1).

The following will provide a key step in the proof that projective space
is complete.
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PROPOSITION 4.11. Let X be a closed subset of AlT! x A™ C Artm+1,
If X 1is the closure of the inverse image of a closed subset of P™ x A™, then
E(X) is generated by bihomogeneous elements. Conversely, the zero locus

of any bihomogeneous ideal intersected with Ag"'l x A™ is the inverse image
of a closed subset of P™* x P™,

PRrOOF. The proof is analogous to the one for the Zariski topology of
projective space. The thing to check is that the structure of quotient space
with functions and of product commute with each other. O

3. Grassmann variety

Fix a vector space V of dimension n over K. V has a natural structure
of algebraic variety, isomorphic to A”. For 0 < k < n let G(k,V) be the
set of all k-dimensional linear subspaces of V. Let B(k,V) C V¥ be the
set of linearly independent k-tuples; it is open in V¥ and hence itself an
algebraic variety. As a set, G(k,V) is the quotient of B(k, V') by the natural
GL(k,K) action. We give it the induced structure of function space. It
is easy to see that an isomorphism of linear spaces V. — W induces an
isomorphism B(k,V) — B(k, W) and hence G(k,V) — G(k,W).

THEOREM 4.12. G(k,V) is an algebraic variety, with an open cover by
affines isomorphic to AF(—F)

PROOF. We may assume that V = K", and identify B(k,V) with the
set of (K x n) matrices of maximal rank k, by associating to each ktuple
the matrix which has the given vectors as columns. For any multiindex
I'=(0<1i <iyg<...<ix <n)let By C B(k,V) be the locus of tuples
such that the I-th maximal minor of the matrix is invertible. The B are
GL(k) invariant, hence the inverse images of open subsets Uy of G(k, V'), and
the U;’s cover G(k, V). Of course they are all isomorphic, so let U = Uy x;
it will be enough to prove that U is isomorphic to A*("~%) Let Z c B(k,V)
be the locus of matrices where the uppermost k x k minor is the identity.
Clearly Z is isomorphic to A*(—F) (since whatever else we put in the matrix,
it will have rank k). Modify the argument in the projective case to show
that Z — U is an isomorphism of spaces with functions. O

THEOREM 4.13. G(k,V) is a projective algebraic variety.

PROOF. Again assume that V' = K™. Define a morphism B(k,V) —
A(])V , where N is the cardinality is (%), the cardinality of all possible multi-
indices I as in the proof of the previous theorem. Define amap ¢ : B(k,V) —
A{)V by sending a matrix to the determinants of all its maximal minors, in a
fixed (e.g. lexicographical) order. Note that these map is a morpism, since
determinants are polynomials, and its image doesn’t meet zero since the ma-
trix has rank k, hence at least one k£ x k minor must be invertible. ¢ induces

a set map ¢ : G(k,V) — PV~! which must necessarily be a morphism. [

4. Blowup

DEFINITION 4.14. Let 0 € A". We define the blowup B := BlgA" of A"
at the origin to be the closed algebraic subvariety of A" x P"~! defined as
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Z(z;y; —%jYi)1<i<j<n, Where z1,..., x, are coordinates in A" and yi,...,yn
are coordinates in P"~!. It is closed since the given equations are homoge-
neous (of degree 1) in the variables y;’s. The projection of A" x P"~! on the
first factor induces a structure map € : B — A". The inevrse image E of 0
is called exceptional divisor of the blowup.

THEOREM 4.15. Let U = Ay, U; := D(y;) C P", and B; :== BNA" x U;;
. Then:
(1) e : e Y(U) — (U) is an isomorphism;
(2) the exceptional divisor E is isomorphic to P! wvia the projection
on the second factor;
(3) each B; is isomorphic to A" and aB; N E is a hyperplane.

PROOF. (i7) is obvious, since every point of the form (0,y) satisfies the
equations trivially. (i) We will prove it for i = n to simplify notation.
Let v; be the regular function y;/y, on U,, for i = 1,...,n. Note that
v, = 1 and vy,...,v,_1 are coordinates on U,. Hence B, is the closed
subset of A" x U, with equations z;v; = zjv;. Among these are z; =
xnv; for i < m. Note conversely that a point (z,v) such that z; = x,v;
is also in B,,. Therefore the regular functions (vy,...,v, 1,2, define an
isomorphism between U, and A™. In such coordinates, the map ¢ is given
by e(vi, zn) = (ViTn, ...,V 1Tn, Ty). It is immediate to check that e~1(0)N
B, = B, N Z(x,). To prove (i), note that if V := ¢~1(U) and V,, :=
V NU,, then € : V;, — ¢(V,) is an isomorphism, with inverse given by

(X1, ) = (21/Tny - Tp—1/ Ty, Tp). Since (V) = D(x,) and V,, =
e~Y(D(zy,)), statement (i) follows because the D(z,) are an open cover of
Ay O

DEFINITION 4.16. Let X be a closed subvariety of A™; the strict trans-
form X of X via the blowup ¢ is the closure of e=1(X N AZ) inside BlpA™.

The exceptional divisor of the blowup is X N E. We also call it the blowup
of X at 0.

It is not difficult to check that blow up can be defined locally and then
glued, so that if X is an algebraic variety and p € X, it makes sense to talk
about Bl,X. See exercises. Blowup is related to rational maps, in fact it’s
the easiest example.



CHAPTER 5

Irreducibility and Noetherianity

1. Irreducibility

DEFINITION 5.1. A topological space is reducible if it is the union of two
proper closed subsets. Otherwise it’s irreducible.

EXERCISE 5.2. A topological space is irreducible if and only if every
nonempty open subset is dense. A Hausdorff topological space is irreducible
iff it is one point.

LEMMA 5.3. For any topological space X, a subspace Y is irreducible iff
its closure Y is.

PROOF. Assume Y reducible. Write Y = Y7 U Y5 proper closed subsets.
Then there exist closed subsets F; in X such that Y; = F;NY. We can assume
that F; C Y (otherwise replace it by F; N'Y); moreover F; # Y (otherwise
Y; = Y). Taking closures, Y = Y; x Y5 C F; U F,. Since the opposite
inclusion has already been proven, we get a decomposition Y = Fy U I, of
Y into proper closed subsets.

Conversely, assume Y = F; UF; proper closed subsets. Let Y; = F;NY; then
Y =Y UYs. If, say, Y] = Y then Y C F; hence Y C Fj, a contradiction. [

LEMMA 5.4. A closed subset X of AN is reducible iff there exist f,q €
Klzy,...,z,] such that f,g ¢ E(X) but fg € E(X).

PRrOOF. Easy and left to the reader. O

DEFINITION 5.5. An ideal I in a ring A is prime' if it is proper and for
any a,b € A the fact that ab € I implies that either a or b is in I.

It is easy to see that an ideal I is prime iff A/I is a domain. Every prime
ideal is radical, and every maximal ideal is prime.

COROLLARY 5.6. A closed subset X of A" is irreducible if and only if
E(X) is prime.

EXERCISE 5.7. The only Hausdorff subsets of Al are the finite ones.
EXERCISE 5.8. Prove that the following algebraic varieties are irre-
ducible: A"; P™; P x P™; G(k, V).

EXERCISE 5.9. Prove that every irreducible topological subspace is con-
nected, and give an example of a connected algebraic variety which is not
irreducible. Prove that the image of an irreducible topological space under
a continuous map is irreducible.

1See also appendix.

24
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2. Noetherianity of rings and modules

DEFINITION 5.10. A ring is Noetherian if every ideal is finitely generated.
Equivalently, if it satisfies the following ascending chain condition (acc) on
ideals: every chain of ideals Iy C I C ... stabilizes, i.e. there exists ny such
that I, = I, for all n > ny.

EXERCISE 5.11. If K is a field, K[z] is a principal ideal domain (PID),
hence Noetherian. A principal ideal domain is a domain in which every ideal
is principal.

THEOREM 5.12 (Hilbert basis Theorem). If A is Noetherian then A[z]
s also Noetherian.

PROOF. Assume I C Alz] is not a finitely generated ideal. Let f; C T
be a nonzero element of minimal degree d; in z. Choose inductively f, of
minimal degree dy, in I\ I,_1 := (f1,..., fn—1) and let a; be the leading
coefficient of f;. Let J; = (a1,...,a;) C A; since I; C I;41 the sequence
stabilizes, say at Iny. Therefore ayy; = Zfi 1 bija; for some b; € A. Hence
the polynomail

N
g= Z by fip N+
i=1
is in Iy and has the same degree and leading coefficient as fy1; therefore
fN+1—g has degree strictly smaller then dy 41 and is not in Iy, contradicting
the minimality of dn41. O

COROLLARY 5.13. The ring K[xz1,...,x,] is noetherian.

EXERCISE 5.14. If a ring A is Noetherian and f : A — B is a surjective
homomorphism, then B is Noetherian. In particular, every finitely generated
K algebra is Noetherian.

DEFINITION 5.15. Let A be a ring and M an A module. M is called
Noetherian if every submodule is finitely generated; equivalently, if every
ascending sequence of submodules stabilizes.

REMARK 5.16. A ring A is Noetherian if and only if it is Noetherian as
A-module.

EXERCISE 5.17. Let A be a ring, and f : M — N a surjective homomor-
phism of A-modules. If M is Noetherian, then N is also Noetherian, and so
is every submodule of M.

THEOREM 5.18. If A is a Noetherian ring, then an A-module M is Noe-
therian iff it is finitely generated.

PROOF. = is trivial; every Noetherian module is by definition finitely
generated. <. It is enough to prove that A" is Noetherian; we do this
by induction on n, the case n = 1 being trivial. Let 7 : A™ — A be the
projection on the last factor, so that ker7 is isomorphic to A”~!. Let N
be a submmodule of A", N’ = n(N) and N” = N Nkern. Then N’ and
N"" are Noetherian by induction, so they are finitely generated by elements
ny,...,n, and ng41,...,n, respectively. Let n; € N be elements such that
m(n;) = n}. Then n,,...,n, generate N. O



26 5. IRREDUCIBILITY AND NOETHERIANITY

EXERCISE 5.19. If S is a multiplicative part of A, then S~'(A) is Noe-
therian. If M is a finitely generated A module, then S™'M is a finitely
generated S~'A module.

3. Noetherianity for topological spaces

DEFINITION 5.20. A topological space is Noetherian if every descending
sequence of closed subsets stabilizes.

PROPOSITION 5.21. Let X be a topological space. The following are
equivalent:

(1) X is a Noetherian topological space;

(2) Noetherian induction holds; i.e., any nonempty collection F of
closed subsets of X contains a minimal® element F.

(3) every open subset is compact®.

PROOF. (i) implies (ii). Let A be a nonempty collection of closed subsets
without a minimal element. Choose Fj in A; since it is not minimal, one
can find Fy} C Fy a proper closed subset which is also in A. Repeating this
argument yields an infinite strictly decrasing sequence of closed subsets,
against Noetherianity.

(ii) implies (i). Let F; be a descending sequence of closed subsets, and apply
Noetherian induction to the set {F;}.

(1)+(ii) imply (iii). Let U be an open subset, {U;}icr an open cover of U.
Let F; be the complement of U;.Choose i € I such that Fj, is a minimal
element of the set {F;}, and consider the collection {F!} = {F, N Fj,}.
Choose 41 € I such that lel is a minimal element, and consider the collection
{F?} = {FioNF;, NF;}; choose iy such that F2 is a minimal element, and so
on. This gives a descending sequence of closed subsets F;, D lel D ... which
must stabilize, say at F". Therefore, foreachi € I, F; D F;,NF; N...NF; ,
or in other words U; C Uj, U...UU;,, hence {Uj; }}_, is a finite subcover of
U.

(iii) implies (i). Let F; be a descending sequence of closed sets, F' = [ F;.
Then F is closed, its complement U is open, and the U; := X \ F; are an
open cover of it, with Uy C Uy C .... Assume Uy, ..., U, is a finite subcover;
then U = U,, and we are done. Il

EXERCISE 5.22. Prove that if a topological space is Noetherian, then
every subspace and every continuous image is also Noetherian.

PROPOSITION 5.23. If a topological space has a finite cover by Noetherian
subspaces, then it is also Noetherian.

PROOF. Let F) C F5» C ... be an ascending sequence of closed subsets in
X. Then for each 7 the sequence F,, NU; is an ascending sequence of closed
subsets in U;, therefore it stabilizes, say at n;. Let N = max{n;}. Then F,
stabilizes at N (why?). O

THEOREM 5.24. Affine space A" is Noetherian.

2one such that F € F and F' ¢ F for every proper closed subset F' of F.
3A topological space is compact if every open cover has a finite subcover. Some people
call this quasicompact.
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PrOOF. A descending sequence of closed subsets F; induces an anscend-
ing sequence of ideals E(F;) in KJzy,...,z,]|. This stabilizes by Noetheri-
anity of the ring K[x1,...,z,]. O

COROLLARY 5.25. FEvery algebraic variety is Noetherian.

PROOF. Every affine variety is Noetherian, because it’s a subspace of
some affine space; and every algebraic variety has a finite cover by affine
varieties. |

PROPOSITION 5.26. Every Noetherian topological space X is the union
of finitely many irreducible closed subsets.

PrROOF. Let F be the collection of all closed subsets of X which are not
the union of finitely many irreducible closed subsets. If F is not empty, it
has a minimal element F'. F cannot be irreducible: let FF = F; U F5 be a
decomposition of F' in proper closed subsets. By minimality neither F; € F,
hence there exist (for ¢ = 1, 2) n; irreducible closed subsets Fjy, ..., Fiy, such

that
n;
F; = | Fin,.
=1
Therefore
ni na
F=|]JFun vl Fou,
is a finite union of irreducibles, contradicting F' € F. O

EXERCISE 5.27. Let X be a topological space, G an irreducible closed
subset, F1,..., F), closed subsets. If G C F; U...U F,, then there is 7 such
that G C F;. We will use this in the theorem below, so prove it!

DEFINITION 5.28. Let X be a topological space. An irreducible compo-
nent of X is a maximal irreducible closed subset.

THEOREM 5.29. Fvery Noetherian topological space X is the union of
its irreducible components, that are o finite number.

PROOF. Let X = X; U...X,, be a decomposition of X into irreducible
closed subsets. We may assume that no X; is contained in another Xj.
Then each X; is an irreducible component; in fact, if X; C F' with F' closed
irreducible, we must have F' C [J X; while X 2 X for any j, a contradiction.
Moreover, each irreducible component is one of the X;’s. In fact, if Y is an
irreducible component of X, since Y C |J X, there exists 7 such that Y C X;
since Y is maximal irreducible, necessarily ¥ = Xj. O

THEOREM 5.30. If X and Y are irreducible algebraic varieties, their
product is also irreducible.

PRrROOF. Assume that X x Y = ZUW where Z and W are closed. For
z € X,y €Y write ;Y := {z} xY and ,X := X x {y}. Note that ;Y
is isomorphic to Y and 4 X is isomorphic to X, hence they are irreducible.
Since ;Y = (,Y N Z) U (,Y N W), we must have either ,Y C Z or ,Y C W
(or both). Let A:={z € X|,Y C Z} and B={z € X |,Y C W}, one has
X = AU B. If we prove that A and B are closed we are done, because then
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one of them must be equal to X. For all y € Y one has that Ax{y} C ,XNZ
which is closed in , X, hence A x {y} C X NZ C Z. Since y was arbitrary,
it follows that A x Y C Z, hence that A = A. O

EXERCISE 5.31. If a topological space is Hausdorff, then its largest ir-
reducible components are the points. Find the irreducible components of
Z(zy,rz) C A3. Draw a picture.

The following is easy but extremely important, so do it. Look up the
section on UFD’s in the appendix, if needed.

EXERCISE 5.32. A principal ideal (f) in Klz,...,2,] is prime if and
only if f is irreducible. In general, the irreducible components of Z(f) are
the zero loci of the irreducible factors of f.



CHAPTER 6

Topological properties of algebraic varieties

1. Separatedness

DEFINITION 6.1. Let X be a set. The diagonal of X, Ax, is the subset
of X x X which is the image of X via the map §(z) = (x,z). Note that if
X is an algebraic variety, then ¢ is a morphism.

EXERCISE 6.2. Let X be a topological space. Prove that X is Hausdorff
iff Ax is closed in X x X (where the latter has the product topology).

DEFINITION 6.3. An algebraic variety is separated if the diagonal is
closed in the product of the variety with itself.

LEMMA 6.4. If X is a separated algebraic variety, and Y C X is a locally
closed subvariety, then Y is also separated.

ProOF. The diagonal Ay is equal to Y X Y N Ax in X x X. Since
taking products commutes with taking subspaces, the topology on Y x Y is
the induced topology of X x X; therefore, since Ax is closed in X x X, the
result follows. O

THEOREM 6.5. Projective space P" s separated.

PROOF. Consider P x P as a closed subvariety of PV where N = n%—1
and AON +1 is the space of nonzero n x n matrices. It is an easy exercise in
linear algebra to verify that Apn is the intersection on P x P with the
linear subspace of symmetric matrices. Therefore it is closed. O

COROLLARY 6.6. Ewvery affine, projective and quasiprojective variety is
separated.

COROLLARY 6.7. If X is any algebraic variety, then Ax is locally closed
in X x X.

PrOOF. Let p € X, and let U be an affine open neighborhood of p.
Then (p,p) € Ay = Ax N (U x U). Since U is affine, it is separated, hence
Ax NVisopenin V :=U x U, which is an open neighborhood of (p,p) in
X x X. O

EXERCISE 6.8. The affine line with the origin doubled is nonseparated.
The usual construction of a space which satisfies all the axioms of being a
manifold except Hausdorffness can be easily adapted to produce a nonsep-
arated algebraic variety. Let X = Z(y? —y) C A%2. Let Y be its quotient
space with functions by the equivalence relation (z,y) ~ (z',v') iff z = 2
and either y = 3’ = 0 or yy’ # 0. Prove that Y is a nonseparated algebraic
variety.

29
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Our terminology in this notes is not completely consistent with the litera-
ture, where most often a variety is supposed to be separated and irreducible.
Moreover, in many texts a variety is directly assumed to be quasiprojective.
In fact, the category of algebraic varieties as defined here is equivalent to that
of reduced schemes of finite type over K (via the functor ¢ of Hartshorne,
Proposition II.2.6).

2. Completeness

DEFINITION 6.9. An algebraic variety is complete if it is separated and
moreover for every algebraic variety Y the natural projection 7 : X XY — Y
is closed, i.e., maps closed subsets to closed subsets.

In view of the fact that the product of algebraic varieties is not the
topological product, this is a good substitute of the notion of compactness,
as seen by the following remark.

REMARK 6.10. Let X be a topological space. If X is compact (in the
sense that every open cover admits a finite subcover) then for every topo-
logical space Y the projection X x Y — Y is closed. Moreover, if X is a
noncompact topological space with a countable basis for the topology, then
the natural projection X x R — R is not closed.

In fact, complete algebraic varieties share many properties of compact
spaces.

DEFINITION 6.11. Let F': X — Y be a morphism of algebraic varieties.
The graph of f is
Py={(z,y) € X xY |y = f(z)} =™ (Ay)
where h: X xY — Y x Y is the morphism h(z,y) = (f(z),y). The graph

is locally closed in X x Y, and closed if YV is separated; it is therefore also
an algebraic variety.

REMARK 6.12. Let f : X — Y be a morphism of algebraic varieties.
Then I'y is isomorphic to X via the projection to the first factor.

COROLLARY 6.13. Let X be a complete algebraic variety, Y a separated
algebraic variety and f: X —Y a morphism. Then f(X) is closed in'Y .

The following is an analogous of the fact that compact complex manifolds
have no nonconstant global holomorphic functions.

COROLLARY 6.14. Let X be a complete connected algebraic variety. Then
every regular function on X is constant.

PROOF. A regular function f € Ox(X) is the same as a morphism
f: X — Al. Identify A' as an open subset of P!. Therefore f(X) is a
closed subset of P! which is contained in A!, hence is not all of P'. It must
be a finite set. Since it is connected, it must be a point. O

REMARK 6.15. Let X be a complete algebraic variety. A subvariety Y
of X is complete if and only if it is closed.

THEOREM 6.16. For every n > 0 projective n-space P" is a complete
algebraic variety.
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PrOOF. We have to show that for every variety Y, the projection ¢ : P™ x
Y — Y is closed. We first reduce to assuming Y affine, and then to the case
where Y is A™. Let Z C P" x A™ be a closed subset. Then E(Z) is generated
by a finite number of polynomials fi,...,F, € K[zo,...,Zn,Y0s---,Yml,
with f; homogeneous of degree d; in the projective variables. For y € A™,
let I(y) be the ideal in K[y, ..., z,] generated by f;(y). By projective NSS,
y € q(Z) iff Y(y) does not contains Sy := K|zy,...,z,|n for any N.
So we need only prove that Uy = {y| Sy C I(y)} is open. Consider the
linear map

P(y) : Bi—1SN-ayi — SN gi Y fiy)g:.
i=1

Fixing bases of each S, we can view it as a matrix with polynomial entries in
the y variables. But Uy is the locus where ¢(y) is surjective, hence where it
has maximal rank, and this is open (by the connection between determinant
and rank, and the fact that the determinant is a polynomial). O

COROLLARY 6.17. A quasiprojective algebraic variety is complete if and
only if it is projective.

PRroOOF. If X is projective, then it is closed in some projective space,
hence complete. If X is quasiprojective and complete, there exists a mor-
phism f : X — PV such that f(X) is locally closed in PV and f : X — f(X)
is an isomorphism. Since PV is separated, f(X) is closed, and so X is pro-
jective. O

EXERCISE 6.18. By the corollary, we know that A' is not complete.
Show directly that ¢ : Al x A' — Al (i.e., the morphism A2 — A! given by
(x,y) — ) is not closed.

3. Fibered products

DEFINITION 6.19. Let f : X — Y and g : Z — Y be morphisms of
algebraic varieties. Let

X xy Z:={(z,2) € X x Z|f(x) = g(2)} = h 1 (Ay)

where h : X x Z — Y x Y is the morphism h(z,z) = (f(z),g(z)). The
variety X xy Z is called fibered product' of X and Z over Y.

PROPOSITION 6.20. The fibered product is the parent of all commutative
diagrams with the same right-bottom corner; i.e., given an algebraic variety
W and morphisms a1 : W — X and as : W — Z such that f oa; = g o ag,
there exists a unique morphism a : W — X Xy Z such that a; = p; o f, for
1=1,2.

PROOF. Just sit down and check it for yourself. It’s easy. O

Note that the proposition could be used as a definition of fibered product
up to canonical isomorphism.

11t either fibre or fiber, hence either fibred or fibered, depending on whether it’'s UK
or US english. We really should go back to writing algebraic geometry in french.
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Some special cases are worth mentioning. If g : Z — Y is the inclusion of
a locally closed subvariety, then X xy Z = f~1(Z). If in particular Z = {y}
is a point in Y, then X xy {y} = X, = f~!(y) is the fiber of f over y. In
general, the fiber of p; : X Xy Z — X over z is isomorphic via ps to the
fiber Z;(, of g.

Despite the really simple definition, fibered products are terribly impor-
tant in algebraic geometry, and they often reappear under other names, like
pullback (popular for bundles and sometimes fibrations) and base change
(usually used for flat families). Note that products do exist for manifolds,
but fibered products in general do not. Fibered products exist for topologi-
cal spaces but as far as I know are not terribly useful.

The fibered product of algebraic varieties as wvarieties coincides with
their fibered product as spaces with functions, but it may be different from
their fibered product as schemes.



CHAPTER 7

Dimension theory

1. Definition of dimension

DEFINITION 7.1. Let X be a nonempty topological space. A length n
chain in X is a sequence

V£AXpCcX;C...CX,CX

where each X; is a close irreducible subset and C means strict inclusion.
The dimension of X is the supremum of the lengths of chians in X. It is
negative if X is empty, otherwise it can be finite or oco.

ExXAMPLE 7.2. Let X be a topological space. If U C X, then dimU <
dimX. If Y C X is a proper closed subset and X is irreducible, then
dimY < dim X.

LEMMA 7.3. If X has a finite open cover by open subsets X;, then
dim X = maxdim X;.

EXAMPLE 7.4. An algebraic variety has dimension zero if and only if it
is a disjoint union of points. The dimension of a variety is the supremum of
the dimension of its irreducible components. The dimension of Al and P! is
1. The dimension of P and A" is at least n.

2. Finite morphisms
Recall that if X is an affine variety, we write K[X] for Ox(X).

DEFINITION 7.5. A morphism f : X — Y is affine if there is an affine
open cover U; of the image such that each V; := f}(U;) is also affine. It
is finite if we can choose such U; so that K[V;] is a finitely generated K[U;]
module.

REMARK 7.6. (i) Let f : X — Y be a finite morphism. Let V C Y be
an open subset, and U = f~1(V); then f : V — U is also finite. (ii) Every
closed embedding is finite. (iii) A composition of finite morphisms is finite.
(iv) If f € Ox(X) is regular, then the inclusion of the open subset where f
is nonzero is affine.

PROOF. (i) We can assume that Y is affine, X is affine, and K[X] is
a finite K[Y'] module. If V' = D(f) is principal, then K[V] = K[Y|; and
K[U] = K[X]y, hence K[U] is a finite K[V] module (with the same gen-
erators as K[X] as K[Y] module). The general case follows since principal
open subsets are a basis of the topology.
(ii) Let Y be an affine variety, X a closed subvariety. Then X is affine and
K[Y] — K[X] is surjective, therefore K[X] is generated by 1 as a K[Y]

33
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module.
(iii) This follows by Proposition A.11 and (i).
(iv) We will not need this result, so we leave the easy proof to the reader. [

LEMMA 7.7. If ¢ : X = Y is a finite morphism of affine varieties, then
K[X] is a finite K[Y] module.

PRrOOF. Let f € K[X]. Find an open cover by principal open subsets
D(g;) of Y such that K[X],, is a finite K[Y|,, module. For each ¢ we can
find a polynomial F; € K[Y][t] such that the coefficient of the top degree
term is a power h; of g;, with F;(f) = 0. We may assume all F; to have the
same degree (multiply by a power of ¢ if necessary).

Since NZ(g;) = 0, also NZ(h;) = 0, hence the h; generate K[Y] as an ideal.
Choose a; € K[Y] such that ) a;h; = 1. Then F' =) a;F; € K[Y][t] is a
monic polynomial such that F(f) = 0. O

PRrROPOSITION 7.8. If f : X — Y is a finite morphism, then it is closed.

PROOF. We can ssume that f(X) is dense in Y and prove that f is
surjective. We can also assume that X and Y are affine and K[X] is a finite
K[Y]-module. Let p € Y. Then the inclusion p — Y corresponds to a
homomorphism v, : K[Y] — K (namely v,(g9) = g(p)). The fact that f(X)
is dense in Y can be expressed by saying that f* : K[Y] — K[X] is injective.
Hence v, extends by CorollaryA.18 to a homorphism v, : K[X] — K which
in turn corresponds to a point g in X, whose image via f must be p. O

LEMMA 7.9. Let f : X = Y be a finite morphism, and Z C X a closed
subset; let W = f(Z). Then f: Z — W is also finite.

PROOF. We may assume that this is all affine. Then f~Y(W) — W is
finite (check this!) and Z — f~!(W) is a closed embedding. O

PrROPOSITION 7.10. Let X be a hypersurface in A™; then there exists
a linear projection m : A" — A" ! such that m : X — A" ! is finite and
surjective.

PROPOSITION 7.11. Assume that f : X — Y is finite, and let Z C W be
a strict inclusion of closed subsets in X, with W irreducible. Then f(Z) #
fFW).

PROOF. We may assume that W = X and that Y = f(W). Let g €
K[X] such that Z C Z(g) # X. Note that Z(g) = X iff ¢ = 0 by NSS since
K[X] is prime. Let H € K[Y][t] be a monic polynomial with H(g) # 0,
H(t) = t" + " a;t". We can assume that ap # 0 since K[Y] is a domain.
Then f(Z) C Z(ap) #Y. O

COROLLARY 7.12. A finite morphism has finite fibers.

PROOF. Assume that F' is a fiber. If dim F' = 0 (see below), we are

done. Else, F' contains an irreducible closed subset W which is not a point.
Let p € Y, and Z = {p}. Then f(Z) = f(W), a contradiction. O

THEOREM 7.13. Let f : X — Y be a finite surjective morphism of
algebraic varieties. Then every chain Y; in 'Y can be lifted to X, i.e. there
exists a chain X; in X with m(X;) = Y;. Conversely, given a chain X; in
X, its image is a chain in Y.
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PROOF. Let X; be a chain in X. Since f is a finite, f(X;) is closed; it
is anyway irreducible, and f(X;) # f(X;+1) by Lemma 7.11.
Conversely, let Y; be a length n chain in Y. Then f~!(Y,) is a finite union
of irreducible components A;, and Y,, = Uf(A4;). Since Y, is irreducible
and f(A;) is closed, there must be one of them whose image is Y. Call it
X,,. Now consider the finite map f : X,, — Y, and repeat the argument to
construct X,_; C X,, closed irreducible such that f(X,_1) = Y,_1, and so
on. This way one can lift Y; to a length n chain in X. 0

3. Noether normalization and dimension
It is easy to see that we can restate Noether’s normalization as follows.

THEOREM 7.14. Noether normalization lemma. Let X be an affine va-
riety; then there exists m > 0 such that there is a finite surjective morphism

FiX =AM,

PRrROOF. Let A = K[X], and B C A a subalgebra isomorphic to K[A™]
such that A is a finitely generated B-module. Then the inclusion B — A
corresponds to a morphism X — A" which is clearly affine. Its image is
dense, since the induced map on coordinate rings is injective. However its
image is also closed, so it’s surjective. 0

In fact, looking at the proof, more can be said.

THEOREM 7.15. (Noether normalization, geometric version) Let X C A™
be a closed subvariety. Then the projection ™ : A™ — A" given by
m(21,...,2n) = (T1,...,Tn_1) induces a finite map X — A" 1 if(0,...,0,1)
is not contained in the projective closure of X, where A" is identified with
the open subsets Uy = {yo # 0} of P".

COROLLARY 7.16. Let X C P™ be a projective variety. Let p € P™\ X,
and let H C P™ be a hyperplane not containing p. Then the projection
P™\ {p} — H induces a finite map X — H.

THEOREM 7.17. Let X be a irreducible hypersurface in A". Then dim X =
n—1 and dim A" = n.

PRrOOF. Induction on n, the case n = 0,1 is already done. There is a
finite surjective! map m : X — A" hence dimX = n — 1. Let X; be a
length m chain in A”; we need to prove that m < n. We can assume that
Xy = A" and X1 is a hypersurface. Then m —1 < n — 1, and we are
done. O

COROLLARY 7.18. The dimension of P™ isn. The dimension of G(k,V) =
E(dimV — k). The dimension of P x P™ is m + n. If X is an algebraic
variety which is not a point and x € X, then dim Bl, X = dim X.

COROLLARY 7.19. Every algebraic variety has finite dimension.

COROLLARY 7.20. Let X be an irreducible affine variety of dimension
m, U an open subset. Then dimU = m.

Lcheck that it is surjective! Hint: prove that K[zy,...,zn 1] — K[X] is injective.
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Proor. If X = A™ | it is enough to choose a length m chain of affine
subspaces starting with a point in U. Let m : X — A™ be the linear
projection. Let Y = X \ U: Z = w(Y) is a proper closed subset, let its
complement be A. Then dim A = m, and dim7~'(A4) = m. But 77'(A) C
U, hence dimU > m. O

THEOREM 7.21. Let X be an irreducible algebraic variety, U an open
subset. Then dim X = dimU.

ProOF. Follows easily. Fill in the details for yourself. 0

If Z ¢ X is closed and X is irreducible, then dim Z = dim X implies
Z=X.

THEOREM 7.22. Let X and Y in A" be irreducible closed subvarieties.
Then if X NY 14s nonempty, every one of its irreducible components has
dimension at least dim X + dimY — n.

PrOOF. It is enough to check that X NY is naturally isomorphic to
X xY N Aj and then apply the previous corollary, noting that Apn =
Z(T1 — Y1y, Ty — Yp) in A" X A", O



CHAPTER 8

More dimension theory

1. Krull’s principal ideal theorem and applications

The main result in this section is a special case of Krull’s principal ideal
theorem (Hauptidealsatz).

THEOREM 8.1. Let X be an irreducible affine variety of dimension n,
and f € K[X] a nonzero function. Then every irreducible component of
Z(f) has dimension n — 1.

ProoOF. If X = A", we already know this.

For the general case, note that it is enough to assume that Z(f) is irreducible.
Otherwise, write Z(f) = Z UW where Z is an irreducible component and
W is the union of all other components. Then there exists g € K[X] such
that W C Z(g) and Z ¢ Z(g). Let U = D(g); U is affine and irreducible, it
has dimension n, and Z(f|r) = Z N U which has the same dimension as Z
and is irreducible.

Let now m : X — A" be a finite surjective map. Then since K[X] is a
finite A-algebra, where A = K|[z1,...,x,], we can find a monic polynomial
h € Alzp41] such that A(f) = 0. Since A[z,+1] is a UFD, we can factor h
as product of irreducible polynomials, which must all be monis, and since
X is irreducible f must be a root of one of them. So we may assume h is
irreducible.

Define a morphism ¢ : X — A"t given by ¢ (p) = (7(p), f(p)). 7 is finite,
so (X)) has dimension n. On the other hand 4 (X) C Z(h) and the latter
is irreducible of dimension n; so they are equal. Since v is finite, ¥(Z(f))
has the same dimension as Z(f); but ¥(Z(f)) = Z(ho) N Z(wp11) C AL
where hg is the constant term of h, as one can easily verify. Therefore it has
dimension n — 1. O

COROLLARY 8.2. Let X be an irreducible affine variety of dimension n,
and fi,...,fr € K[X]. LetY = Z(fi,...,fr). Then if Y is nonempty,
every one of its irreducible components has dimension at least n — r.

PROOF. Induction on r and repeated application of the previous theo-
rem. O

COROLLARY 8.3. Let X be an irreducible affine variety of dimension
n, and m : X — A" a finite surjective morphism. Then if Z C A" 1is a
d-dimensional affine subspace, every irreducible component of 7~*(Z) has
dimension d.

PROOF. Let W be an irreducible component of 771(Z). Then dim W =
dim (W) since 7 is finite, and 7(W) C Z so that dimW < dimZ. On
the other hand we can find polynomials f; of degree 1 such that Z =
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Z(f1y--+s fn—q); since W is an irreducible component of Z(g1,...,9n—q)
where g; = fj o, its dimension is at least d. |

LEMMA 8.4. Let X be an irreducible projective variety. Then C(X) the
cone over X 1is also irreducible, and has dimension equal to dim X + 1.

PROOF. O

COROLLARY 8.5. Let X and Y be closed irreducible subvarieties of P™.
Assume that d ;== dim X +dimY —n is > 0. Then X NY is nonempty and
each of its irreducible components has dimension at least d.

PROOF. Use the affine version of this applied to C(X)NC(Y), and note
that the latter is always nonempty since it contains the origin. O

2. Local dimension, dimension and fibers

DEFINITION 8.6. Let X be an algebraic variety, + € X a point. Define

dim, X, the dimension of X at z, to be the maximal length of a chain of
irreducible closed subsets X; of X with Xy = {z}. Clearly dim, X < dim X.

ProproOSITION 8.7. If X is irreducible, then dimg, X = dim X for every
zeX.

PrROOF. We may assume that X is affine. Let 7 : X — A" be a finite
surjective map. Let ¢ = m(z) and choose a sequence {q} = Ly C L; C
...L, = A™ of affine subspaces. Define by induction My = {z}, M;;; an
irreducible component of m~!(L;, 1) containing M;. It is enough to prove
that M; # M. Since w(M;) C L;, we have that dim M; < 4. On the other
hand by (ref) dim M; > 4, so dim M; = i and we are done. O

LEMMA 8.8. Let f : X — Y be a morphism of affine varieties. Then
there exist: a morphism g : X — Y of projective algebraic varieties, open
dense embeddings i : X — X and j: Y — Y such that goi=jo f.

PROOF. Assume that X is closed in A™ and Y in A”. Let Y be the
closure of Y in P". Let X' be the closure of the graph of f in A™ x Y and
X the closure of X' in P™ x Y. O

THEOREM 8.9. Let f : X — Y be a surjective morphism of irreducible
varieties, r = dim X — dimY . Then

(1) lety €Y, and F an irreducible component of X, = f~(y). Then

dimF > r;
(2) there exists U C Y nonempty open and such that for y € U one
has dim X, = r.

PROOF. (i) We may assume that X and Y are affine. We may assume
that Y = A™; otherwise, compose with a finite surjective map 7 : Y — A",
Now it is enough to apply (ref) since every point is the zero locus of n
functions.

(ii) We prove this by induction on 7, the case 7 = —1 being empty. We can
assume that X and Y are projective'. Assume that X is closed in PV, and
let H be a hyperplane not containing X (it exists since the intersection of

lwhy? Use the Lemma just proven!
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all hyperplanes is empty). Let Z = HNX; Z has pure dimension dim X — 1.
Let g : Z — Y be the restriction of f, and let Z1,..., 2z, be the irreducible
components of Z. Let Y; = g(Z;); it is closed in Y, since X is complete and
Y is separated. Let W be the union of all the Y;’s which are different from
Y, and V =Y \ W. By induction there is an open subset U in W such that
if y € U, Xy, N H has pure dimension 7 — 1 (which implies empty if » = 0).
Since X, is nonempty, X, N H is also nonempty unless dim X, = 0. In any
case, we can deduce dim X, < r and we are done. O

Add examples.



CHAPTER 9

Tangents and differentials

1. The local ring at a point

DEFINITION 9.1. Let X be an algebraic variety, x € X a point. We
call local ring of X at z and denote by Ox , the ring of germs of regular
functions at z; that is, the quotient of the set of pairs (U, f), where U is
an open neighborhood of x and f € Ox(U), with respect to the relation
generated by (U, f) = (V, fly) when V C U is another open neighborhood
of z.

LEMMA 9.2. The ring Ox is local, with mazimal ideal m, given by
germs of functions vanishing at x and residue field K. If X is affine, Ox 4
is the localization of K[X] at the mazimal ideal ny of functions vanishing at
T.

ProprosITION 9.3. If f : X — Y is a morphism of algebraic varieties,
and © € X, then f induces a functorial homomorphism f* : Oy ) —
Ox . If f is a closed embedding, then f* is surjective, and if it is an open
embedding, then it is an isomorphism.

REMARK 9.4. Since it is the localization of a Noetherian ring, Ox ; is
also Noetherian. It is however in general not finitely generated over K as
an algebra.

LEMMA 9.5. The intersection of all powers of m, is zero.

PROOF. Let M = (\m{. M is an ideal in Oy, hence it is finitely
generated as a module. Clearly M = mM; therefore by Nakayama’s lemma,
M = 0. O

Add: X is irreducible at « (explain) iff Ox , is a domain.

2. Cotangent space

DEFINITION 9.6. Let X be an algebraic variety, x € X. We call cotangent
space of X at x and denote by Qx , the quotient space m,/m2. If f € Ox 4,
we define df € 2x , to be the class of f — f(z).

REMARK 9.7. By Nakayama, the dimension of the cotangent space equals
the minimal number of generators of the maximal ideal of z in Ox ;. In par-
ticular, by Noetherianity 2x ; is a finite dimensional vector space.

DEFINITION 9.8. Let X be an algebraic variety, z € X, V a K-vector
space. A linear map v : Ox, — V is called a derivation if

v(fg) = f(@)v(g) + g(z)v(g).
PROPOSITION 9.9. The map d : Ox ; — §dx 4 is a derivation.

40
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PROPOSITION 9.10. Let X be an affine variety, x € X, and n, C K[X]
the mazimal ideal it defines. Then the natural map nw/ng, — Qx5 an
isomorphism.

COROLLARY 9.11. For any point p € A" the elements dzi,...,dz, are
a basis of .

COROLLARY 9.12. The dimension of Sx ; is upper semicontinuous; that
is, the locus of points where the dimension is fixed is locally closed, and its
closure contains only points where the dimension is higher.

DEeFINITION 9.13. If f : X — Y is a morphism of algebraic varieties,
and z € X, y = f(z), we define alinear map f*: Qy, — Qx, by f*(dg) =
d(f*g)-

3. Tangent space

DEFINITION 9.14. The tangent space of X at x is the dual vector space
to Qx ;. For any morphism ¢ : X — Y we denote by d¢ : Tx » — Ty,g(s)
the dual of the map ¢* among the cotangent spaces and call it differential
of f.

LEMMA 9.15. The map u — u o d induces an isomorphism of K -vector
spaces between Tx ; and the space of derivations from Ox , to K.

LEMMA 9.16. If ¢ is a closed embedding, then d¢ is injective; if it is an
open embedding, it is an isomorphism.

LEMMA 9.17. If F : A" — A™ is a morphism, its differential at a point
p in the basis dx; is given by the matriz of partial derivatives OF;/0x;.

THEOREM 9.18. Let X be a closed subset of A", and fi,..., fr a set of
generators of E(X). Let f : A — A" be the morphism defined by the f;.
Then for every x € X one has T, X := kerdf (z) : T,A" — ToA™.

Proor. POP. O

4. Tangent cone

DEFINITION 9.19. The tangent coneC, X is the closed subvariety of T'x ;
defined by the associated graded ring to Ox ;.

PROPOSITION 9.20. Let X be a closed subvariety of A", and x € X.
Then the projectivization of the tangent cone of X at x is naturally isomor-
phic to the exceptional divisor of the blowup of X in x.

ProoFr. POP. We start by making precise this statement. The tangent
cone is naturally contained in 7, X, which in turn is contained in T,A";
the projectiveization of the latter is naturally isomorphic to the exceptional
divisor E of B = BI,A". The claim is that P(C,X) = EN X, where X is
the closure of ¢e7}(X) \ E in B. Assume without loss of generality that x is
the origin.

Since we have to prove the equality of two subvarieties of B, it is enough
to check this on each open set U; = D(y;); assume for notational simplicity
that we look at Uy;. Then U = U; is A" with coordinates x,us, ..., u, and
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e(z,u) = (z,zu); £ is Z(x). € induces an isomorphism of V.= D(z) = U\ E
with W = D(z1) C A".

Therefore the equations of E N X can be obtained as follows: take any
equation f € E(X); compute f(z,zu) and divide by z¢, where d is the
nonzero homogeneous component of f of smallest degree. When you now
substitute £ = 0, all other homogeneous components vanish, and you are
left with f4(1,u). But this is precisely the tangent cone.' O

COROLLARY 9.21. The dimension of T'x ; is greater then or equal to the
dimension of X at x. If equality holds, then X is irreducible at x.

PRrOOF. Use the notation of the proposition. Since F is locally given
by one equation in B, and by definition X N E contains no irreducible
component of X, the dimension of P(C,X) is equal to dim X — 1. Hence
dim C; X = dim X and the inequality follows from C, X C T, X.

If equality holds, we must have C; X = T, X since T, X is irreducible. There-
fore ®@m? /mit! is isomorphic to Sym* 2, X, which is a domain. We have to
prove that Ox , is a domain. Let f,g € Ox, be nonzero elements. Then
there exist r, s such that f € m”\m”*! and g € m&\mStt. So [f] € m% /mI+!
is nonzero, and same for [g]. But then [f][g] = [fg] is nonzero, therefore fg
must also be nonzero. O

COROLLARY 9.22. A smooth variety is irreducible if and only if it is
connected.

COROLLARY 9.23. A smooth hypersurface X in P™ is irreducible if n > 2.

PROOF. The irreducible components X; of X are hypersurfaces, hence
any two of them intersect because dim X; + dimX; —n = (n — 1) + (n —
1) —n > 0. Therefore X cannot be smooth at any point where two different
components meet. O

EXERCISE 9.24. Show that there are smooth reducible hypersurfaces
in A" for any n. Can you find an example (say with n = 2) where not all
irreducible components are lines? Where no irreducible component is a line?

EXERCISE 9.25. Prove that if X is a closed subvariety of A" whixh is
smooth at z, then X is smooth at every point of X N E C Bl A".

5. Smoothness

DEFINITION 9.26. An algebraic variety X is smooth at z if dimTx , =
dim, X. We say that X is smooth if it is smooth at every point.

Note that if U C X is an open subset, then for x € U U is smooth at z
iff X is smooth at z. Moreover, A is smooth; hence P" is also smooth.

PROPOSITION 9.27. Let X be an algebraic variety. Then the locus of
points where X is smooth is open.

PRrOOF. The statement is local, so we may assume that X is affine and
indeed closed in A”. We may also assume that X is irreducible; in fact,
the locus of points in X lying in a unique irreducible component is open

1OK7 questa non e scritta bene. Ma meglio che niente. Potete leggerla sul Kempf.
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and dense. Let d = dim X, and let f1,...,f, be generators of E(X) C
K(zy,...,zp]. Then z € X is smooth if and only if df (z) has maximal rank,
that is n — d. This is given by nonvanishing of the determinant of at least
one (n —d) X (n — d) minor, hence it is open. O

In general, the above proof shows that the locus of points in X where
dim 7, X is less than or equal to a given integer is open.

THEOREM 9.28. Let X be an algebraic variety. Then the locus of smooth
points is dense in X.

PRrROOF. Again, we may assume X irreducible and closed in A", with
n =d+r and ddimX. If r = 0 then X = A" and we are done. So we
proceed by induction on r. Let f € E(X) be an element of minimal degree.
We claim that there is i € {1,...,n} and p € X such that 0f/0z;(p) # 0.
The claim implies the induction step: let Y be the hypersurface Z(f). Can
find coordinates such that n(z1,...,z,) = (21,...,2,—1) induces a finite
map f : Y — A"~ and such that dr(p) : T,Y — Ty (p)A™ is an isomorphism.
Let Z = w(X). Then Z has a smooth open dense subset V' by induction,
however the locus W in Y where dr is an isomorphism is also open, hence
it is enough to take U = W N w1 (V).
Proof of the claim. If not, then 0f/0z; € E(X) for all 5. Since its degree is
smaller then deg f, it must be zero. In characteristic zero this implies that
f is a constant in which case X is empty, and we are done. In characteristic
p, it implies that f is a p-th power, f = ¢g?. But since F(X) is radical, it
must be that g € F(X), and degg < deg f, against assumptions. O

THEOREM 9.29. Let X be an algebraic variety, and assume that the group
of automorphisms of X acts transitively (i.e., given two points x,y € X there
exists an isomorphisam ¢ : X — X such that ¢(x) =y. Then X is smooth.

PROOF. Let z € X be a smooth point (which exists since the locus of
smooth points is nonempty). Then for any other y € X, the isomorphism ¢
in the definition guarantees that X is also smooth at y. 0

DEFINITION 9.30. An algebraic group is an algebraic variety G which
is also a group and such that the group structure maps multiplication m :
G X G — @ and inverse i : G — G are morphisms.

ExAMPLE 9.31. The following subsets of the n x n matrices with K co-

efficients are algebraic groups: GL(n, K) (those with nonzero determinant);
SL(n, K) (those with determinant one); O(n, K) (those satisfying AA* = I);
SO(n,K) :=O(n,K)N SL(n, K).

COROLLARY 9.32. An algebraic group is smooth.

EXERCISE 9.33. Prove that an algebraic group is separated.

6. Applications

THEOREM 9.34. (Bertini) Let X be a smooth closed subvariety of P",
of pure dimension d. Then there is a nonempty open subset U of the dual
projective space P" such that for H € U the variety X N H is smooth of pure
dimension d — 1.
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PROOF. We may assume X is irreducible. Let us consider inside P x P"
the subset I'x of pairs (z, H) such that z € X N H and T, X C T, H.
I'x is a closed subvariety, since it is the intersection of the zero loci of f,

Z A; Ty,

ap a1 ce [077)
rank <1
( fo(z) fi(z) ... fa(2) > -
where f varies over a set of homogeneous generators of E(X) C K[z, ...,z,]

and f; denots 0f /0z;.

The fiber of I'x over each point of X is isomorphic to P*~%!; hence the
dimension of I'x is n — 1 and its image in P™ is a proper closed subset. Its
complement is the required open subset U. |

COROLLARY 9.35. The general hypersurface of degree d in P" is smooth,
hence (if n > 2) irreducible.

PrOOF. Hypersurfaces of degree d in P” are the same as hyperplane
sections of the degree d Veronese embedding. Or, one can give a direct
proof in this case. O

In fact, a very useful tool is a generalization of Bertini’s theorem, the
Bertini-Sard theorem, which claims that if f : X — Y is a morphism of
smooth varities, then there is a dense open subset in U such that the fibers
are smooth and the morphism has surjective differential at every point of
F~1(U). However, this result is only true if the ground field has character-
istic zero. If one is only interested in characteristic zero, one can introduce
differentials at an early stage and do the whole theory of dimension in terms
of dimension of tangent spaces.

PROPOSITION 9.36. Let C' be a curve, i.e. an irreducible variety of di-
mension 1, p € C'. The following are equivalent:

(1) C is smooth at p;
(2) Oc¢,p is a discrete valuation ring [see the algebra appendiz/;
(3) Oc,p is integrally closed.

PrOOF. The first and second condition are equivalent by Nakayama,
since a local domain is a discrete valuation ring iff the maximal ideal is
principal. Every discrete valuation ring is integrally closed (see appendix).

O



CHAPTER 10

Rational functions and maps

1. Rational functions and function fields

DEeFINITION 10.1. Let X be an irreducible algebraic variety. A rational
function is an equivalence class of pairs (f,U) with U C X open dense and

f € Ox(U); here (f,U) o (g,V) if and only if f|lyny = glunv-

EXERCISE 10.2. This is an equivalence relation. Hint: you need to view
regular functions as morphisms to A and use the fact that A! is separated.

LEMMA 10.3. Rational functions on X are a field. If X is affine, they
are the quotient field of the coordinate ring K[X].

DEeFINITION 10.4. The field of rational functions on X is called the
function field of X and denoted by K(X).

LEMMA 10.5. Let X be an irreducible algebraic variety, (f,U) € K(X)
then there is a (unique) open subset V in X such that there is a pair (V,g) =
(U, f) and for every other equivalent pair (W, h) one has W C V. V is called
domain of definition of (U, f).

LEMMA 10.6. If ¢ : X — Y 1is a dominant morphism of irreducible
algebraic wvarieties, then it induces a field homomorphism ¢* : K(Y) —
K(X). If ¢ is the inclusion of an open subset, then ¢* is an isomorphism.

2. Rational maps

DEFINITION 10.7. Let X and Y be varieties. A rational map from X to
Y is an equivalence class of pairs (f, U) where U in X is open and dense and
f:U =Y is a morphism. (f,U) is equivalent to (g,V) if fluvnv = glunv-
Note that U NV is nonempty and dense; moreover, if (f,U) = (g,V) then
there exists (h,UUV) = (f,V).

LEMMA 10.8. Ewvery rational map has a mazimal open subset where it is
a morphism, called its domain of definition.

DEFINITION 10.9. Let F: X— — Y and G : Y— — Z be rational maps.
Then the composition G o F' is defined as a rational map from X to Z iff
the inverse image in X of the domain of definition of G is nonempty. In
particular it is always defined if X is irreducible and F' is dominant.

COROLLARY 10.10. Irreducible separated varieties and dominant mor-
phisms form a category

PrROPOSITION 10.11. Let X and Y be irreducible separated projective
varieties. To give a dominant rational map X — — Y 1is the same as to give

an embedding of fields K(Y) — K(X).
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PrROOF. We may assume that X and Y are affine. Given an inclusion
j: K(Y) = K(X), let y1,...,y, be generators of K[Y] as a K algebra.
Write f; := j(y;). Let U; in X be the domain of definition of f;, and U a
nonempty affine open subset contained in the intersection of the U;’s. Then
J induces an injective homomorphism K[Y]| — KJU], hence a dominant
morphism U — Y. O

LEmMA 10.12. If C is a smooth curve, then every rational map from C
to PN is a morphism.

PrOOF. Let f: C— — P" be a rational map, V its domain of definition.
So V is the complement of a finite set in C'. Let ¢ belong to the complement.
We want to prove that f is indeed regular also in ¢. Choose coordinates such
that the inverse image W of Uy := {z¢ # 0} in U is nonempty. Then, f is
induced by a morphism W — Uy, that is by an (n + 1)-tuple (1, f1,..., fn)
where f; € K[W] C Oc,. Let d; = oy(f;), and dyp = 0. Let d := —(mind;) >
0, and ¢ a local coordinate for C near c¢. Then (t?,t4f,,...,t%f,) defines the
same map on W but is also regular on ¢, since all functions t%f; are regular
and at least one does not vanish. 0

COROLLARY 10.13. Ewvery rational map from a smooth curve to a pro-
jective variety is a morphism.

3. Birational maps

DEFINITION 10.14. A birational map is a dominant rational map f :
X— — Y such that there exists a (necessarily unique) dominant rational
mapg:Y— — X withgo f =id and f og = id. If such f and g exist, we
say that X and Y are birational.

REMARK 10.15. Isomorphic varieties are birational. If X is irreducible
and separated and U is a nonempty open subset, then X is birational to U.

COROLLARY 10.16. Two varieties are birational if and only if their func-
tion fields are isomorphic.

PRrROPOSITION 10.17. Two varieties X and Y are birational, if and only
if they contain isomorphic nonempty open subsets.

PROOF. One implication is already included by the remark above. Con-
versely, assume that f : X— — Y is defined by f : U — Y, and that U
and Y are affine. Then f induces an inclusion K[Y] — K[U] which induces
an isomorphism on function fields. Let fi,..., f, be generators of K[U] as
K[Y] algebra. Then there exist a;,b; € K[Y] such that f; = a;/b;. Let
b € K[Y] be the product of the b;. Then the inclusion K[U], — K[Y] is in
fact an isomorphism, since each f; is in the image. Therefore f induces an
isomorphism f~1(V) — V, where V.= D(h) C Y. O

REMARK 10.18. Every irreducible variety is birational to an affine and
to a projective variety.

More is true: every irreducible variety is birational to a hypersurface.
We only sketch a proof.

COROLLARY 10.19. Ewvery birational map between smooth projective curves
18 an isomorphism.



CHAPTER 11

Hilbert polynomial

Note: this is not part of the program this year.

Let R = KJzo,...,z,] and S = R/J where J is a homogeneous ideal
(i.e., one generated by homogeneous polynomials). If J is radical and not
equal to (zg,...,x,) then it is the ideal of a projective variety in P", and
in general Z(J) will be a subvariety. We define the Hilbert function of S
as follows: HF(S,7) := dim S; where S; is the degree ¢ part of S (i.e., the
quotient of the vector space of degree i polynomials on S by the subspace of
degree i polynomials in J). We extend HF' to a function from the integers
to the integers by declaring HF (i) = 0 for all i < 0.

ExAMPLE 11.1. The Hilbert function of R is (n : t).

LEMMA 11.2. Let f € S; be an element which is not a zero divisor in S.
Let "= S/(f) = R/(J + (f)). Then

HF(S';m)=HF(S,m) — HF(S,m — ).
PRrROOF. There is an exact sequence
0— Spmi—Sm—3S,,—0

where the first map is multiplication by f and the second map is the natural
projection. O

EXAMPLE 11.3. Let J = (f) with f a homogeneous polynomial of degree

d. Then HF(S,m) = (m—i—n) for m < d and to (m—i—n) - (m+n—d>
n n n—d

otherwise. In particular for m > d it is a polynomial of degree n — 1 and

leading coefficient ﬁ .

Let F : Z — Z be any function. We define its difference function AF
by AF(m) := F(m) — F(m —1). We say that F' is eventually polynomial if
there exists a polynomial function f such that F(m) = f(m) for all m >> 0.
f is called the associated polynomial of F.

LEMMA 11.4. (1) The associated polynomial is unique: it is a com-

bination with integral coefficients of the polynomials (tj;]>.

(2) The polynomial (t—;]> has degree j and leading coefficient z—],

(3) If AF is eventually polynomial with associated polynomial of degree
d, then F is eventually polynomial with associated polynomial of
degree d + 1.
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PROOF. (1) Uniqueness follows from the fact that, as Z is infinite,
two different polynomials can have the same value only at a finite

number of points. It is immediate that the functions (t—;]> are

integer valued and have the given degree and leading coefficient.
It is then easy to prove by induction on the degree that any poly-
nomial function that is eventually integer valued must be a linear
combination of them with integral coefficients. I'll fix this later.

O

THEOREM 11.5. HF(S) is eventually polynomial and the associated poly-
nomial has degree equal to the dimension of Z(J) (and is zero iff Z(J) is

empty).

PROOF. Induction on dim Z(J). Take a linear function g € R; which
does not vanish on any component of Z(.J). Etc. O

LEMMA 11.6. Let J be a homogeneous ideal in K[xy, ... ,x,] with genera-
tors f1,..., fm and assume that at every point p of Z(J) the matriz 0f;/0x;
has rank n — dim Z(J). Then J is a radical ideal (and, of course, Z(J) is

smooth).
PROOF. boh. O

ExaMPLE 11.7. Let X be an irreducible projective variety of dimension
d in P". Then the leading coefficient of the Hilbert polynomial of X is
Dt?/d! where D is the number of points of intersection of X with a general
linear space of dimension n — d.

THEOREM 11.8. Bézout’s theorem for plane curves.
THEOREM 11.9. Some general version of Bézout’s theorem

Compute the Hilbert function and the Hilbert polynomial of 2 distinct
points, of 3 distinct points. Compute the Hilbert polynomial of N distinct
points for any N. Define the Hilbert scheme. Compute the Hilbert scheme
of the projective line. Show that the moduli of hypersurfaces and the Grass-
mannian are indeed components of the Hilbert scheme corresponding to a
given polynomial. Work out the example in Hartshorne (projecting the nor-
mal cubic curve from a point). Mention that the Hilbert scheme can be
defined locally by the algebraic condition of flatness and the two are con-
nected by 1) flat +fg is locally free 2) Serre vanishing.



CHAPTER 12

Final exercises

EXERCISE 12.1. Fix integers 0 < r <mn. Let ' C P" x G(r + 1,n + 1)

be the incidence variety, that is the set of pairs (z,A) where A is a linear
projective subspace of P" of dimension r and z € A. Let p : I' = P" and
q:T'— G :=G(r+1,n+ 1) be the projections.
Prove that there exists a variety F' and an open cover U; of P" such that
p~1(U;) is isomorphic to U; X F' compatibly with the projection to U;. Prove
that I' is not isomorphic to F' x P™ compatibly with the projection p. We
say that p is locally, but not globally, a product. Prove that also ¢ is locally,
but not globally, a product.

EXERCISE 12.2. Prove that if ¢ : U — P™ is a morphism, and U C
P" is a nonempty open subset, then there exists d > 0 and homogeneous
polynomials fy, ..., fm € Klzg,...,zy] of degree d with no common factor
such that U N Z(fo,..., fm) = 0 and ¢(p) = (fo(p),--., fn(p)) for every
p € U. Such a d is called the degree of ¢.
Prove that the f; are unique up to multiplication by a nonzero scalar.
Prove that the automorphism group of P" is PGL(n + 1, K), that is the
quotient of GL(n + 1, K) by the scalar multiples of the identity.

EXERCISE 12.3. Prove that P! is not isomorphic to a smooth plane curve
C of degree 3. That is, there exist nonrational varieties! To do this, you
must use the result of the previous exercise. The proof goes by assuming
that such an isomorphism exists and deducing a contradiction.

(1) Prove that if ¢ : P! — P? induces an isomorphism P! — C, then
its degree is 3.

(2) Prove that there is a linear projection from D, the Veronese em-
bedding of degree 3 of P!, to C, which is an isomorphism.

(3) Prove that every point in P3 lies in a line which is either tangent
to D or intersects D in > 2 points.

(4) Complete the proof by using the fact that an isomorphism is injec-
tive and injective on tangent spaces.

EXERCISE 12.4. Blowup of a variety at a point. If X is a closed subva-
riety of A" containing zero, define Bly X to be the closure in the blowup of
A" of e71(X'\ 0}, and let ex : BlpX — X be the restriction of . Prove that
if U C X is an open subset containing 0 and ¢ : U — Y is an isomorphism,
where Y is a closed subvariety of A™ and ¢(0) = 0, then there is a unique
isomorphism 1) : E;(I(U) — BlyY such that ey otp = ¢o 6X|5;(1(U)'

Deduce that we can define the blowup of any algebraic variety at a point (by
taking the blowup on an affine open set and gluing the rest of the variety
unchanged.
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Prove that P! x P! blown up in a poit is isomorphic to P? blown up in 2
points.

EXERCISE 12.5. Let X be an algebraic variety, and G its automorphism
group. We say that G acts transitively if for every z,y € X there exists
g € G such that g(z) = y. In this case we also say that X is homogeneous.
Prove that a homogeneous algebraic variety is smooth. Prove that P™ and
G(r,n) are homogeneous.

Let X = BlgA%. Prove that X contains only one projective curve, namely
the exceptional divisor. Deduce that X is not homogeneous.

EXERCISE 12.6. Let X = P", and assume we are given triplets of distinct
points a,b,c and z,y,z in X (i.e., no two of {a,b,c} are equal and no to of
{z,y,z} are equal). Prove that there is an automorphism p of X such that
pa) =z, p(b) = y.

Prove that if n = 1 we can choose p such that morever p(c) = z and in this
case p is unique. What happens in this case of n > 17

EXERCISE 12.7. Let G := G(2,4) be the Grassmann variety parametriz-
ing lines in P, The Pliicker embedding realizes G as a quadric in P°. Prove
that the set of lines meeting a given line is a hyperplane section of G in the
Plicker embedding. Discuss which hyperplane sections can be obtained in
this way. Prove that G contains two kinds of projective linear subspaces of
dimension 2; the lines containing a given point and the lines contained in a
given plane.

EXERCISE 12.8. If X is a separated algebraic variety, the intersection of
two open affines is affine. Find an example where this is not true.



APPENDIX A

Commutative algebra

1. Basic concepts

This is a very short summary of the commutative algebra definitions and
facts which will be needed to properly understand the course.

1.1. Rings. A ring will be a set with two operations, sum and product,
satisfying the usual commutative, associative and distributive property we
know from the integers; we will moreover assume that there are neutral
elements for addition (denoted 0) and multiplication (denoted 1) and that
0 # 1. We will also assume that every element ¢ has an additive inverse
—a; if it has a multiplicative inverse, it’s called a unit. If every nonzero
element is a unit, the ring is called a field. If a and b are nonzero such that
ab = 0, then a and b are called zero divisors. If there are no zero divisors,
then the ring is called domain. Every field is a domain. An element a € A
is nilpotent if there is n such that ¢” =a-...-a = 0. A ring is reduced if it
has no nilpotents. Prove that field implies domain implies reduced.

A (homo)morphism of rings is a map respecting the two operations and
1. Rings are a category (i.e., identity is a homomorphism and the composi-
tion of homomorphisms is a homomorphism).

1.2. Modules. A module over a ring A is an abelian group M to-
gether with a bilinear multiplication A x M — M satisfying 1 - m = m and
(ar1a9)m = ay1(agm) for every ai,a2 € A and m € M. A (homo)morphism
of A-modules M — N is an A-linear group homomorphism. If A is a field
K, then an A-module is a K-vector space.

A™ has a natural structure of A-module for every n > 0. It enjoys the
following universal property: to give a homomorphism A™ — M is equivalent
to giving the images of the n elements

er = (1,0,...,0),es = (0,1,0,...,0),...,en = (0,...,0,1).

An A-module M is called finitely generated if there exists a surjective homo-
morphism A™ — M for some n > 0. A f.g. A-module M which is isomorphic
to A™ for some n > 0 is called free; if A is not a field, not every f.g. A-
module is free. In particular for a general f.g. module there is no obvious
analog of the dimension of a vector space, or of a basis.

1.3. Ideals. A sub-A-module of A is called an ideal. A subset I of A is
an ideal if and only if it is a subgroup with respect to addition and is closed
under multiplication by arbitrary elements of A. A proper subgroup I of
A is an ideal if and only if the multiplication of A induces a well-defined
multiplication and thus a ring structure on the quotient. The ideal (S)
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generated by a subset S of A is the smallest ideal containing S; it is the set
of finite A-linear combinations of elements of S.

An ideal I is called maximal the only ideal which properly contains it is
the whole ring. It is called prime if ab € I implies either a € [ or b € I (or
both!). Tt is called radical if T := {a € A|3n > 0s. t. a™ € I} is equal to
I. Prove that maximal implies prime implies radical. Prove that an ideal
I in a ring A is maximal iff A/I is a field, it is prime iff A/I is a domain,
and is radical if A/I has no nilpotents (a nilpotent being a nonzero element
b such that o™ = 0 for some n > 1). Prove that for any ideal I the subset
VT is always an ideal. Prove that /0 is the set of nilpotent elements (it’s
called the nilradical). Prove that in general the set of zero divisors is not an
ideal. Hint: Look at the ring K[z]/(z? + ).

1.4. Algebras. If A is a ring, an A-algebra is a ring B together with
a multiplication A x B — B which makes B into an A-module and satisfies
(a1b1)(agb2) = (a1a2)(b1bs) for a; € A and b; € B. Tt is easy to see that to
give a ring B an A-algebra structure is equivalent to defining a homomor-
phism A — B. A morphism of A-algebras is a ring homomorphism which is
also a module homomorphism.

The “easiest” A-algebras are the polynomials A[x1,...,z,]; the official
definition is as formal sums Y, a;z! where I ranges over all multi-indices
I=(i,...,0,) EN?, gl = xlf ----- zin . the a;’s are elements of A and only
a finite number of the a;’s are nonzero. Every polynomial f € A[zy,...,z,]
defines a function A™ — A in the obvious way. Note that, if A is finite, then
different polynomials may well define the same function.

The ring of polynomials satisfies the following universal property: given
an A-algebra B, to give an A-algebra morphism A[zq,...,z,] — B is equiv-
alent to selecting n elements of B (the images of the z;’s). If there is a sur-
jective morphism A[zy,...,z,] — B for some n we say that B is a finitely
generated A-algebra.

Note that A[z1,...,z,][y] is isomorphic to Alz1,...,Zp41]-

2. Local rings and Nakayama’s lemma

A ring A is local if it has a unique maximal ideal m. Show that A is
local if and only if the elements that are not units are an ideal (necessarily
m). The field A/m is called the residue field of A. The name comes from the
fact that the ring of germ of functions at a point ion a space with functions
(or, the stalk of Ox at every point) is a local ring. A result you need to now
by heart is the following, usually referred to as Nakayama’s lemma.

LEMMA A.1. Let A be a local ring, and M a finitely generated A module.
If M =mM, then M = 0.

PRrROOF. Let my,... m, be generators of M. Then mM is generated by
all elements of the form am;, with @ € m. In particular foreach i =1,...,r,
we can find a;; € m such that m; = Z§:1 aijm;. In other words, if m € M"
is the column vector (myq,...,m,;)" and A is the matrix (a;;), then m = Am,
or Bm = 0 where B = I, — A. Let C be the adjoint of B, hence CB =
BC = d- I, where d = det B. Clearly CBm = 0, hence dm; = 0 for every
1=1,...,r. It is easy to see that d — 1 € m, hence d is a unit. O
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COROLLARY A.2. Let M be a finitely generated A module, mq,...,mgs €

M. If the m; generate M /mM as an A/m vector space, then they generate
M as an A module.

3. Localization

Let A be a ring, S C A a multiplicative set (i.e., given s,s' € S, we
have ss' € S. Let M be an A module (for instance, A itself). Define
the localization! S~'M as the following set. The elements are equivalence
classes of symbols m/s, where m € M and s € S, and m/s is equivalent to
m/§ iff there exists s’ € S such that s'(5m — sm) = 0.

Notice that S~'M has a sum defined by
m o m sm + sm
— + — -

s 5 55
which makes it into an abelian group. If M is an A algebra R, then S™'R
is also a ring with multiplication
r

S

Wl | 3
|

In particular, S~' A is an A algebra via the natural homomorphism a — a/1.
You can prove for yourself, look up or believe a number of useful properties.

EXERCISE A.3. A ring homomorphism ¢ : A — B factors via S~ 'A iff

#(s) is a unit in B for every s € S; such a factorization if it exists is unique.
STIM =M®, S A

LEMMA A4. S"'A=0iff0€ S.

PrOOF. We leave the proof, which is very easy, to the reader. This is
however a key step in many theorems. O

The most important examples of localization are:

(1) localization at an element f € A, where S = {1, f, f2, f3,...}; in
this case one writes My for S—1M;

(2) localization at a prime ideal p, where S = A\ p; in this case one
writes M, for St M.

EXERCISE A.5. Prove that if f € A, then A; is canonically isomorphic
to Aly]/(yf — 1). Prove that if p is prime, then A, is local with maximal
ideal pA, and residue field the fraction field of A/p. In particular if A is
local, then A — A, is an isomorphism.

4. Unique factorization domains

DEFINITION A.6. Let A be a domain. An element f € A is called
irreducible if whenever f = gh, then either g or A is a unit. A nonzero
element f is prime if whenever f divides gh, then it divides either g or h
(in other words, the ideal (f) is prime).

IThis looks a lot like the construction of the rationals from the integers doesn’t it?
And that weird extra s’ you can get rid of if you assume that M has no torsion, that is
am = 0 implies either a = 0 or m = (. But you don’t want to assume that in general.
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DEFINITION A.7. A domain A is called a unique factorization domain,
usually shortened as UFD, if

(1) every irreducible is prime, and conversely;

(2) every non zero element a in A can be written as a = ufy - ... f;
with u a unit and f; irreducible elements, for some r > 0;

(3) the factorization of a is essentially unique; if @ = vgg - ... g5 is
another such decomposition, then » = s, and there exists a permu-
tation o of {1,...,7} and units u; and w such that g; = u; f,(;) and
v = uw.

ExXAMPLE A.8. It is well known from primary school that the integers
are a UFD. It is trivial to prove that any field is a UFD. It si true, but too
long for me to type up, that if A is a UFD then A[z], and hence by induction
Alzy,...,zy], is a UFD. In particular, K[z1,...,z,] is a UFD.

5. Module—finite algebras

REMARK A.9. Let ¢ : A — B be a ring homomorphism. Then ¢ induces
on B a structure of A-algebra, via a -b := ¢(a)b for « € A and b € B.
Conversely, if B is an A-algebra, the map ¢ : A — B defined by ¢(a) :=a-1
(for a € A and 1 € B) is a ring homomorphism.

If B is an A-algebra and b € B, we denote by A[b] the A-subalgebra of
B generated (as an algebra) by b.

DEFINITION A.10. An A algebra B is called module-finite if it is finitely
generated as an A-module.

PrOPOSITION A.11. Let C be a B-algebra, and B an A-algebra. Then
C has a natural structure of A algebra; if C is module finite as B—algebra
and B is module-finite as A-algebra, then C is module-finite as A-algebra.

PRrOOF. The first statement is immediate, by composing the structure
homomorphisms A — B and B — C. For the second statement, let {c;} be
a set of generators for C' as B-module and {b;} be a set of generators of B
as an A-module. It is easy to verify that {b; - ¢;} is a set of generators for C
as an A-module. O

DEFINITION A.12. Let B be an A-algebra. We say that b € B is in-
tegral over A if there is a monic polynomial f € A[t] such that f(b) = 0;
equivalently, if there exist n > 0 and ag,...,a, 1 € A such that

n—1
b+ aib’ = 0.
=0

PrOPOSITION A.13. Let b € B, B an A-algebra. Then the following are
equivalent:
(1) b is integral over A ;
(2) there exists n > 0 such that 1,b,...,b" generate A[b] as an A-

module.
(3) A[b] is module-finite as an A-algebra;
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PROOF. (1) = (2). Immediate (use the monic polynomial). (2) = (3)
Trivial. (3) = (1). Let fi,...,f, € A[t] be polynomials such that f;(b)
generators of A[b] as A-module. Let d = maxdeg f;, and write b¢+! =
S aifi(b). Then f :=t4*! — 3 a;f; is a monic polynomial such that f(b) =
0. O

COROLLARY A.14. If A is a Noetherian ring and A is an A-algebra,
then the set of elements in B integral over A is a A-subalgebra of B.

PROOF. Let by,by € B integral over A. We need to prove that b1bo and
by + bo are integral over A. But the algebras A[b; + bg] and A[bybs] are both
subalgebras of A[by, by] which is a finitely generated, and hence Noetherian,
A-module. So they are also finitely generated A-modules. d

THEOREM A.15. Let B be a finitely generated A algebra, with A Noe-
therian. Then B is module-finite if and only if every element of B is integral
over A.

PRrROOF. Only if: If B is module-finite, it is Noetherian, hence for every
b € B the subalgebra A[b] is module-finite. If: Let by,...,b, be generators
of B as an A algebra. Let B; be the subalgebra generated by by, ..., b; (with
By = A). Since Bjy1 = B;[bj;+1] which is integral over A, and hence over
B;, we have that each B;;; is module finite over B;, hence we are done by
induction on n. 0

PROPOSITION A.16. Let A be a K algebra, and B a subalgebra of A
such that A is a f.g. B-module. If K is algebraically closed, then every
K-homomorphism ¢ : B — K can be extended to ¢ : A — K.

PROOF. Let m = ker ¢. By Nakayama? mA # A (here we use that A is
a finitely generated B module) hence it is contained in a maximal ideal n
of A. Then A/n is a field which contains K and has finite dimension as K
vector space. Since K is algebraically closed, we must have A/n = K. O

We end with some properties of module finite algebra extensions that
will be needed in the rpoof of NSS.

PROPOSITION A.17. Let ¢ : A — B be a ring homomorphism, with A

Noetherian, making B into a module-finite A-algebra. Let m be a mazimal
ideal in A. Then m - B = B implies ker ¢ ¢ m.

PrOOF. The Ay-algebra By, is module finite, hence by Nakayama By,
is zero iff By, = mB,,, where m = m- A, is the maximal ideal of A,. Clearly
mB = B implies, after localizing, that B, = mB,, hence B, = 0. On
the other hand, it is easy to check that By, = S~ !B where S = ¢(A \ m).
Therefore By, = 0 implies 0 € S, hence ker ¢ ¢ m. 0

COROLLARY A.18. Let A be a noetherian ring, and m a mazximal ideal
with residue field K, an algebraically closed field. Let B be a module finite A-
algebra such that the structure morphism ¢ : A — B is injective. Then there
exists 1 : B — K homomorphism of K -algebras such that ker(1) o ¢) = m.

2you may notice that A is not local. However, it is enough to prove that mAn, # Am,a
dn that follows from Nakayama.
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PrROOF. Let n = m - B. By the previous theorem, n is a proper ideal.
Hence, it is contained in a maximal ideal m’. Let ¢ : B — L be the quotient
by m'; L is a field which is finitely generated as a K-module. Since K is
algebraically closed, we must have K = L. O

6. Noether’s normalization lemma: the algebra side

In this section K will be a field, not necessarily algebraically closed
except when this is explicitly stated. This proof may not make very much
sense now, but we will go back to it later since it contains important ideas.

LEMMA A.19. Let K be an infinite field, f € K[z1,...,z,] a nonzero
polynomial. Then there exists p € K™ such that f(p) # 0.

PROOF. Induction on n. For n = 1 this is clear, since a polynomial of
dree d has at most d zeroes, while the field is finfinite. Write f = sz:(] giTh
where g; € K[z1,...,2,-1] and gq # 0. By induction there exist p1,...,pn—1
such that g4(p) # 0. Therefore f(p1,...,pn—1,t) is @ nonzero polynomial in
t and as such cannot be identically zero by the case n = 1 treated before. [

LEMMA A.20. Let K be an infinite field, and f € Klz1,...,zy] a nonzero
polynomial of degree d. Then there exists a change of variables of the form
Yi = i + Nixp (for i < m) and y, = A\pxy, such that g(x;) = f(y;) has the
form Z?:o a;z®" where a; € Klx1,...,T,_1] is a polynomial of degree at
most i and ag € K \ 0. If K is algebraically closed, we can achieve ay = 1.

PRrROOF. Let f; be the homogeneous part of degree d of f. The coefficient

of z¢ in g is fq(A1,..., ). Since fy # 0, by the previous lemma we have
proven the first statement. The second half is left as an exercise. Hint: you
can take d-th roots. O

LEMMA A.21. Let K be a field, I C K[z1,...,x,] an ideal, and assume
that I contains an f € K[x1,...,xy,] of the form

n—1
f=al+ Z filze, ... xp_1)xh,.
i=0

Let J =INK]|z1,...,2n—1]. Then the algebra K|x1,...,xy,]/I is finite as a
module over the subalgebra Klzi,...,xn-1]/J.

THEOREM A.22 (Noether normalization lemma). Let K be an infinite
field, A a (nonzero) finitely generated K algebra. Then there exists r > 0
and a subalgebra B of A such that: B is isomorphic to K|x1,...,z,] and A
is a finitely generated B module.

PrOOF. Induction on the number n of generators of A as a K algebra. If
n = 0 there is nothing to prove. So write A = K[z1,...,z,]/I. If I = 0 take
B = A and r = n. So assume I # 0, and take f € I'\ 0. Up to a coordinate
change we can assume that f = Z?:o a;z%~" as in the previous lemma. Let
A" be the image in A of K[z1,...,2,_1]. By induction A’ contains a B as
requested such that A’ is a f.g. B-module. However, A is a f.g. A’ module,

and we are done. O



