Advanced Quantum
Mechanics

Angelo Bassi
Academic Year 2022-23

Advanced Quantum Mechanics

Advanced Quantum Mechanics
9 CFU

New Frontiers in Quantum Mechanics
(Physics)

Quantum Mechanics and
Special Relativity

Introduction to Quantum Mechanics
and Quantum computing
(Data science)

6 CFU

3 CFU

Program

1 — New Frontiers = Intro QM and QC (6 CFU)
* Brief review of QM and its working rules.
* QC: The qubit and quantum gates
* QC: Some relevant quantum circuits
* Seminars by IBM
* Open quantum systems and decoherence

2 — Quantum Mechanics and Relativity (3 CFU)
* Review of special relativity with some exercises
* Quantum nonlocality, teleportation, no cloning, cryptography...

Textbook for the first part

5

JOMAAHHOOHdd

Quantum Computation and Quantum
Information, by Michael Nielsen and
Isaac Chuang.

Quantum Computing — From Linear
algebra to Physical Realization, by Mikio
Nakahara and Tetsuo Ohimi

Decoherence: And the Quantum-To-
Classical Transition, by Maximilian A.
Schlosshauer

CRC Press
@

QUANTUM
COMPUTING

From Linear Algebra
to Physical Realizations

Mikio Nakahara ans Tetsuo Ohmi

Snapshot of modern classical computers

1936: “On computable ~ 1947: First transistor (Bell Labs)

numbers, with an

application to the 1958: First
Entschel.dungsproblem) integrated
Alan Turing circuit

1975: Altair
8800, one of
the first micro s |
© TISTMICTO gy s 1981: Osborne 1, first | |
computers . 1989: first Macintosh
true mobile computer

Brief history of guantum
computing

1980s: Richard Feynman

* Classical computers are very
inefficient in simulating
quantum systems (eN)

* Computers are physical objects

* Why not creating computers
following quantum laws?

* They will efficiently simulate at
least themselves, maybe more,
thus will be faster than any
classical computer

Richard Feynman

On quantum physics and computer simulation

. . . there is plenty of room to make [computers] smaller. . . . nothing that I can see in
the physical laws . . . says the computer elements cannot be made enormously smaller
than they are now. In fact, there may be certain advantages.

—1959

Might I say immediately . . . we always have had a great deal of difficulty in under-
standing the world view that quantum mechanics represents. . . . I cannot define the
real problem, therefore I suspect there’s not a real problem, but I’'m not sure there’s no
real problem.

I mentioned . . . the possibility . . . of things being affected not just
by the past, but also by the future, and therefore that our probabili-
ties are in some sense “illusory.” We only have the information
from the past and we try to predict the next step, but in reality it
depends upon the near future . . .I'm trying to get . . . you people
who think about computer-simulation possibilities to . . . digest . . .
the real answers of quantum mechanics and see if you can’t invent
a different point of view than the physicists . . .

. . . the discovery of computers and the thinking about computers
has turned out to be extremely useful in many branches of human
reasoning. For instance, we never really understood how lousy our
understanding of languages was, the theory of grammar and all that
stuff, until we tried to make a computer which would be able to
understand language . . . I . . . was hoping that the computer-type

thinking would give us some new ideas . . .

. . . trying to find a computer simulation of physics seems to me to be an
excellent program to follow out. . . . the real use of it would be with quantum
mechanics. . . . Nature isn’t classical . . . and if you want to make a simulation of
Nature, you’d better make it quantum mechanical, and by golly it’s a wonderful
problem, because it doesn’t look so easy.

—1981

Feynman, R. 1959. There’s Plenty of Room at the Bottom. Talk given at the annual meeting of the American
Physical Society at Caltech. (Excerpt reprinted with permission from Caltech’s Engineering and Science.)

— ——. 1981. Simulating Physics with Computers. Keynote address delivered at the MIT Physics of
Computation Conference. Published in fnt. J. Theor. Phys. 21 (6/7), 1982. (Excerpts reprinted with
permission from the International Jouma! of Theoretical Physics.)

R
=
Y

Brief history of quantum computing

1980:
1985:
1992
1993:
1994.
1995:

1996:
1998:

Paul Benioff describes the first QM model of computation
David Deutsch describes first universal QC

Deutsch-Jozsa algorithm

Simon’s algorithm

Shor’s algorithm

Monroe & Wineland realize the first guantum gate (CNOT) with
trapped ions

Grover’s algorithm

First realization of a quantum algorithm (Deutsch-Jozsa), with NMR

Brief history of guantum computing

1999: Nakamura and Tsai demonstrate superconducting qubits

2000: Fahri et al. propose Adiabatic Quantum Computation

2000: Raussendorf et al: One way (measurement based) quantum computing
2001: Shor’s algorithm implemented to factorize 15

2014: Fahri et al. QAOA (Quantum Approximate Optlmlzatlon Algorlthm)
2016: IBM Quantum Experience .
2019: Quantum supremacy by Google (?)

(from “Timeline of Quantum Computing”,
Wikipedia)

Sycamore chip used by Google '

Moore’s law

50,000,000,000

72-core Xeon Phi Centriq 2400
SPARC M7 N

2-core AMD Epyc
IBM 213 Storage Controller\ -Apple A12X Bionic e n u m er
10,000,000,000 18-core Xeon Haswell-E5 8 Tegra Xavier SoC
©

Qualcomm Snapdragon 8cx/SCX8180

- 0 ™ HiSilicon Kirin 980 + Apple A12 Bionic
5,000,000,000 61T ™ HiSilicon Kirin 710

. . o
. . g‘lO-core Corg i7 Broadwell-E
g Qualcomm Snapdragon 835
v o oDual—core + GPU Iris Core i7 Broadwell-U
-2

7 Quad-core + GPU GT2 Core i7 Skylake K
2 © ’ Quad-core + GPU Core i7 Haswell

Xbox One main SoC~

8-core Xeon Nehalem-EX~
Six-core Xeon 7400, p2
Dual-core Itanium 2¢p @

Transistor count

1 000 000 000 Pentium D Presler v
’ ’ ’ Itanium 2 with £ Apple A7 (dual-core ARM64 "mobile SoC*)
500,000,000 s RN Bt o et doubles every
~ Pentium D Smithfield RCore 2 Duo Conroe
Itanium 2 McKinley€p © RCell @Core 2 Duo Wolfdale 3M
Pentium 4 Preggffit-2v@p © \Qé:ortg 2 D4u8 /‘-\Jlen&allle O e a rS
100,000,000 L8 S tw y
50,000,000 0°d° ©Barton Ortom
z 2 Pentium Il Mobile Qi€ Pentium Il Tualatin
D K7 @ @ Pentium Ill Coppermine OARM Cortex-A9
AMD Keé-Ill
10,000,000 P08 goRRemiBURY
i Prog, PeNtium Il :
5,000,000 L P T h
o ol ereils d
SATI10
1,000,000 iy < SR h . | | . . t
Tl Explorer's 32-L# p yS I Ca I I I I I
500,000 Lisp'maching ART00
Intel 80396 Intel . € ARM 3
Motorola 68§ VQ NEER to t h i S
o WiotT tan
100,000 180286 AgM
50.000 ©intel 80186 e | .
B °AFg/|A1RrV12 AF%'G Sca Ing.oc
Co @
| 65C816 NByix
10,000 ™s,1000 ‘e Wgc NC4016
? . A 65C02 th
A 1802
5,000 8o sﬁa”o‘e' o en

rola %"5%% Technology

om0 % qguantum?

Q o6V o 6© X O & & © O O 4 X © ©® O 9 » O »
D D X DD OO DO QNS QTN NN NN
& FFF PP F N E S S

Scaling of qubits

&5 Quantum computers are getting more powerful
Number of qubits achieved by date and organization 1998 - 2020*

128 qubits
Rigetti /
2019«)/
7 qubits Py
Los Alamos National . ’/
Laboratory 7262:?38 , !
2000 20%%)/
28 aubit 50 qubits
. . qubits IBM
S qub'ts 12 qubits p.wave Systems 2016
. Technical Institute for Quantum 2008
2 qubits University of ~ Computing, Perimeter
IBM, Oxford, Munich Institute for Theoretical
Berkeley, Stanford, 2000 Physics, and MIT
MIT 2006
1998
/

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Source: MIT, Qubit Counter. *Rigetti quantum computer expected by late 2019. E&: CBINSIGHTS

Vg
-
O

S

O
G

O

o1
=
(O

@
N

Development Roadmap

Model
Developers

Algorithm
Developers

Kernel
Developers

System
Modularity

2019 @

Run quantum circuits

on the IBM cloud

Falcon
27 qubits

2020 @

Demonstrate and
prototype quantum
algorithms and
applications

On target)

2021 ©@

Run quantum
programs 100x faster
with Qiskit Runtime

Quantum algorithm and application modules

Machine learning | Natural science | Optimization

O

Hummingbird @
65 qubits

S "“
S0
VSSSSSS*
WS
‘0

O

Eagle (v)

127 qubits

SSS
S B
<SS SsS
R1EE1SESS
1SS

Executed by IBM (V]

2022

Bring dynamic circuits to
Qiskit Runtime to unlock
more computations

Dynamic circuits @

Osprey @
433 qubits

<SS
S
S
SSSS
S
Ry

2023

Enhancing applications
with elastic computing
and parallelization of
Qiskit Runtime

Prototype quantum software applications

Quantum Serverless

Threaded primitives

Condor
1,121 qubits

Heron
133 qubits x p

PS
RS

earch.ibm.com/blog/ibm-quantum-roadmap-2025

2024

Improve accuracy of
Qiskit Runtime with
scalable error mitigation

—

IBM Quantum

2025

Scale quantum applica-
tions with circuit knitting
toolbox controlling
Qiskit Runtime

Beyond 2026

Increase accuracy and
speed of quantum
workflows with integration
of error correction into
Qiskit Runtime

Quantum software applications

Machine learning | Natural science | Optimization

Error suppression and mitigation

Flamingo
1,386+ qubits

@
%

Crossbill
408 qubits

Kookaburra
4,158+ qubits

=

Error correction

Scaling to
10K-100K qubits
with classical
and quantum
communication

IBM, 10t May 20222

Google Sycamore
processor

Physical realization of Quantum Computers

Superconducting qubits: superconducting circuits.
Trapped ions: internal states of trapped ions.
Neutral atoms: internal states of atoms in optical lattices.

Quantum dots: trapped electrons in materials

Photons: quantum light manipulated

Cloud-based Quantum Computing

IBM Q Experience (superconducting qubits)
Xanadu (photonic quantum computer)
Forest by Rigetti Comuting (superconducting qubits)

Several simulators of quantum computers

Classical computation

Several models studied for the theory of classical computation
* Turing machines
* High-level programmable languages

 Boolean circuits

So far, the Boolean circuit model is by far the easiest model to
generalize to quantum computation, being the closest to physical
implementation. We will review it very briefly.

Boolean circuit model

Proposition: Any Boolean function f: {0,1}" - {0,1}™ is computable by a
Boolean circuit C using just AND, OR and NOT gates (in other words,
AND, OR, NOT are universal for classical computation)

AND AAB OR AVB NOT -A
A A
t
) DD Ao
INPUT OUTPUT INPUT | OUTPUT INPUT @ OUTPUT
A B A+B
A B | AANDB | A NOT A
0 0 0 0 0
0 1

0

0 1 0 ;01 1
' 1 0

1 0 0 1 0 1

1 1 1 1 1 1

Example 1: NAND, NOR, XOR

| INPUT = OUTPUT

" A B | ANANDB

Y

0 O 1
o 1 1

j_
o B—4><:}>

:D')— same as :D—Dr INPUT OUTPUT ;INPUT OUTPUT
NOR OR NOT |

D> e DD

NAND AND NOT .

A B ANORB A | B | AXORB
o0 1 0 0 0
XOR A®B '
0 | 1 0 1 1

—h
o
o O O
—
o
—

Example 2: Half adder

A 1 \)) Note the elements of a circuit:
S =SuUum
B — y * Wires

* Gates
>_ ¢ = carry * Input on the left
e OQutput on the right
Input Output
Sum | Cany Size of a circuit = number of gates

-l ol >
- Ol =10 0

0 0
1 0
1 0
0 1

DUPE gate: duplicates bits

NAND is universal

The number of fundamental gates can be reduced

Proposition: The NAND and DUPE gates are universal for computation

Desired AND Gate NAND Construction Desired OR Gate NAND Construction

D g D o T st

e

] NAND
Desired NOT Gate Construction

A_[>0_Q iD=

D2
Do—'_

Reversible Computation

Logical gates are not always reversible: INPUT | OUTPUT INPUT | OUTPUT
* NOT is reversible A | NOTA N
* AND is irreversible ? ; 0

j

1 0
0 0
1 1

The laws of Physics are reversible, therefore is computation is
implemented physically, it should be written in terms of reversible
gates => Universal reversible computation should be possible, there
should exists a universal set of reversible gates.

Reversible Computation

This problem was studied in the ‘60s and ‘70s by Landauer e Bennett in
connection with thermodynamics.

They were considering whether it is possible to have circuits made only
of reversible gates, thus dissipating no energy. This was thought to be
an important issue at that time. In fact now supercomputers needs
heavy cooling systems. Yet it is not the most pressing one.

Reversible computation is important in the context of quantum
computation, because — as we will see — quantum circuits need to be
reversible in order to work properly.

Reversible gates - CNOT gate

Definition: A Boolean gate G is said to be reversible if it has the same
number of inputs and outputs, and its mapping is bijective.

Some important new reversible gates
INPUT | OUTPUT

0 0 0 0

X1 X1 Control bit
CNOT = 0 1 0 1
., X1 @D Xy Target bit 1 0 1 1

If the control bit is O, the target bit is left unchanged, otherwise it is flipped

CCNOT gate

X4 @ X1 Control bit
CCNOT = Xz . X2 Control bit
X3 AR (Xl A X2) @ X3 Target bit

L/

A NOT gate is applied to the target bit only if both
control bits are 1, otherwise it is left unchanged. This
is also called Toffoli gate.

0
0
0
0
1
1
1
1

INPUT
0

0
1
1
0
0
1
1

- 1 o= O|== 0O == O

0
0
0
0
1
1
1
1

OUTPUT
0

0
1
1
0
0
1
1

o |- -0 == O = 0O

C"NOT gate

Comments:

* With the same logic, one can build the CCCNOT = C3NOT gate and in
general the C"NOT gate.

* The CNOT and CCNOT are their own inverse. If applied twice, they
give the identity. This is not always the case.

Universal reversible gates

CCNOT can be used to simulate NAND and DUPE

X1 ® X1 } Sorbage Ancilla 1 ® 1 Garbage
X2 ® X2 X2 ® X2
Ancilla 1 <> NAND(Xl,Xz) Ancilla O C) X5

Theorem: The CCNOT gate is universal, assuming that ancilla inputs
and garbage outputs are allowed. Any standard Boolen circuit can be
efficiently transformed into a reversible circuit.

Universal reversible gates

So far ancillas were sometimes 0 sometimes 1. They can be initialized

to the same value, let’s say 1, by means of a NOT gate. A reversible

circuit computing f: {0,1}" = {0,1}™ will then look as follows

Input <

o Xq
X5

X,

1
Ancillas 1
1

Reversible circuit
computing f

f(x)1
f(x),

\

)

\

-

-

Output

Garbage

Universal reversible gates

7 Xq fix);

Input < X2 f(X)Z > Output
X, Reversible circuit f.(.).()m)
1 computing f R

Ancillas 1 > Garbage
1 _

The number of inputs and outputs is the same; the number of wires
never changes. In fact, we can stop thinking about wires and think about
each bit being carried in its own register, keeping its identity throughout
the computation.

Probabilistic (randomized) computation

We can open to the possibility that the value of a bit is not known with
certainty

0or1 , 0 w!th probab!l!ty o
1 with probability p,

deterministic bit random bit

Note: the physics has not changed, we simply do not know the value of
the bit.

Probabilistic (randomized) computation

The mathematical model changes, though. There are some
computational tasks which we know how to provably solve efficiently
using randomized computation (like generating prime numbers) but

which we do not know how to provably solve efficiently using
deterministic computation.

However there should not be any fundamental difference between the
two models of computation, since they are based on the same physics.

New notation

We will introduce a new notation to deal with probabilistic
computation, which will bring us a bit closer to quantum computation.

Standard notation Vector notation Abstract (Dirac) notation
G
0
1 0 |1>
\1/
0 with probability p, P
1 with probability p, P, p1/0>+p,|1>

Gates in the new notation: the NOT gate

In the new notation, gates are represented by matrices

f

0~ 1 - 0 1)(1) (o0 4
NOT [O 1] \O/ Kl OJ \O/ \1/
= 1 O 1_r0\ _} /O 1\KO\) fl\ _O
) \1/ \1 O/ \1/) \O/)
P1) 0 1)(P1 (P2
_} =
P2 [1 O] P2 P

For all other gates, we need to understand how to represent two and more bits.

Two (and more) random bits

With two bits, we have four possible states

00

10

Tensor product (we’ll come back on this soon)

Th

1
0
0
\O/

R

= O O

\OJ

r
POHO

\
J

= O O O

Two-bit gates: the AND gate

AND = [1 11 Oj Note: it is not a square matrix, because the

0001 gate is not reversible

r1\ r1\ ,O\ ,1\

0 1110)0 1 1 1110)0 1
o_'[oooJo‘[o]‘o 01=1, [oooJo‘[o]‘O
0. 0. oy 0

1) 0" 0) 0)

0 1110)0 1 0 1110)0 0
o_'[oooal‘[o}o =10 [oooJo‘U‘l
O/ \O/ \1/ \1/

Two-bit gates: the CNOT gate

100 0)

0100 Note: it is a square matrix, because the gate is
CNOT = 000 1 reversible

\0 010/
1Y (1000)\(1) (1 0) (1000)\(1) (0]
0 01001(]|0 0 11 0100 (|0] |1
ol ooo01|l0|7]0]7° =gl 0001]lo|7|0
0 \0010/0) (0OJ 0 \0 010/700) (O
1) (1000)\(0) (0O 0 [(1000Y\(0) (O]
0 010010 0 10 0100(|0] |O
ol looo1l|[1]7|o] Mo|™oo001]0o|7|1
0 \0010/00) 1) L \0010/(1) O

A truly probabilistic gate

We introduce two new gates

COIN= [$}- —»Eﬂ

It has no input and a single bit output. It generates randomly either a 0 or a
1, with probability %2 each. It is like fair coin tossing.

1 7%
1COIN = =
con = {13 (3]

If the input bit is O, it is left unchanged. If it is 1, it is replaced by a COIN.

Example 1

3 With probability 72 the input bit 00 and with

l probability % it is 10. In the first case the CNOT
10> b will leave in unchanged, in the second case it
will changed into 11.

In mathematical terms

ﬁyz\ /'1 O O O\ f‘yz\ ﬁyz\ fl O
W) (1) o o100 (lo| lo|_.lo| o
[Vz]@[oJ'yz_' oo001||n]~ |o| "o * "0
0 \0 010/ 0, Vs 0 L1

Example 2

S

|0>

|

L/

100 0)
0100
0001

ﬁyz\

V2

\0 010/

\O S

ﬂyz\

\%J

1% 0 0 (%)
0200 (|0
001% ||0

\0 0 0%/ (o)

N J
e
10 1 7%
869

f»yz\

Ya

\%J

Example 2

S
| 0> l 15

L/

Using the Dirac notation (|0> @ |0> = |00>, and same for others)

% 100>+ % |10> = % |00>+ % |11> = % |00>+ % (% [10>+ 14 |11>)

= % |00>+% |10>+ % |11>= (%)
0
Ya
\%/

Example 3

S
|0> l

|0>

o

Example 3

S
| 0> l 15

L/

1
=
-

|0>

o

% |000> + % |100> = % |000> + % | 110>
=> % |000>+ % (% |100> + % |110>) =% |000> + % |100> + Y4 | 110>
=> % |000> + % [100> + %4 [111>
=> % |000>+7% (% |000>+ % [100>) + %4 (% |011>+ 7% |111>)
= 5/4 000>+ 1/, |100> + 1/ |011> + 1/ [111>

Comment 1

We used the formalism of linear algebra for probabilistic computation
because “ignorance propagates linearly”.

If a physical system is either in state x with probability p or in state y
with probability g, and x evolves into X and y into Y, then at the end the
system will be in state X with probability p or in state Y with probability
g. In Dirac notation:

plx>+qly> = p|X>+ql|Y> =pT[|x>] +qT[|y>] =T[p|x>+ q|y>]

The evolution operator T is linear, and can be represented by a matrix.

Comment 2

Measurements simply reveal the true state of the system, which was
unknown to us before the measurement. After the measurement, the
information about the state of the system changes, and with it the
probability distribution. With reference to the previous example

1. We measure the three bits and find 000:

5/ |000> + 1/, | 100> + /5 |011> + /5 | 111> => |000>

This happens with probability 5/,

Comment 2

2. We measure the first bit and find O; this happened with probability
fo+ s =3/4

5/,]000>+1/, |011>
3

5/ |000> + 1/, [100> + 1/, |011> + 1/, 111> = 7

= 5/, /000> + 1/, |011>

We can call it “collapse” of the probability. It is not a real physical
phenomenon. It is Bayes rule: P(A|B) = P(B|A) P(A) / P(B). In our case:

P(]000>|“0") = P(“0"| [000>) P(]000>) / P("0") = 1 x 5/g+ 3/, = %/

Rules of probabilistic classical computation

1. The state of a single probabilistic bit is given by a vector in R2, or in
Dirac notation:

Ix>=p|0>+q|l> withp,g €ER, and p+g=1.
The coefficients give the probabilities for the bit to have that value.

States for multiple bits are constructed via tensor product of R?2
Two bits: [xy> = |x> ®|y>
Three bits: |xyz>= |x> ®|y> ®|z>, and so on

Rules of probabilistic classical computation

Why tensor products, and not — for example — Cartesian product?

Take for example three bits. There are 8 possible configurations: 000,
001, 010, 011, 100, 101, 110, 111. The register can be in any of these 8
states, and the information propagates linearly (without interference
among the states), therefore they behave like linearly independent
states.

This means that one needs 8 basis states in the vector space, which is
what is provided by the tensor product, not by the Cartesian product.

Rules of probabilistic classical computation

2. Gates are implemented by linear operators, i.e. matrices.

Gates can be either reversible (square invertible matrices) or
irreversible (for example rectangular matrices).

As we saw that computation can always be made reversible, without
loss of generality we can say that gates are implemented by linear
invertible operators (NxN invertible stochastic matrices).

Of course, they have to preserve probabilities.

Rules of probabilistic classical computation

3. Measurements are updates of information. The states changes
according to Bayes rule (“collapse” of the state)

As we will see, the rules of quantum computation are almost similar,
but with fundamental differences.

Preview of Quantum Computation

Beam splitters (BS) are optical devices, which split the path of a photon in
two: once a photon has entered, there is 2 probability that it goes one

way, and %2 probability that it goes the other way. It is a probabilistic gate.
If we associate the value of the bit

| 0> to the path of the photon (instead
of the voltage as in standard
computers), then we have

|0>

|0> = % |0>+% | 1>
11> = % [0>+0 | 1>

| 1>

Preview of Quantum Computation

I
7,
|

Ix> = % [0>+0|1>

Whatever the input state, it generates an equal weighted distributions
of 0 and 1. The matrix representation is:

(i)
ZYZ

2\ p Z ,
I f t: = =
n tac [1/2 1/2] [q] [1/2] since p+g=1

Preview of Quantum Computation

But now we can do the following optical construction:

0>
| 1 This is equivalent to the following
circuit
witror z — 1>
. —|BS—{BS|- = —{BS|-

0> — z % e

> Vs > Vs
'1> [/j[/j

In a classical picture (coin tossing), this makes perfectly sense

i)
Z¥Z

Preview of Quantum Computation
But this is not what happens. What happens it:

|0>

MIrOr e |Z . |1>
0> — |Z| A o

|1>

|0> = |0>
11> = |1>

How is this possible? The answer is
that photons are quantum: they
cannot be thought as particles which
follow one path or the other. They
are more like waves, which split in
two, interfere and then recombine

Preview of Quantum Computation

We will see how this is described by quantum mechanics, but the
essence is the following: how can we destroy probabilities?

We have to justify

|0O> = % |0>+% |1>= |0>

first BS second BS

Instead of

10> = % |0>+%|1>=> KL |0>+1|1>

first BS second BS

Preview of Quantum Computation

We destroy probabilities with negative (in general, complex) numbers.
But what does it mean to have negative probabilities? The solution of
QM is:

Bit = p|0>+qg|1> with p,g € R*and p+g=1
probabilities

changed into

Qubit = a|0>+b|1> witha,b € C and |a|?+ |b]|?=1

amplitudes Probabilities
(they remain always positive)

Preview of Quantum Computation
The BS is mathematically described by

— BS[— = — H - Hadamard gate %[]
R
Then
10> = vy _[0>+1/]|1> In both cases,
— H probabilities are 50% of
11> = vy |0>- 1 |1> getting the valueO or 1

Preview of Quantum Computation

But now

Ll 11 10 After the second
_ 1 1 - i
BS BS = x/_i[l _1j ﬁ[l _1j [O 1] BS, the bit takes

the initial value

What happens physically is that the photon behaves like a wave. There
can be constructive interference, which mathematically is expressed by
amplitudes adding, and destructive interference, which mathematically

is expressed by amplitudes subtracting. This is the role of negative
numbers.

This behaviour can be modelled by classical waves

Preview of Quantum Computation

The surprising thing is that if we measure the photon right after the
first BS and before it enters the second one, we will not find it half here
and half there, as it would happen with classical waves. It will always be
either here or there, and the wave behaviour is destroyed.

Understanding what this means brings into the foundations of
qguantum mechanics, which is beyond the scope of the present course.

Quantum Algorithms

IS e S . s

Initialize the state™
Create the superposition of all states™
Like parallel processing Compute the function’™

Let the state interfere so
that the correct answer
has higher probability

Read the output

