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The Qubit

Physically, a qubit can be realized in many ways: polarization states of 
a photon, spin states of an electron, truncated two states from a many 
level system….
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Qubits and Quantum Key Distribution

3.1 Qubits

A (Boolean) bit assumes two distinct values, 0 and 1. Bits constitute the
building blocks of the classical information theory founded by C. Shannon.
Quantum information theory, on the other hand, is based on qubits.

General references for this chapter are [1] and [2].

3.1.1 One Qubit

A qubit is a (unit) vector in the vector space C2, whose basis vectors are
denoted as

|0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
. (3.1)

What these vectors physically mean depends on the physical realization em-
ployed for quantum-information processing.

• In some cases, |0〉 stands for a vertically polarized photon | "〉, while
|1〉 represents a horizontally polarized photon | ↔〉. Alternatively they
might correspond to photons polarized in different directions. For ex-
ample, |0〉 may represent a polarization state

| ↔〉 =
1√
2
(| "〉+ |↔〉),

while |1〉 represents a state

|↔ 〉 =
1√
2
(| "〉 − |↔〉).

Note that if | "〉 (|↔〉) corresponds to an eigenstate of σz with the eigen-
value +1 (−1), respectively, then | ↔〉 (|

↔ 〉) corresponds to an eigenstate
of σx with the eigenvalue +1 (−1), respectively.
Similarly, the states

|σ+〉 = 1√
2
(| "〉+ i|↔〉), |σ−〉 = 1√

2
(| "〉 − i|↔〉)
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correspond to the eigenstates of σy with the eigenvalues ±1 and repre-
sent circularly polarized photons.

• They may represent spin states of an electron, |0〉 = | ↑〉 and |1〉 =
| ↓〉. Electrons are replaced by nuclei with spin 1/2 in NMR quantum
computing.

• Truncated two states from many levels may also be employed as a qubit.
Take the ground state and the first excited state of ionic energy levels
or atomic energy levels, for example. We may assign |0〉 to the ground
state and |1〉 to the first excited state.

In any case, we have to fix a set of basis vectors when we carry out quantum
information processing. All the physics should be described with respect to
this basis. In the following, the basis is written in an abstract form as {|0〉, |1〉},
unless otherwise stated.

A remark is in order. The third example of a qubit above suggests that a
quantum system with more than two states may be employed for information
storage and information processing. If a quantum system admits three differ-
ent states, it is called a qutrit, while if it takes d different states, it is called a
qudit. A spin S particle, for example, takes d = 2S +1 spin states and works
as a qudit. The significance of qutrits and qudits in information processing is
still to be explored.

It is convenient to assume the vector |0〉 corresponds to the classical value
0, while |1〉 to 1 in quantum computation. Moreover it is possible for a qubit
to be in a superposition state:

|ψ〉 = a|0〉+ b|1〉 with a, b ∈ C, |a|2 + |b|2 = 1. (3.2)

The fundamental requirement of quantum mechanics is that if we make mea-
surement on |ψ〉 to see whether it is in |0〉 or |1〉, the outcome will be 0 (1) with
the probability |a|2 (|b|2), and the state immediately after the measurement
is |0〉 (|1〉).

Although a qubit may take infinitely many different states, it should be kept
in mind that we can extract from it as the same amount of information as that
of a classical bit. Information can be extracted only through measurements.
When we make measurement on a qubit, the state vector “collapses” to the
eigenvector that corresponds to the eigenvalue observed. Suppose that a spin
is in the state a|0〉 + b|1〉. If we observe that the z-component of the spin
is +1/2, the system immediately after the measurement is definitely in the
state |0〉. This happens with probability 〈ψ|0〉〈0|ψ〉 = |a|2. The outcome
of a measurement on a qubit is always one of the eigenvalues, which we call
abstractly 0 and 1, just like for a classical bit. We are tempted to think
that by making measurements of a large number of copies of this system, we
may be able to determine the coefficients a and b (or, at least, |a| and |b|) of
the wavefunction. But this is not the case due to the “no-cloning theorem”



Bloch sphere
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proved later. It is impossible to duplicate an unknown quantum system with
a unitary transformation.

3.1.2 Bloch Sphere

It is useful, for many purposes, to express a state of a single qubit graphically.
Let us parameterize a one-qubit state |ψ〉 with θ and φ as

|ψ(θ,φ)〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (3.3)

We are not interested in the overall phase, and the phase of |ψ〉 is fixed in
such a way that the coefficient of |0〉 is real. Now we show that |ψ(θ,φ)〉 is
an eigenstate of n̂(θ,φ) ·σ with the eigenvalue +1. Here σ = (σx,σy,σz) and
n̂(θ,φ) is a real unit vector called the Bloch vector with components

n̂(θ,φ) = (sin θ cosφ, sin θ sinφ, cos θ)t.

In fact, a straightforward calculation shows that

n̂(θ,φ) · σ|ψ(θ,φ)〉 =
(

cos θ sin θe−iφ

sin θeiφ − cos θ

)(
cos θ

2
eiφ sin θ

2

)

=
(

cos θ
2 cos θ + sin θ

2 sin θ
eiφ
(
cos θ

2 sin θ − cos θ sin θ
2

)
)

=
(

cos θ
2

eiφ sin θ
2

)
= |ψ(θ,φ)〉.

It is therefore natural to assign a unit vector n̂(θ,φ) to a state vector |ψ(θ,φ)〉.
Namely, a state |ψ(θ,φ)〉 is expressed as a unit vector n̂(θ,φ) on the surface of
the unit sphere, called the Bloch sphere. This correspondence is one-to-one
if the ranges of θ and φ are restricted to 0 ≤ θ ≤ π and 0 ≤ φ < 2π.

EXERCISE 3.1 Let |ψ(θ,φ)〉 be the state given by Eq. (3.3). Show that

〈ψ(θ,φ)|σ|ψ(θ,φ)〉 = n̂(θ,φ), (3.4)

where n̂ is the unit vector defined above.

It is possible to express a density matrix ρ of a qubit using a unit ball this
time. Since ρ is a positive semi-definite Hermitian matrix with unit trace, its
most general form is

ρ =
1
2



I +
∑

i=x,y,z

uiσi



 , (3.5)

where ui are components of a real vector u with |u| ≤ 1. The reality fol-
lows from the Hermiticity requirement, and Tr ρ = 1 is easy to check. The
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eigenvalues of ρ are

λ+ =
1
2

(
1 +

√
|u|
)

, λ− =
1
2

(
1−

√
|u|
)

(3.6)

and therefore non-negative. In case |u| = 1, the eigenvalue λ− vanishes and
rank ρ = 1. Therefore the surface of the unit ball corresponds to pure states.
The converse is also shown easily. In contrast, all the points u inside a unit
ball correspond to mixed states. The ball is called the Bloch ball, also called
the Bloch sphere in a mathematically less strict sense, and the vector u is
also called the Bloch vector. The normalized vector n of the Bloch sphere is
a special case of u restricted in pure states.

EXERCISE 3.2 Find the density matrix of a pure state (3.3) and write it
in the form of Eq. (3.5).

EXERCISE 3.3 Let ρ be given by Eq. (3.5). Show that

〈σ〉 = tr (ρσ) = u. (3.7)

3.1.3 Multi-Qubit Systems and Entangled States

Let us consider a group of many (n) qubits next. Such a system behaves
quite differently from a classical one, and this difference gives a distinguishing
aspect to quantum information theory. An n-qubit system is often called a
(quantum) register in the context of quantum computing.

Consider a classical system made of several components. The state of this
system is completely determined by specifying the state of each component.
This is not the case for a quantum system. A quantum system made of
many components is not necessarily described by specifying the state of each
component as we have learned in §2.3.

As an example, let us consider an n-qubit register. Suppose we specify
the state of each qubit separately in analogy with a classical case. Each of
the qubits is then described by a two-dimensional complex vector of the form
ai|0〉 + bi|1〉, and we need 2n complex numbers {ai, bi}1≤i≤n to specify the
state. This corresponds the the tensor product state

(a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉)⊗ . . .⊗ (an|0〉+ bn|1〉)

introduced in §2.3. If the system is treated in a fully quantum-mechanical
way, however, we have to include superposition of such tensor product states,
which is not necessarily decomposable into a tensor product form. Such a state
is entangled (see §2.3). A general state vector of the register is represented
as

|ψ〉 =
∑

ik=0,1

ai1i2...in |i1〉 ⊗ |i2〉 ⊗ . . .⊗ |in〉
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and lives in a 2n-dimensional complex vector space. Note that 2n ! 2n
for a large number n. The ratio 2n/2n is ∼ 6.3 × 1027 for n = 100 and
∼ 5.4 × 10297 for n = 1000. These astronomical numbers tell us that most
quantum states in a Hilbert space with large n are entangled, i.e., they do not
have classical analogy which tensor product states have. Entangled states that
have no classical counterparts are extremely powerful resources for quantum
computation and quantum communication as we will show later.

Let us consider a system of two qubits for definiteness. The combined
system has a basis {|00〉, |01〉, |10〉, |11〉}. More generally, a basis for a system
of n qubits may be taken to be {|bn−1bn−2 . . . b0〉}, where bn−1, bn−2, . . . , b0 ∈
{0, 1}. It is also possible to express the basis in terms of the decimal system.
We write |x〉, instead of |bn−1bn−2 . . . b0〉, where x = bn−12n−1 + bn−22n−2 +
. . . + b0 is the decimal expression of the binary number bn−1bn−2 . . . b0. Thus
the basis for a two-qubit system may be written also as {|0〉, |1〉, |2〉, |3〉} with
this decimal notation. Whether the binary system or the decimal system is
employed should be clear from the context. An n-qubit system has 2n =
exp(n ln 2) basis vectors.

The set

{|Φ+〉 =
1√
2
(|00〉+ |11〉), |Φ−〉 = 1√

2
(|00〉 − |11〉),

|Ψ+〉 =
1√
2
(|01〉+ |10〉), |Ψ−〉 =

1√
2
(|01〉 − |10〉)}

(3.8)

is an orthonormal basis of a two-qubit system and is called the Bell basis.
Each vector is called the Bell state or the Bell vector. Note that all the
Bell states are entangled.

EXERCISE 3.4 The Bell basis is obtained from the binary basis {|00〉, |01〉,
|10〉, |11〉} by a unitary transformation. Write down the unitary transforma-
tion explicitly.

Among three-qubit entangled states, the following two states are important
for various reasons and hence deserve special names. The state

|GHZ〉 = 1√
2
(|000〉+ |111〉) (3.9)

is called the Greenberger-Horne-Zeilinger state and is often abbreviated
as the GHZ state[3]. Another important three-qubit state is the W state
[4],

|W〉 =
1√
3
(|100〉+ |010〉+ |001〉). (3.10)

EXERCISE 3.5 Find the expectation value of σx ⊗ σz measured in each of
the Bell states.

Example: two qubits

|10>  ➜ b0 = 0, b1 = 1

Decimal expression: 
|x>, with 

x = 1 × 21 + 0 × 20 = 2 
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where use has been made of the spectral decomposition M =
∑

mPm. The
standard deviation is given by

∆(M) =
√
〈(M − 〈M〉)2〉 =

√
〈M2〉 − 〈M〉2. (3.14)

Let us analyze measurements in a two-qubit system in some detail. An
arbitrary state is written as

|ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉, |a|2 + |b|2 + |c|2 + |d|2 = 1,

where a, b, c, d ∈ C. We make a measurement of the first qubit with respect
to the basis {|0〉, |1〉}. To this end, we rewrite the state as

a|00〉+ b|01〉+ c|10〉+ d|11〉
= |0〉 ⊗ (a|0〉+ b|1〉) + |1〉 ⊗ (c|0〉+ d|1〉)

= u|0〉 ⊗
(

a

u
|0〉+ b

u
|1〉
)

+ v|1〉 ⊗
(

c

v
|0〉+ d

v
|1〉
)

,

where u =
√
|a|2 + |b|2 and v =

√
|c|2 + |d|2. The measurement operators

acting on the first qubit are

M0 = |0〉〈0|⊗ I, M1 = |1〉〈1|⊗ I. (3.15)

Note that we need to specify ⊗I explicitly since we are working in a two-qubit
Hilbert space C4. Upon a measurement of the first qubit, we obtain 0 with
the probability

〈ψ|M0|ψ〉 = u2 = |a|2 + |b|2,

projecting the state to

M0|ψ〉√
p(0)

= |0〉 ⊗
(

a

u
|0〉+ b

u
|1〉
)

,

while we obtain |1〉 with the probability v2 = |c|2 + |d|2, projecting the state

to |1〉 ⊗
(

c

v
|0〉+ d

v
|1〉
)

. Note that the state after the measurement has unit

norm in both cases. The measurement of the second qubit can be carried out
similarly. Measurements on an n-qubit system can be carried out by repeating
one-qubit measurement n times.

In the two-qubit example above, the Hilbert space for the system is sepa-
rated into a direct sum of H0, where the first qubit is in the state |0〉, and H1,
where it is in |1〉: H = H0⊕H1. An arbitrary two-qubit state |ψ〉 is uniquely
decomposed into two vectors, each of which belongs to H0 or H1 as

(|0〉〈0|⊗ I)|ψ〉 ∈ H0, (|1〉〈1|⊗ I)|ψ〉 ∈ H1,

where normalization has been ignored. More generally, an observation of k
qubits in an n-qubit system yields 2k possible outcomes mi (1 ≤ i ≤ 2k).
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normalized normalized

|u|2 = probability |v|2 = probability
Compare with the 

calculation we did in the 
classical probabilistic case.



Quantum Computation

4

Quantum Gates, Quantum Circuit and
Quantum Computation

4.1 Introduction

Now that we have introduced qubits to store information, it is time to consider
operations acting on them. If they are simple, these operations are called
gates, or more precisely quantum gates, in analogy with those in classical
logic circuits. More complicated quantum circuits are composed of these
simple gates. A collection of quantum circuits for executing a complicated
algorithm, a quantum algorithm, is a part of a quantum computation.

DEFINITION 4.1 (Quantum Computation) A quantum computation
is a collection of the following three elements:

(1) A register or a set of registers,

(2) A unitary matrix U , which is taylored to execute a given quantum al-
gorithm, and

(3) Measurements to extract information we need.

More formally, we say a quantum computation is the set {H, U, {Mm}},
where H = C2n

is the Hilbert space of an n-qubit register, U ∈ U(2n) repre-
sents the quantum algorithm and {Mm} is the set of measurement operators.

The hardware (1) along with equipment to control the qubits is called a
quantum computer.

Suppose the register is set to a fiducial initial state, |ψin〉 = |00 . . .0〉, for
example. A unitary matrix Ualg is designed to represent an algorithm which
we want to execute. Operation of Ualg on |ψin〉 yields the output state |ψout〉 =
Ualg|ψin〉. Information is extracted from |ψout〉 by appropriate measurements.

Actual quantum computation processes are very different from those of a
classical counterpart. In a classical computer, we input the data from a key-
board or other input devices and the signal is sent to the I/O port of the
computer, which is then stored in the memory, then fed into the micropro-
cessor, and the result is stored in the memory before it is printed or it is

65
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gate is easily found as

I = |0〉〈0| + |1〉〈1| =
(

1 0
0 1

)
. (4.1)

Similarly we introduce X : |0〉 → |1〉, |1〉 → |0〉, Y : |0〉 → −|1〉, |1〉 → |0〉,
and Z : |0〉 → |0〉, |1〉 → −|1〉, whose matrix representations are

X = |1〉〈0| + |0〉〈1| =
(

0 1
1 0

)
= σx, (4.2)

Y = |0〉〈1|− |1〉〈0| =
(

0 −1
1 0

)
= −iσy, (4.3)

Z = |0〉〈0|− |1〉〈1| =
(

1 0
0 −1

)
= σz . (4.4)

The transformation I is the trivial (identity) transformation, while X is the
negation (NOT), Z the phase shift and Y = XZ the combination of them. It
is easily verified that these gates are unitary.

The CNOT (controlled-NOT) gate is a two-qubit gate, which plays
quite an important role in quantum computation. The gate flips the sec-
ond qubit (the target qubit) when the first qubit (the control qubit) is
|1〉, while leaving the second bit unchanged when the first qubit state is |0〉.
Let {|00〉, |01〉, |10〉, |11〉} be a basis for the two-qubit system. In the following,
we use the standard basis vectors with components

|00〉 = (1, 0, 0, 0)t , |01〉 = (0, 1, 0, 0)t , |10〉 = (0, 0, 1, 0)t , |11〉 = (0, 0, 0, 1)t .

The action of the CNOT gate, whose matrix expression will be written as
UCNOT, is

UCNOT : |00〉 %→ |00〉, |01〉 %→ |01〉, |10〉 %→ |11〉, |11〉 %→ |10〉.

It has two equivalent expressions

UCNOT = |00〉〈00| + |01〉〈01|+ |11〉〈10|+ |10〉〈11|
= |0〉〈0|⊗ I + |1〉〈1|⊗X, (4.5)

having a matrix form

UCNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 . (4.6)

The second expression of the RHS in Eq. (4.5) shows that the action of UCNOT

on the target qubit is I when the control qubit is in the state |0〉, while it is σx

when the control qubit is in |1〉. Verify that UCNOT is unitary and, moreover,
idempotent, i.e., U2

CNOT = I.
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It has two equivalent expressions

UCNOT = |00〉〈00| + |01〉〈01|+ |11〉〈10|+ |10〉〈11|
= |0〉〈0|⊗ I + |1〉〈1|⊗X, (4.5)

having a matrix form

UCNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 . (4.6)

The second expression of the RHS in Eq. (4.5) shows that the action of UCNOT

on the target qubit is I when the control qubit is in the state |0〉, while it is σx

when the control qubit is in |1〉. Verify that UCNOT is unitary and, moreover,
idempotent, i.e., U2

CNOT = I.
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The second expression of the RHS in Eq. (4.5) shows that the action of UCNOT

on the target qubit is I when the control qubit is in the state |0〉, while it is σx
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CNOT = I.

Exercise: Find the Hamiltonian that implements these gates, and show 
how they are implemented.



Single Qubit Quantum Gates

174 Quantum circuits

4.2 Single qubit operations

The development of our quantum computational toolkit begins with operations on the
simplest quantum system of all – a single qubit. Single qubit gates were introduced in
Section 1.3.1. Let us quickly summarize what we learned there; you may find it useful
to refer to the notes on notation on page xxiii as we go along.
A single qubit is a vector |ψ〉 = a|0〉 + b|1〉 parameterized by two complex numbers

satisfying |a|2 + |b|2 = 1. Operations on a qubit must preserve this norm, and thus are
described by 2×2 unitary matrices. Of these, some of the most important are the Pauli
matrices; it is useful to list them again here:

X ≡
[

0 1
1 0

]

; Y ≡
[

0 −i
i 0

]

; Z ≡
[

1 0
0 −1

]

. (4.1)

Three other quantum gates will play a large part in what follows, the Hadamard gate
(denoted H), phase gate (denoted S), and π/8 gate (denoted T ):

H =
1√
2

[

1 1
1 −1

]

; S =
[

1 0
0 i

]

; T =
[

1 0
0 exp(iπ/4)

]

. (4.2)

A couple of useful algebraic facts to keep in mind are that H = (X+Z)/
√
2 and S = T 2.

You might wonder why the T gate is called the π/8 gate when it is π/4 that appears in
the definition. The reason is that the gate has historically often been referred to as the
π/8 gate, simply because up to an unimportant global phase T is equal to a gate which
has exp(±iπ/8) appearing on its diagonals.

T = exp(iπ/8)
[

exp(−iπ/8) 0
0 exp(iπ/8)

]

. (4.3)

Nevertheless, the nomenclature is in some respects rather unfortunate, and we often refer
to this gate as the T gate.
Recall also that a single qubit in the state a|0〉+ b|1〉 can be visualized as a point (θ, ϕ)

on the unit sphere, where a = cos(θ/2), b = eiϕ sin(θ/2), and a can be taken to be real
because the overall phase of the state is unobservable. This is called the Bloch sphere
representation, and the vector (cosϕ sin θ, sinϕ sin θ, cos θ) is called the Bloch vector.
We shall return to this picture often as an aid to intuition.

Exercise 4.1: In Exercise 2.11, which you should do now if you haven’t already done
it, you computed the eigenvectors of the Pauli matrices. Find the points on the
Bloch sphere which correspond to the normalized eigenvectors of the different
Pauli matrices.

The Pauli matrices give rise to three useful classes of unitary matrices when they are
exponentiated, the rotation operators about the x̂, ŷ, and ẑ axes, defined by the equations:

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin

θ

2
X =

[

cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2

]

(4.4)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y =

[

cos θ
2 − sin θ

2
sin θ

2 cos θ
2

]

(4.5)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z =

[

e−iθ/2 0
0 eiθ/2

]

. (4.6)
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Exercise 4.2: Let x be a real number and A a matrix such that A2 = I. Show that

exp(iAx) = cos(x)I + i sin(x)A. (4.7)

Use this result to verify Equations (4.4) through (4.6).

Exercise 4.3: Show that, up to a global phase, the π/8 gate satisfies T = Rz(π/4).

Exercise 4.4: Express the Hadamard gate H as a product of Rx and Rz rotations and
eiϕ for some ϕ.

If n̂ = (nx, ny, nz) is a real unit vector in three dimensions then we generalize the
previous definitions by defining a rotation by θ about the n̂ axis by the equation

Rn̂(θ) ≡ exp(−iθ n̂ · $σ/2) = cos
(

θ

2

)

I − i sin
(

θ

2

)

(nxX + nyY + nzZ) , (4.8)

where $σ denotes the three component vector (X, Y, Z) of Pauli matrices.

Exercise 4.5: Prove that (n̂ · $σ)2 = I, and use this to verify Equation (4.8).

Exercise 4.6: (Bloch sphere interpretation of rotations) One reason why the
Rn̂(θ) operators are referred to as rotation operators is the following fact, which
you are to prove. Suppose a single qubit has a state represented by the Bloch
vector $λ. Then the effect of the rotation Rn̂(θ) on the state is to rotate it by an
angle θ about the n̂ axis of the Bloch sphere. This fact explains the rather
mysterious looking factor of two in the definition of the rotation matrices.

Exercise 4.7: Show that XY X = −Y and use this to prove that
XRy(θ)X = Ry(−θ).

Exercise 4.8: An arbitrary single qubit unitary operator can be written in the form

U = exp(iα)Rn̂(θ) (4.9)

for some real numbers α and θ, and a real three-dimensional unit vector n̂.

1. Prove this fact.
2. Find values for α, θ, and n̂ giving the Hadamard gate H.
3. Find values for α, θ, and n̂ giving the phase gate

S =
[

1 0
0 i

]

. (4.10)

An arbitrary unitary operator on a single qubit can be written in many ways as a
combination of rotations, together with global phase shifts on the qubit. The following
theorem provides a means of expressing an arbitrary single qubit rotation that will be
particularly useful in later applications to controlled operations.

Theorem 4.1: (Z-Y decomposition for a single qubit) Suppose U is a unitary
operation on a single qubit. Then there exist real numbers α, β, γ and δ such that

U = eiαRz(β)Ry(γ)Rz(δ). (4.11)
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(2) Find the matrix representation of the circuit (b).
(3) Find the matrix representation of the circuit (c). Find the action of the
circuit on a tensor product state |ψ1〉 ⊗ |ψ2〉.

The CCNOT (Controlled-Controlled-NOT) gate has three inputs, and
the third qubit flips when and only when the first two qubits are both in the
state |1〉. The explicit form of the CCNOT gate is

UCCNOT = (|00〉〈00|+ |01〉〈01|+ |10〉〈10|)⊗ I + |11〉〈11|⊗X. (4.8)

This gate is graphically expressed as

The CCNOT gate is also known as the Toffoli gate.

4.2.2 Walsh-Hadamard Transformation

The Hadamard gate or the Hadamard transformation H is an important
unitary transformation defined by

UH : |0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉).

(4.9)

It is used to generate a superposition state from |0〉 or |1〉. The matrix repre-
sentation of H is

UH =
1√
2
(|0〉+ |1〉)〈0| + 1√

2
(|0〉 − |1〉)〈1| =

1√
2

(
1 1
1 −1

)
. (4.10)

A Hadamard gate is depicted as

There are numerous important applications of the Hadamard transforma-
tion. All possible 2n states are generated, when UH is applied on each qubit
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of the state |00 . . . 0〉:

(H ⊗H ⊗ . . .⊗H)|00 . . .0〉

=
1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)⊗ . . .

1√
2
(|0〉+ |1〉)

=
1√
2n

2n−1∑

x=0

|x〉. (4.11)

Therefore, we produce a superposition of all the states |x〉 with 0 ≤ x ≤ 2n−1
simultaneously. This action of H on an n-qubit system is called the Walsh
transformation, or Walsh-Hadamard transformation, and denoted as
Wn. Note that

W1 = UH, Wn+1 = UH ⊗Wn. (4.12)

EXERCISE 4.4 Show that Wn is unitary.

EXERCISE 4.5 Show that the two circuits below are equivalent:

This exercise shows that the control bit and the target bit in a CNOT gate
are interchangeable by introducing four Hadamard gates.

EXERCISE 4.6 Let us consider the following quantum circuit

(4.13)

where q1 denotes the first qubit, while q2 denotes the second. What are the
outputs for the inputs |00〉, |01〉, |10〉 and |11〉?

4.2.3 SWAP Gate and Fredkin Gate

The SWAP gate acts on a tensor product state as

USWAP|ψ1,ψ2〉 = |ψ2,ψ1〉. (4.14)
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An arbitrary unitary operator on a single qubit can be written in many ways as a
combination of rotations, together with global phase shifts on the qubit. The following
theorem provides a means of expressing an arbitrary single qubit rotation that will be
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Exercise 4.13: (Circuit identities) It is useful to be able to simplify circuits by
inspection, using well-known identities. Prove the following three identities:

HXH = Z; HY H = −Y ; HZH = X. (4.18)

Exercise 4.14: Use the previous exercise to show that HTH = Rx(π/4), up to a
global phase.

Exercise 4.15: (Composition of single qubit operations) The Bloch
representation gives a nice way to visualize the effect of composing two rotations.

(1) Prove that if a rotation through an angle β1 about the axis n̂1 is followed by a
rotation through an angle β2 about an axis n̂2, then the overall rotation is
through an angle β12 about an axis n̂12 given by

c12 = c1c2 − s1s2 n̂1 · n̂2 (4.19)

s12n̂12 = s1c2n̂1 + c1s2n̂2 − s1s2 n̂2 × n̂1 , (4.20)

where ci = cos(βi/2), si = sin(βi/2), c12 = cos(β12/2), and s12 = sin(β12/2).
(2) Show that if β1 = β2 and n̂1 = ẑ these equations simplify to

c12 = c2 − s2 ẑ · n̂2 (4.21)

s12n̂12 = sc(ẑ + n̂2)− s2 n̂2 × ẑ , (4.22)

where c = c1 and s = s1.

Symbols for the common single qubit gates are shown in Figure 4.2. Recall the basic
properties of quantum circuits: time proceeds from left to right; wires represent qubits,
and a ‘/’ may be used to indicate a bundle of qubits.

Hadamard
1√
2

[

1 1
1 −1

]

Pauli-X
[

0 1
1 0

]

Pauli-Y
[

0 −i
i 0

]

Pauli-Z
[

1 0
0 −1

]

Phase
[

1 0
0 i

]

π/8
[

1 0
0 eiπ/4

]

Figure 4.2. Names, symbols, and unitary matrices for the common single qubit gates.

4.3 Controlled operations

‘If A is true, then do B’. This type of controlled operation is one of the most useful in
computing, both classical and quantum. In this section we explain how complex controlled
operations may be implemented using quantum circuits built from elementary operations.
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gate is easily found as

I = |0〉〈0| + |1〉〈1| =
(

1 0
0 1

)
. (4.1)

Similarly we introduce X : |0〉 → |1〉, |1〉 → |0〉, Y : |0〉 → −|1〉, |1〉 → |0〉,
and Z : |0〉 → |0〉, |1〉 → −|1〉, whose matrix representations are

X = |1〉〈0| + |0〉〈1| =
(

0 1
1 0

)
= σx, (4.2)

Y = |0〉〈1|− |1〉〈0| =
(

0 −1
1 0

)
= −iσy, (4.3)

Z = |0〉〈0|− |1〉〈1| =
(

1 0
0 −1

)
= σz . (4.4)

The transformation I is the trivial (identity) transformation, while X is the
negation (NOT), Z the phase shift and Y = XZ the combination of them. It
is easily verified that these gates are unitary.

The CNOT (controlled-NOT) gate is a two-qubit gate, which plays
quite an important role in quantum computation. The gate flips the sec-
ond qubit (the target qubit) when the first qubit (the control qubit) is
|1〉, while leaving the second bit unchanged when the first qubit state is |0〉.
Let {|00〉, |01〉, |10〉, |11〉} be a basis for the two-qubit system. In the following,
we use the standard basis vectors with components

|00〉 = (1, 0, 0, 0)t , |01〉 = (0, 1, 0, 0)t , |10〉 = (0, 0, 1, 0)t , |11〉 = (0, 0, 0, 1)t .

The action of the CNOT gate, whose matrix expression will be written as
UCNOT, is

UCNOT : |00〉 %→ |00〉, |01〉 %→ |01〉, |10〉 %→ |11〉, |11〉 %→ |10〉.

It has two equivalent expressions

UCNOT = |00〉〈00| + |01〉〈01|+ |11〉〈10|+ |10〉〈11|
= |0〉〈0|⊗ I + |1〉〈1|⊗X, (4.5)

having a matrix form

UCNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 . (4.6)

The second expression of the RHS in Eq. (4.5) shows that the action of UCNOT

on the target qubit is I when the control qubit is in the state |0〉, while it is σx

when the control qubit is in |1〉. Verify that UCNOT is unitary and, moreover,
idempotent, i.e., U2

CNOT = I.
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gate is easily found as

I = |0〉〈0| + |1〉〈1| =
(

1 0
0 1

)
. (4.1)

Similarly we introduce X : |0〉 → |1〉, |1〉 → |0〉, Y : |0〉 → −|1〉, |1〉 → |0〉,
and Z : |0〉 → |0〉, |1〉 → −|1〉, whose matrix representations are

X = |1〉〈0| + |0〉〈1| =
(

0 1
1 0

)
= σx, (4.2)

Y = |0〉〈1|− |1〉〈0| =
(

0 −1
1 0

)
= −iσy, (4.3)

Z = |0〉〈0|− |1〉〈1| =
(

1 0
0 −1

)
= σz . (4.4)

The transformation I is the trivial (identity) transformation, while X is the
negation (NOT), Z the phase shift and Y = XZ the combination of them. It
is easily verified that these gates are unitary.

The CNOT (controlled-NOT) gate is a two-qubit gate, which plays
quite an important role in quantum computation. The gate flips the sec-
ond qubit (the target qubit) when the first qubit (the control qubit) is
|1〉, while leaving the second bit unchanged when the first qubit state is |0〉.
Let {|00〉, |01〉, |10〉, |11〉} be a basis for the two-qubit system. In the following,
we use the standard basis vectors with components

|00〉 = (1, 0, 0, 0)t , |01〉 = (0, 1, 0, 0)t , |10〉 = (0, 0, 1, 0)t , |11〉 = (0, 0, 0, 1)t .

The action of the CNOT gate, whose matrix expression will be written as
UCNOT, is

UCNOT : |00〉 %→ |00〉, |01〉 %→ |01〉, |10〉 %→ |11〉, |11〉 %→ |10〉.

It has two equivalent expressions

UCNOT = |00〉〈00| + |01〉〈01|+ |11〉〈10|+ |10〉〈11|
= |0〉〈0|⊗ I + |1〉〈1|⊗X, (4.5)

having a matrix form

UCNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 . (4.6)

The second expression of the RHS in Eq. (4.5) shows that the action of UCNOT

on the target qubit is I when the control qubit is in the state |0〉, while it is σx

when the control qubit is in |1〉. Verify that UCNOT is unitary and, moreover,
idempotent, i.e., U2

CNOT = I.
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1 0
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)
= σz . (4.4)

The transformation I is the trivial (identity) transformation, while X is the
negation (NOT), Z the phase shift and Y = XZ the combination of them. It
is easily verified that these gates are unitary.

The CNOT (controlled-NOT) gate is a two-qubit gate, which plays
quite an important role in quantum computation. The gate flips the sec-
ond qubit (the target qubit) when the first qubit (the control qubit) is
|1〉, while leaving the second bit unchanged when the first qubit state is |0〉.
Let {|00〉, |01〉, |10〉, |11〉} be a basis for the two-qubit system. In the following,
we use the standard basis vectors with components

|00〉 = (1, 0, 0, 0)t , |01〉 = (0, 1, 0, 0)t , |10〉 = (0, 0, 1, 0)t , |11〉 = (0, 0, 0, 1)t .

The action of the CNOT gate, whose matrix expression will be written as
UCNOT, is

UCNOT : |00〉 %→ |00〉, |01〉 %→ |01〉, |10〉 %→ |11〉, |11〉 %→ |10〉.

It has two equivalent expressions

UCNOT = |00〉〈00| + |01〉〈01|+ |11〉〈10|+ |10〉〈11|
= |0〉〈0|⊗ I + |1〉〈1|⊗X, (4.5)

having a matrix form

UCNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 . (4.6)

The second expression of the RHS in Eq. (4.5) shows that the action of UCNOT

on the target qubit is I when the control qubit is in the state |0〉, while it is σx

when the control qubit is in |1〉. Verify that UCNOT is unitary and, moreover,
idempotent, i.e., U2

CNOT = I.

68 QUANTUM COMPUTING

Let {|i〉} be the basis vectors, where i ∈ {0, 1}. The action of CNOT on
the input state |i〉|j〉 is written as |i〉|i⊕ j〉, where i⊕ j is an addition mod 2,
that is, 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1 and 1⊕ 1 = 0.

EXERCISE 4.1 Show that the UCNOT cannot be written as a tensor prod-
uct of two one-qubit gates.

EXERCISE 4.2 Let (a|0〉 + b|1〉) ⊗ |0〉 be an input state to a CNOT gate.
What is the output state?

It is convenient to introduce graphical representations of quantum gates. A
one-qubit gate whose unitary matrix representation is U is depicted as

The left horizontal line is the input qubit state, while the right horizontal line
is the output qubit state. Therefore the time flows from the left to the right.

A CNOT gate is expressed as

where • denotes the control bit, while
⊕

denotes the conditional negation.
There may be many control bits (see CCNOT gate below).

More generally, we consider a controlled-U gate,

V = |0〉〈0|⊗ I + |1〉〈1|⊗ U, (4.7)

in which the target bit is acted on by a unitary transformation U only when
the control bit is |1〉. This gate is denoted graphically as

EXERCISE 4.3 (1) Find the matrix representation of the “upside down”
CNOT gate (a) in the basis {|00〉, |01〉, |10〉, |11〉}.
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gate is easily found as

I = |0〉〈0| + |1〉〈1| =
(

1 0
0 1

)
. (4.1)

Similarly we introduce X : |0〉 → |1〉, |1〉 → |0〉, Y : |0〉 → −|1〉, |1〉 → |0〉,
and Z : |0〉 → |0〉, |1〉 → −|1〉, whose matrix representations are

X = |1〉〈0| + |0〉〈1| =
(

0 1
1 0

)
= σx, (4.2)

Y = |0〉〈1|− |1〉〈0| =
(

0 −1
1 0

)
= −iσy, (4.3)

Z = |0〉〈0|− |1〉〈1| =
(

1 0
0 −1

)
= σz . (4.4)

The transformation I is the trivial (identity) transformation, while X is the
negation (NOT), Z the phase shift and Y = XZ the combination of them. It
is easily verified that these gates are unitary.

The CNOT (controlled-NOT) gate is a two-qubit gate, which plays
quite an important role in quantum computation. The gate flips the sec-
ond qubit (the target qubit) when the first qubit (the control qubit) is
|1〉, while leaving the second bit unchanged when the first qubit state is |0〉.
Let {|00〉, |01〉, |10〉, |11〉} be a basis for the two-qubit system. In the following,
we use the standard basis vectors with components

|00〉 = (1, 0, 0, 0)t , |01〉 = (0, 1, 0, 0)t , |10〉 = (0, 0, 1, 0)t , |11〉 = (0, 0, 0, 1)t .

The action of the CNOT gate, whose matrix expression will be written as
UCNOT, is

UCNOT : |00〉 %→ |00〉, |01〉 %→ |01〉, |10〉 %→ |11〉, |11〉 %→ |10〉.

It has two equivalent expressions

UCNOT = |00〉〈00| + |01〉〈01|+ |11〉〈10|+ |10〉〈11|
= |0〉〈0|⊗ I + |1〉〈1|⊗X, (4.5)

having a matrix form

UCNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 . (4.6)

The second expression of the RHS in Eq. (4.5) shows that the action of UCNOT

on the target qubit is I when the control qubit is in the state |0〉, while it is σx

when the control qubit is in |1〉. Verify that UCNOT is unitary and, moreover,
idempotent, i.e., U2

CNOT = I.
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The transformation I is the trivial (identity) transformation, while X is the
negation (NOT), Z the phase shift and Y = XZ the combination of them. It
is easily verified that these gates are unitary.

The CNOT (controlled-NOT) gate is a two-qubit gate, which plays
quite an important role in quantum computation. The gate flips the sec-
ond qubit (the target qubit) when the first qubit (the control qubit) is
|1〉, while leaving the second bit unchanged when the first qubit state is |0〉.
Let {|00〉, |01〉, |10〉, |11〉} be a basis for the two-qubit system. In the following,
we use the standard basis vectors with components

|00〉 = (1, 0, 0, 0)t , |01〉 = (0, 1, 0, 0)t , |10〉 = (0, 0, 1, 0)t , |11〉 = (0, 0, 0, 1)t .

The action of the CNOT gate, whose matrix expression will be written as
UCNOT, is

UCNOT : |00〉 %→ |00〉, |01〉 %→ |01〉, |10〉 %→ |11〉, |11〉 %→ |10〉.

It has two equivalent expressions

UCNOT = |00〉〈00| + |01〉〈01|+ |11〉〈10|+ |10〉〈11|
= |0〉〈0|⊗ I + |1〉〈1|⊗X, (4.5)

having a matrix form

UCNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 . (4.6)

The second expression of the RHS in Eq. (4.5) shows that the action of UCNOT

on the target qubit is I when the control qubit is in the state |0〉, while it is σx

when the control qubit is in |1〉. Verify that UCNOT is unitary and, moreover,
idempotent, i.e., U2

CNOT = I.



Control-U Gate
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Let {|i〉} be the basis vectors, where i ∈ {0, 1}. The action of CNOT on
the input state |i〉|j〉 is written as |i〉|i⊕ j〉, where i⊕ j is an addition mod 2,
that is, 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1 and 1⊕ 1 = 0.

EXERCISE 4.1 Show that the UCNOT cannot be written as a tensor prod-
uct of two one-qubit gates.

EXERCISE 4.2 Let (a|0〉 + b|1〉) ⊗ |0〉 be an input state to a CNOT gate.
What is the output state?

It is convenient to introduce graphical representations of quantum gates. A
one-qubit gate whose unitary matrix representation is U is depicted as

The left horizontal line is the input qubit state, while the right horizontal line
is the output qubit state. Therefore the time flows from the left to the right.

A CNOT gate is expressed as

where • denotes the control bit, while
⊕

denotes the conditional negation.
There may be many control bits (see CCNOT gate below).

More generally, we consider a controlled-U gate,

V = |0〉〈0|⊗ I + |1〉〈1|⊗ U, (4.7)

in which the target bit is acted on by a unitary transformation U only when
the control bit is |1〉. This gate is denoted graphically as

EXERCISE 4.3 (1) Find the matrix representation of the “upside down”
CNOT gate (a) in the basis {|00〉, |01〉, |10〉, |11〉}.
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of the state |00 . . . 0〉:

(H ⊗H ⊗ . . .⊗H)|00 . . .0〉

=
1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)⊗ . . .

1√
2
(|0〉+ |1〉)

=
1√
2n

2n−1∑

x=0

|x〉. (4.11)

Therefore, we produce a superposition of all the states |x〉 with 0 ≤ x ≤ 2n−1
simultaneously. This action of H on an n-qubit system is called the Walsh
transformation, or Walsh-Hadamard transformation, and denoted as
Wn. Note that

W1 = UH, Wn+1 = UH ⊗Wn. (4.12)

EXERCISE 4.4 Show that Wn is unitary.

EXERCISE 4.5 Show that the two circuits below are equivalent:

This exercise shows that the control bit and the target bit in a CNOT gate
are interchangeable by introducing four Hadamard gates.

EXERCISE 4.6 Let us consider the following quantum circuit

(4.13)

where q1 denotes the first qubit, while q2 denotes the second. What are the
outputs for the inputs |00〉, |01〉, |10〉 and |11〉?

4.2.3 SWAP Gate and Fredkin Gate

The SWAP gate acts on a tensor product state as

USWAP|ψ1,ψ2〉 = |ψ2,ψ1〉. (4.14)Quantum Gates, Quantum Circuit and Quantum Computation 71

The explict form of USWAP is given by

USWAP = |00〉〈00|+ |01〉〈10|+ |10〉〈01| + |11〉〈11|

=





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



 . (4.15)

Needless to say, it works as a linear operator on a superposition of states. The
SWAP gate is expressed as

Note that the SWAP gate is a special gate which maps an arbitrary tensor
product state to a tensor product state. In contrast, most two-qubit gates
map a tensor product state to an entangled state.

EXERCISE 4.7 Show that the above USWAP is written as

USWAP = (|0〉〈0|⊗ I + |1〉〈1|⊗X)(I ⊗ |0〉〈0| + X ⊗ |1〉〈1|)
(|0〉〈0|⊗ I + |1〉〈1|⊗X). (4.16)

This shows that the SWAP gate is implemented with three CNOT gates as
given in Exercise 4.3 (3).

The controlled-SWAP gate

is also called the Fredkin gate. It flips the second (middle) and the third
(bottom) qubits when and only when the first (top) qubit is in the state |1〉.
Its explicit form is

UFredkin = |0〉〈0|⊗ I4 + |1〉〈1|⊗ USWAP. (4.17)

4.3 Correspondence with Classical Logic Gates

Before we proceed further, it is instructive to show that all the elementary
logic gates, NOT, AND, XOR, OR and NAND, in classical logic circuits can
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Let {|i〉} be the basis vectors, where i ∈ {0, 1}. The action of CNOT on
the input state |i〉|j〉 is written as |i〉|i⊕ j〉, where i⊕ j is an addition mod 2,
that is, 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1 and 1⊕ 1 = 0.

EXERCISE 4.1 Show that the UCNOT cannot be written as a tensor prod-
uct of two one-qubit gates.

EXERCISE 4.2 Let (a|0〉 + b|1〉) ⊗ |0〉 be an input state to a CNOT gate.
What is the output state?

It is convenient to introduce graphical representations of quantum gates. A
one-qubit gate whose unitary matrix representation is U is depicted as

The left horizontal line is the input qubit state, while the right horizontal line
is the output qubit state. Therefore the time flows from the left to the right.

A CNOT gate is expressed as

where • denotes the control bit, while
⊕

denotes the conditional negation.
There may be many control bits (see CCNOT gate below).

More generally, we consider a controlled-U gate,

V = |0〉〈0|⊗ I + |1〉〈1|⊗ U, (4.7)

in which the target bit is acted on by a unitary transformation U only when
the control bit is |1〉. This gate is denoted graphically as

EXERCISE 4.3 (1) Find the matrix representation of the “upside down”
CNOT gate (a) in the basis {|00〉, |01〉, |10〉, |11〉}.
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(2) Find the matrix representation of the circuit (b).
(3) Find the matrix representation of the circuit (c). Find the action of the
circuit on a tensor product state |ψ1〉 ⊗ |ψ2〉.

The CCNOT (Controlled-Controlled-NOT) gate has three inputs, and
the third qubit flips when and only when the first two qubits are both in the
state |1〉. The explicit form of the CCNOT gate is

UCCNOT = (|00〉〈00|+ |01〉〈01|+ |10〉〈10|)⊗ I + |11〉〈11|⊗X. (4.8)

This gate is graphically expressed as

The CCNOT gate is also known as the Toffoli gate.

4.2.2 Walsh-Hadamard Transformation

The Hadamard gate or the Hadamard transformation H is an important
unitary transformation defined by

UH : |0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉).

(4.9)

It is used to generate a superposition state from |0〉 or |1〉. The matrix repre-
sentation of H is

UH =
1√
2
(|0〉+ |1〉)〈0| + 1√

2
(|0〉 − |1〉)〈1| =

1√
2

(
1 1
1 −1

)
. (4.10)

A Hadamard gate is depicted as

There are numerous important applications of the Hadamard transforma-
tion. All possible 2n states are generated, when UH is applied on each qubit
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transformation, or Walsh-Hadamard transformation, and denoted as
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where q1 denotes the first qubit, while q2 denotes the second. What are the
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4.2.3 SWAP Gate and Fredkin Gate

The SWAP gate acts on a tensor product state as

USWAP|ψ1,ψ2〉 = |ψ2,ψ1〉. (4.14)



Three qubit gate: CCNOT (Toffoli) Gate

Quantum Gates, Quantum Circuit and Quantum Computation 69

(2) Find the matrix representation of the circuit (b).
(3) Find the matrix representation of the circuit (c). Find the action of the
circuit on a tensor product state |ψ1〉 ⊗ |ψ2〉.

The CCNOT (Controlled-Controlled-NOT) gate has three inputs, and
the third qubit flips when and only when the first two qubits are both in the
state |1〉. The explicit form of the CCNOT gate is

UCCNOT = (|00〉〈00|+ |01〉〈01|+ |10〉〈10|)⊗ I + |11〉〈11|⊗X. (4.8)

This gate is graphically expressed as

The CCNOT gate is also known as the Toffoli gate.

4.2.2 Walsh-Hadamard Transformation

The Hadamard gate or the Hadamard transformation H is an important
unitary transformation defined by

UH : |0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉).

(4.9)

It is used to generate a superposition state from |0〉 or |1〉. The matrix repre-
sentation of H is
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2
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2

(
1 1
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)
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A Hadamard gate is depicted as

There are numerous important applications of the Hadamard transforma-
tion. All possible 2n states are generated, when UH is applied on each qubit
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The explict form of USWAP is given by

USWAP = |00〉〈00|+ |01〉〈10|+ |10〉〈01| + |11〉〈11|

=





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



 . (4.15)

Needless to say, it works as a linear operator on a superposition of states. The
SWAP gate is expressed as

Note that the SWAP gate is a special gate which maps an arbitrary tensor
product state to a tensor product state. In contrast, most two-qubit gates
map a tensor product state to an entangled state.

EXERCISE 4.7 Show that the above USWAP is written as

USWAP = (|0〉〈0|⊗ I + |1〉〈1|⊗X)(I ⊗ |0〉〈0| + X ⊗ |1〉〈1|)
(|0〉〈0|⊗ I + |1〉〈1|⊗X). (4.16)

This shows that the SWAP gate is implemented with three CNOT gates as
given in Exercise 4.3 (3).

The controlled-SWAP gate

is also called the Fredkin gate. It flips the second (middle) and the third
(bottom) qubits when and only when the first (top) qubit is in the state |1〉.
Its explicit form is

UFredkin = |0〉〈0|⊗ I4 + |1〉〈1|⊗ USWAP. (4.17)

4.3 Correspondence with Classical Logic Gates

Before we proceed further, it is instructive to show that all the elementary
logic gates, NOT, AND, XOR, OR and NAND, in classical logic circuits can
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Figure 4.8. Circuit for the C2(U ) gate. V is any unitary operator satisfying V 2 = U . The special case
V ≡ (1− i)(I + iX)/2 corresponds to the Toffoli gate.

the case C2(X). Defining V ≡ (1 − i)(I + iX)/2 and noting that V 2 = X, we see that
Figure 4.8 gives an implementation of the Toffoli gate in terms of one and two qubit
operations. From a classical viewpoint this is a remarkable result; recall from Problem 3.5
that one and two bit classical reversible gates are not sufficient to implement the Toffoli
gate, or, more generally, universal computation. By contrast, in the quantum case we see
that one and two qubit reversible gates are sufficient to implement the Toffoli gate, and
will eventually prove that they suffice for universal computation.
Ultimately we will show that any unitary operation can be composed to an arbitrarily

good approximation from just the Hadamard, phase, controlled- and π/8 gates.
Because of the great usefulness of the Toffoli gate it is interesting to see how it can be
built from just this gate set. Figure 4.9 illustrates a simple circuit for the Toffoli gate
made up of just Hadamard, phase, controlled- and π/8 gates.

• • • • • T

• • • T † ⊕ T † ⊕ S

⊕ H ⊕ T † ⊕ T ⊕ T † ⊕ T H

=

Figure 4.9. Implementation of the Toffoli gate using Hadamard, phase, controlled- and π/8 gates.

Exercise 4.24: Verify that Figure 4.9 implements the Toffoli gate.

Exercise 4.25: (Fredkin gate construction) Recall that the Fredkin
(controlled-swap) gate performs the transform

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

























. (4.30)
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(1) Give a quantum circuit which uses three Toffoli gates to construct the
Fredkin gate (Hint: think of the swap gate construction – you can control
each gate, one at a time).

(2) Show that the first and last Toffoli gates can be replaced by gates.
(3) Now replace the middle Toffoli gate with the circuit in Figure 4.8 to obtain

a Fredkin gate construction using only six two-qubit gates.
(4) Can you come up with an even simpler construction, with only five

two-qubit gates?

Exercise 4.26: Show that the circuit:

•

• •

Ry π/ ⊕ Ry π/ ⊕ Ry −π/ ⊕ Ry −π/

differs from a Toffoli gate only by relative phases. That is, the circuit takes
|c1, c2, t〉 to eiθ(c1,c2,t)|c1, c2, t ⊕ c1 · c2〉, where eiθ(c1,c2,t) is some relative phase
factor. Such gates can sometimes be useful in experimental implementations,
where it may be much easier to implement a gate that is the same as the Toffoli
up to relative phases than it is to do the Toffoli directly.

Exercise 4.27: Using just s and Toffoli gates, construct a quantum circuit to
perform the transformation

























1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

























. (4.31)

This kind of partial cyclic permutation operation will be useful later, in
Chapter 7.

How may we implement Cn(U ) gates using our existing repertoire of gates, where U
is an arbitrary single qubit unitary operation? A particularly simple circuit for achieving
this task is illustrated in Figure 4.10. The circuit divides up into three stages, and makes
use of a small number (n − 1) of working qubits, which all start and end in the state
|0〉. Suppose the control qubits are in the computational basis state |c1, c2, . . . , cn〉. The
first stage of the circuit is to reversibly all the control bits c1, . . . , cn together to
produce the product c1 · c2 . . . cn. To do this, the first gate in the circuit s c1 and
c2 together, using a Toffoli gate, changing the state of the first work qubit to |c1 · c2〉.
The next Toffoli gate s c3 with the product c1 · c2, changing the state of the second
work qubit to |c1 · c2 · c3〉. We continue applying Toffoli gates in this fashion, until the
final work qubit is in the state |c1 · c2 . . . cn〉. Next, a U operation on the target qubit is
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Recovering classical Gates
The (classical) Toffoli gate is universal, therefore it reproduces all reversible 
and irreversible classical gates. Its quantum version generalizes the 
classical gates into quantum gates.
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be implemented with quantum gates. In this sense, quantum information
processing contains the classical one.

4.3.1 NOT Gate

Let us consider the NOT gate first. It is defined by the following logic
function,

NOT(x) = ¬x =
{

0 x = 1
1 x = 0 (4.18)

where ¬x stands for the negation of x. Under the correspondence 0 ↔
|0〉, 1 ↔ |1〉, we have already seen in Eq. (4.2) that the gate X negates the
basis vectors as

X |x〉 = |¬x〉 = |NOT(x)〉, (x = 0, 1). (4.19)

Now let us measure the output state. We employ the following measurement
operator:

M1 = |1〉〈1|. (4.20)

M1 has eigenvalues 0 and 1 with the eigenvectors |0〉 and |1〉, respectively.
When the input is |0〉, the output is |1〉 and the measurement gives the value
1 with the probability 1. If, on the other hand, the input is |1〉, the output
is |0〉 and the measurement yields 1 with probability 0, or in other words, it
yields 0 with probability 1. It should be kept in mind that the operator X
acts on an arbitrary linear combination |ψ〉 = a|0〉+ b|1〉, which is classically
impossible. The output state is then X |ψ〉 = a|1〉+ b|0〉.

We show in the following that the CCNOT gate implements all classical
logic gates. The first and the second input qubits are set to |1〉 to obtain the
NOT gate as

UCCNOT|1, 1, x〉 = |1, 1,¬x〉. (4.21)

4.3.2 XOR Gate

Since a quantum gate has to be reversible, we cannot construct a unitary gate
corresponding to the classcial XOR gate whose function is x, y $→ x⊕y (x, y ∈
{0, 1}), where x⊕y is an addition mod 2; 0⊕0 = 0, 0⊕1 = 1⊕0 = 1, 1⊕1 = 0.
Clearly this operation has no inverse. This operation may be made reversible
if we keep the first bit x during the gate operation, namely, if we define

f(x, y) = (x, x ⊕ y), x, y ∈ {0, 1}. (4.22)

We call this function f , also the XOR gate. The quantum gate that does this
operation is nothing but the CNOT gate defined by Eq. (4.5),

UXOR = UCNOT = |0〉〈0|⊗ I + |1〉〈1|⊗X. (4.23)
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Note that the XOR gate may be also obtained from the CCNOT gate.
Suppose the first qubit of the CCNOT gate is fixed to |1〉. Then it is easy to
verify that

UCCNOT|1, x, y〉 = |1, x, x⊕ y〉. (4.24)

Thus the CCNOT gate can be used to construct the XOR gate.

4.3.3 AND Gate

The logical AND gate is defined by

AND(x, y) ≡ x ∧ y ≡
{

1 x = y = 1
0 otherwise x, y ∈ {0, 1}. (4.25)

Clearly this operation is not reversible and we have to introduce the same sort
of prescription which we employed in the XOR gate.

Let us define the logic function

f(x, y, 0) ≡ (x, y, x ∧ y), (4.26)

which we also call AND. Note that we have to keep both x and y for f to be
reversible since x = x ∧ y = 0 implies both x = y = 0 and x = 0, y = 1. The
unitary matrix that computes f is

UAND = (|00〉〈00|+ |01〉〈01|+ |10〉〈10|)⊗ I

+|11〉〈11|⊗X. (4.27)

It is readily verified that

UAND|x, y, 0〉 = |x, y, x ∧ y〉, x, y ∈ {0, 1}. (4.28)

Observe that the third qubit in the RHS is 1 if and only if x = y = 1 and 0
otherwise. Thus the CCNOT gate may be employed to implement the AND
gate. It follows from Eq. (4.28) that the AND gate is denoted graphically as

4.3.4 OR Gate

The OR gate represents the logical function

OR(x, y) = x ∨ y =
{

0 x = y = 0
1 otherwise x, y ∈ {0, 1}. (4.29)
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This function OR is not reversible either and special care must be taken.
Let us define

f(x, y, 0) ≡ (¬x,¬y, x ∨ y), x, y ∈ {0, 1}, (4.30)

which we also call OR. Although the first and the second bits are negated, it
is not essential in the construction of the OR gate. These negations appear
due to our construction of the OR gate based on the de Morgan theorem

x ∨ y = ¬(¬x ∧ ¬y). (4.31)

They may be removed by adding extra NOT gates if necessary.
Let |x, y, 0〉 be the input state. The unitary matrix that represents f is

UOR = |00〉〈11|⊗X + |01〉〈10|⊗X + |10〉〈01|⊗X + |11〉〈00|⊗ I. (4.32)

EXERCISE 4.8 Verify that the above matrix UOR indeed satisfies

UOR|x, y, 0〉 = |¬x,¬y, x ∨ y〉, x, y ∈ {0, 1}. (4.33)

Now it is obvious why negations in the first and the second qubits appear in
the OR gate. Since we have already constructed the NOT gate and AND gate,
we take advantage of this in the construction of the OR gate. The equality
(4.31) leads us to the following diagram:

Accordingly, the first and the second qubits are negated. The unitary matrix
obtained from this diagram is

UOR = (I ⊗ I ⊗X)
·(|00〉〈00|⊗ I + |01〉〈01|⊗ I + |10〉〈10|⊗ I + |11〉〈11|⊗X)
·(X ⊗X ⊗ I). (4.34)

The matrix products are readily evaluated to yield

UOR = (|00〉〈00|⊗X + |01〉〈01|⊗X + |10〉〈10|⊗X + |11〉〈11|⊗ I)
·(X ⊗X ⊗ I)

= |00〉〈11|⊗X + |01〉〈10|⊗X + |10〉〈01|⊗X + |11〉〈00|⊗ I,

which verifies Eq. (4.32).



How to recover classical gates
1. Take a classical gate. If irreversible, consider its reversible variant.
2. Define the quantum counterpart so that on the computational basis it 

acts as the reversible classical gate.
3. Extend it by linearity to the whole space. 

The gate thus obtained is the quantum generalization of the classical gate.



Summary
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Observe that the OR gate is implemented with the X and the CCNOT gates
and, moreover, the X gate is obtained from the CCNOT gate by putting the
first and the second bits to |1〉.

If we want to have a gate VOR|x, y, 0〉 = |x, y, x ∨ y〉, we may multiply
X ⊗X ⊗ I to UOR from the left so that VOR = (X ⊗X ⊗ I)UOR.

EXERCISE 4.9 Show that the NAND gate can be obtained from the CC-
NOT gate. Here NAND is defined by the function

NAND(x, y) = ¬(x ∧ y) =
{

0 x = y = 1
1 otherwise x, y ∈ {0, 1}. (4.35)

In summary, we have shown that all the classical logic gates, NOT, AND,
OR, XOR and NAND gates, may be obtained from the CCNOT gate. Thus
all the classical computation may be carried out with a quantum computor.
Note, however, that these gates belong to a tiny subset of the set of unitary
matrices.

In the next section, we show that copying unknown information is impos-
sible in quantum computing. However, it is also shown that this does not
restrict the superiority of quantum computing over the classical counterpart.

4.4 No-Cloning Theorem

We copy classical data almost every day. In fact, this is amongst the most
common functions with digital media. (Of course we should not copy media
that are copyright protected.) This cannot be done in quantum information
theory! We cannot clone an unknown quantum state with unitary operations.

THEOREM 4.1 (Wootters and Zurek [4], Dieks [5]) An unknown quantum
system cannot be cloned by unitary transformations.

Proof. Suppose there would exist a unitary transformation U that makes a
clone of a quantum system. Namely, suppose U acts, for any state |ϕ〉, as

U : |ϕ0〉 → |ϕϕ〉. (4.36)

Let |ϕ〉 and |φ〉 be two states that are linearly independent. Then we should
have U |ϕ0〉 = |ϕϕ〉 and U |φ0〉 = |φφ〉 by definition. Then the action of U on

|ψ〉 =
1√
2
(|ϕ〉+ |φ〉) yields

U |ψ0〉 = 1√
2
(U |ϕ0〉+ U |φ0〉) =

1√
2
(|ϕϕ〉 + |φφ〉).
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involving only those gates. We now describe three universality constructions for quantum
computation. These constructions build upon each other, and culminate in a proof that
any unitary operation can be approximated to arbitrary accuracy using Hadamard, phase,

, and π/8 gates. You may wonder why the phase gate appears in this list, since it
can be constructed from two π/8 gates; it is included because of its natural role in the
fault-tolerant constructions described in Chapter 10.
The first construction shows that an arbitrary unitary operator may be expressed ex-

actly as a product of unitary operators that each acts non-trivially only on a subspace
spanned by two computational basis states. The second construction combines the first
construction with the results of the previous section to show that an arbitrary unitary
operator may be expressed exactly using single qubit and gates. The third con-
struction combines the second construction with a proof that single qubit operation may
be approximated to arbitrary accuracy using the Hadamard, phase, and π/8 gates. This in
turn implies that any unitary operation can be approximated to arbitrary accuracy using
Hadamard, phase, , and π/8 gates.
Our constructions say little about efficiency – how many (polynomially or exponen-

tially many) gates must be composed in order to create a given unitary transform. In
Section 4.5.4 we show that there exist unitary transforms which require exponentially
many gates to approximate. Of course, the goal of quantum computation is to find inter-
esting families of unitary transformations that can be performed efficiently.

Exercise 4.36: Construct a quantum circuit to add two two-bit numbers x and y
modulo 4. That is, the circuit should perform the transformation
|x, y〉 → |x, x + y mod 4〉.

4.5.1 Two-level unitary gates are universal
Consider a unitary matrix U which acts on a d-dimensional Hilbert space. In this section
we explain how U may be decomposed into a product of two-level unitary matrices;
that is, unitary matrices which act non-trivially only on two-or-fewer vector components.
The essential idea behind this decomposition may be understood by considering the case
when U is 3×3, so suppose that U has the form

U =





a d g
b e h
c f j



 . (4.41)

We will find two-level unitary matrices U1, . . . , U3 such that

U3U2U1U = I . (4.42)

It follows that

U = U †
1U

†
2U

†
3 . (4.43)

U1, U2 and U3 are all two-level unitary matrices, and it is easy to see that their inverses,
U †
1 , U

†
2 and U †

3 are also two-level unitary matrices. Thus, if we can demonstrate (4.42),
then we will have shown how to break U up into a product of two-level unitary matrices.



Universal Quantum Gates
Like in the classical case, there exist a universal set of quantum gates. 
We will now show that
• Single qubit gates
• CNOT gate
are universal for quantum computation.
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4.6 Universal Quantum Gates

It can be shown that any classical logic gate can be constructed by using a
small set of gates, AND, NOT and XOR, for example. Such a set of gates
is called the universal set of classical gates. Since the CCNOT gate can
simulate these classical gates, quantum circuits simulate any classical circuits.
It should be noted that the set of quantum gates is much larger than those
classical gates which can be simulated by quantum gates. Thus we want to
find a universal set of quantum gates from which any quantum circuits, i.e.,
any unitary matrix, can be constructed.

In the following, it will be shown that
(1) the set of single qubit gates and
(2) CNOT gate

form a universal set of quantum circuits (universality theorem).
We will prove the following Lemma before stating the main theorem. Let

us start with a definition. A two-level unitary matrix is a unitary matrix
which acts non-trivially only on two vector components. Suppose V is a two-
level unitary matrix. Then V has the same matrix elements as those of the
unit matrix except for certain four elements Vaa, Vab, Vba and Vbb. An example
of a two-level unitary matrix is

V =





α∗ 0 0 β∗

0 1 0 0
0 0 1 0
−β 0 0 α



 , (|α|2 + |β|2 = 1),

where a = 1 and b = 4.

LEMMA 4.1 Let U be a unitary matrix acting on Cd. Then there are
N ≤ d(d− 1)/2 two-level unitary matrices U1, U2, . . . , UN such that

U = U1U2 . . . UN . (4.46)

Proof. The proof requires several steps. It is instructive to start with the case
d = 3. Let

U =




a d g
b e h
c f j





be a unitary matrix. We want to find two-level unitary matrices U1, U2, U3

such that
U3U2U1U = I.

Then it follows that
U = U †

1U †
2U †

3 .
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(Never mind the daggers! If Uk is two-level unitary, U †
k is also two-level

unitary.) We prove the above decomposition by constructing Uk explicitly.

(i) Let

U1 =




a∗

u
b∗

u 0
− b

u
a
u 0

0 0 1



 ,

where u =
√
|a|2 + |b|2. Verify that U1 is unitary. Then we obtain

U1U =




a′ d′ g′

0 e′ h′

c′ f ′ j′



 ,

where a′, . . . , j′ are some complex numbers, whose details are not necessary.
Observe that, with this choice of U1, the first component of the second row
vanishes.

(ii) Let

U2 =




a′∗

u′ 0 c′∗

u′

0 1 0
− c′

u′ 0 a′

u′



 =




a′∗ 0 c′∗

0 1 0
−c′ 0 a′



 ,

where u′ =
√
|a′|2 + |c′|2 = 1. Then

U2U1U =




1 d′′ g′′

0 e′′ h′′

0 f ′′ j′′



 =




1 0 0
0 e′′ h′′

0 f ′′ j′′



 ,

where the equality d′′ = g′′ = 0 follows from the fact that U2U1U is unitary,
and hence the first row must be normalized.

(iii) Finally let

U3 = (U2U1U)† =




1 0 0
0 e′′∗ f ′′∗

0 h′′∗ j′′∗



 .

Then, by definition, U3U2U1U = I is obvious. This completes the proof for
d = 3.

Suppose U is a unitary matrix acting on Cd with a general dimension d.
Then by repeating the above arguments, we find two-level unitary matrices
U1, U2, . . . , Ud−1 such that

Ud−1 . . . U2U1U =





1 0 0 . . . 0
0 ∗ ∗ . . . ∗
0 ∗ ∗ . . . ∗

. . . . . .
0 ∗ ∗ . . . ∗




,
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

 ,

where the equality d′′ = g′′ = 0 follows from the fact that U2U1U is unitary,
and hence the first row must be normalized.

(iii) Finally let

U3 = (U2U1U)† =




1 0 0
0 e′′∗ f ′′∗

0 h′′∗ j′′∗



 .

Then, by definition, U3U2U1U = I is obvious. This completes the proof for
d = 3.
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U1, U2, . . . , Ud−1 such that
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. . . . . .
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


,
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√
|a|2 + |b|2. Verify that U1 is unitary. Then we obtain
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,

The moral of the lemma is that with N two-level unitary matrices there are 
enough degrees of freedom to play with, to reproduce any unitary matrix 
of dimension d. 
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namely the (1, 1) component is unity and other components of the first row
and the first column vanish. The number of matrices {Uk} to achieve this
form is the same as the number of zeros in the first column, hence (d− 1).

We then repeat the same procedure to the (d − 1) × (d − 1) block unitary
matrix using (d−2) two-level unitary matrices. After repeating this, we finally
decompose U into a product of two-level unitary matrices

U = V1V2 . . . VN ,

where N ≤ (d− 1) + (d− 2) + . . . + 1 = d(d− 1)/2.

EXERCISE 4.12 Let U be a general 4 × 4 unitary matrix. Find two-level
unitary matrices U1, U2 and U3 such that

U3U2U1U =





1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗



 .

EXERCISE 4.13 Let

U =
1
2





1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i



 . (4.47)

Decompose U into a product of two-level unitary matrices.

Let us consider a unitary matrix acting on an n-qubit system. Then this
unitary matrix is decomposed into a product of at most 2n(2n − 1)/2 =
2n−1(2n − 1) two-level unitary matrices. Now we are in a position to state
the main theorem.

THEOREM 4.2 (Barenco et al.)[14] The set of single qubit gates and
CNOT gate are universal. Namely, any unitary gate acting on an n-qubit
register can be implemented with single qubit gates and CNOT gates.

Proof. We closely follow [1] for the proof here. Thanks to the previous
Lemma, it suffices to prove the theorem for a two-level unitary matrix. Let
U be a two-level unitary matrix acting nontrivially only on |s〉 and |t〉 ba-
sis vectors of an n-qubit system, where s = sn−12n−1 + . . . + s12 + s0 and
t = tn−12n−1 + . . .+ t12+ t0 are binary expressions for decimal numbers s and
t. This means that matrix elements Uss, Ust, Uts and Utt are different from
those of the unit matrix, while all the others are the same, where |s〉 stands for
|sn−1〉|sn−2〉 . . . |s0〉, for example. We can construct Ũ , the non-trivial 2 × 2
unitary submatrix of U . Ũ may be thought of as a unitary matrix acting on
a single qubit, whose basis is {|s〉, |t〉}.
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Proof. We closely follow [1] for the proof here. Thanks to the previous
Lemma, it suffices to prove the theorem for a two-level unitary matrix. Let
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those of the unit matrix, while all the others are the same, where |s〉 stands for
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a single qubit, whose basis is {|s〉, |t〉}.

Esercizio 4.37 del Nielsen Chuang
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Let us consider a unitary matrix acting on an n-qubit system. Then this
unitary matrix is decomposed into a product of at most 2n(2n − 1)/2 =
2n−1(2n − 1) two-level unitary matrices. Now we are in a position to state
the main theorem.

THEOREM 4.2 (Barenco et al.)[14] The set of single qubit gates and
CNOT gate are universal. Namely, any unitary gate acting on an n-qubit
register can be implemented with single qubit gates and CNOT gates.

Proof. We closely follow [1] for the proof here. Thanks to the previous
Lemma, it suffices to prove the theorem for a two-level unitary matrix. Let
U be a two-level unitary matrix acting nontrivially only on |s〉 and |t〉 ba-
sis vectors of an n-qubit system, where s = sn−12n−1 + . . . + s12 + s0 and
t = tn−12n−1 + . . .+ t12+ t0 are binary expressions for decimal numbers s and
t. This means that matrix elements Uss, Ust, Uts and Utt are different from
those of the unit matrix, while all the others are the same, where |s〉 stands for
|sn−1〉|sn−2〉 . . . |s0〉, for example. We can construct Ũ , the non-trivial 2 × 2
unitary submatrix of U . Ũ may be thought of as a unitary matrix acting on
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Proof. Thanks to the previous 
lemma, it suffices to prove the 
theorem for a two-level unitary 
matrix, acting non trivially on 
two qubits s and t. 

In the example (23 dim matrix):   
s = 000 and t = 111
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STEP 1: U is reduced to Ũ ∈ U(2).
The basis vectors |s〉 and |t〉 may be put together to form a basis for a

single qubit using the following trick. This is done by introducing Gray
codes. For two binary numbers s = sn−1 . . . s1s0 and t = tn−1 . . . t1t0, a
Gray code connecting s and t is a sequence of binary numbers {g1, . . . , gm}
where the adjacent numbers, gk and gk+1, differ in exactly one bit. Moreover,
the sequence satisfies the boundary conditions g1 = s and gm = t.

Suppose s = 100101 and t = 110110, for example. An example of a Gray
code connecting s and t is

s = g1 = 100101
g2 = 11̂0101
g3 = 11011̂1
g4 = 110110̂ = t,

where the digit with ˆ has been renewed. It is clear from this construction
that if s and t differ in p bits, the shortest Gray code is made of p+1 elements.
It should be also clear that if s and t are of n digits, then m ≤ (n + 1) since
s and t differ at most in n bits.

With these preparations, we consider the implementation of U . The strat-
egy is to find gates providing the sequence of state changes

|s〉 = |g1〉 → |g2〉 → . . .→ |gm−1〉. (4.48)

Then gm−1 and gm differ only in one bit, which is identified with the single
qubit on which Ũ acts. In the example above, we have |g3〉 = |11011〉 ⊗ |1〉
and |t〉 = |g4〉 = |11011〉⊗ |0〉. Now the operator Ũ may be introduced so that
it acts on a two-dimensional subspace of the total Hilbert space, in which the
first five qubits are in the state |11011〉. Then we undo the sequence (4.48)
so that |gm−1〉 → |gm−2〉 → . . . → |g1〉 = |s〉. Each of these steps can be
easily implemented using simple gates that have been introduced previously
(see below).

Let us consider the following example of a three-qubit system, whose basis
is {|000〉, |001〉, . . . , |111〉}. Let

U =





a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d





, (a, b, c, d ∈ C) (4.49)

be a two-level unitary matrix which we wish to implement. Note that U acts
non-trivially only in the subspace spanned by |000〉 and |111〉. The unitarity
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namely the (1, 1) component is unity and other components of the first row
and the first column vanish. The number of matrices {Uk} to achieve this
form is the same as the number of zeros in the first column, hence (d− 1).

We then repeat the same procedure to the (d − 1) × (d − 1) block unitary
matrix using (d−2) two-level unitary matrices. After repeating this, we finally
decompose U into a product of two-level unitary matrices

U = V1V2 . . . VN ,

where N ≤ (d− 1) + (d− 2) + . . . + 1 = d(d− 1)/2.

EXERCISE 4.12 Let U be a general 4 × 4 unitary matrix. Find two-level
unitary matrices U1, U2 and U3 such that

U3U2U1U =





1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗



 .

EXERCISE 4.13 Let

U =
1
2





1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i



 . (4.47)

Decompose U into a product of two-level unitary matrices.

Let us consider a unitary matrix acting on an n-qubit system. Then this
unitary matrix is decomposed into a product of at most 2n(2n − 1)/2 =
2n−1(2n − 1) two-level unitary matrices. Now we are in a position to state
the main theorem.

THEOREM 4.2 (Barenco et al.)[14] The set of single qubit gates and
CNOT gate are universal. Namely, any unitary gate acting on an n-qubit
register can be implemented with single qubit gates and CNOT gates.

Proof. We closely follow [1] for the proof here. Thanks to the previous
Lemma, it suffices to prove the theorem for a two-level unitary matrix. Let
U be a two-level unitary matrix acting nontrivially only on |s〉 and |t〉 ba-
sis vectors of an n-qubit system, where s = sn−12n−1 + . . . + s12 + s0 and
t = tn−12n−1 + . . .+ t12+ t0 are binary expressions for decimal numbers s and
t. This means that matrix elements Uss, Ust, Uts and Utt are different from
those of the unit matrix, while all the others are the same, where |s〉 stands for
|sn−1〉|sn−2〉 . . . |s0〉, for example. We can construct Ũ , the non-trivial 2 × 2
unitary submatrix of U . Ũ may be thought of as a unitary matrix acting on
a single qubit, whose basis is {|s〉, |t〉}.
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register can be implemented with single qubit gates and CNOT gates.

Proof. We closely follow [1] for the proof here. Thanks to the previous
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STEP 1: U is reduced to Ũ ∈ U(2).
The basis vectors |s〉 and |t〉 may be put together to form a basis for a

single qubit using the following trick. This is done by introducing Gray
codes. For two binary numbers s = sn−1 . . . s1s0 and t = tn−1 . . . t1t0, a
Gray code connecting s and t is a sequence of binary numbers {g1, . . . , gm}
where the adjacent numbers, gk and gk+1, differ in exactly one bit. Moreover,
the sequence satisfies the boundary conditions g1 = s and gm = t.

Suppose s = 100101 and t = 110110, for example. An example of a Gray
code connecting s and t is

s = g1 = 100101
g2 = 11̂0101
g3 = 11011̂1
g4 = 110110̂ = t,

where the digit with ˆ has been renewed. It is clear from this construction
that if s and t differ in p bits, the shortest Gray code is made of p+1 elements.
It should be also clear that if s and t are of n digits, then m ≤ (n + 1) since
s and t differ at most in n bits.

With these preparations, we consider the implementation of U . The strat-
egy is to find gates providing the sequence of state changes

|s〉 = |g1〉 → |g2〉 → . . .→ |gm−1〉. (4.48)

Then gm−1 and gm differ only in one bit, which is identified with the single
qubit on which Ũ acts. In the example above, we have |g3〉 = |11011〉 ⊗ |1〉
and |t〉 = |g4〉 = |11011〉⊗ |0〉. Now the operator Ũ may be introduced so that
it acts on a two-dimensional subspace of the total Hilbert space, in which the
first five qubits are in the state |11011〉. Then we undo the sequence (4.48)
so that |gm−1〉 → |gm−2〉 → . . . → |g1〉 = |s〉. Each of these steps can be
easily implemented using simple gates that have been introduced previously
(see below).

Let us consider the following example of a three-qubit system, whose basis
is {|000〉, |001〉, . . . , |111〉}. Let

U =





a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d





, (a, b, c, d ∈ C) (4.49)

be a two-level unitary matrix which we wish to implement. Note that U acts
non-trivially only in the subspace spanned by |000〉 and |111〉. The unitarity

Step 1. The two-level unitary matrix U can be reduced to a 2x2 unitary 
matrix.  
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FIGURE 4.5
Example of circuit implementing the gate U .

of U ensures that the matrix

Ũ =
(

a c
b d

)
(4.50)

is also unitary. An example of a Gray code connecting 000 and 111 is

q1 q2 q3

g1 = 0 0 0
g2 = 1 0 0
g3 = 1 1 0
g4 = 1 1 1

(4.51)

Since g3 and g4 differ only in the third qubit, which we call q3, we have to
bring g1 to g3 and then operate Ũ on the qubit q3 provided that the first and
the second qubits are in the state |11〉. (Namely we have a controlled-Ũ gate
with the target bit q3 and the control bits q1 and q2.) After this controlled
operation is done, we have to put |g3〉 = |110〉 back to the state |000〉 as

|110〉 → |100〉 → |000〉.

This operation is graphically shown in Fig. 4.5. Here ◦ denotes the negated
control node. This means that the unitary gate acts on the target bit only
when the control bit is in the state |0〉. This is easily implemented by adding
two X gates as

It is easy to see that this gate indeed implements U . Suppose the input is
|101〉, for example. Figure 4.6 shows that the gate has no effect on this basis
vector since U should act as a unit matrix on this vector. The operation of U
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Gray code connecting s and t is a sequence of binary numbers {g1, . . . , gm}
where the adjacent numbers, gk and gk+1, differ in exactly one bit. Moreover,
the sequence satisfies the boundary conditions g1 = s and gm = t.

Suppose s = 100101 and t = 110110, for example. An example of a Gray
code connecting s and t is

s = g1 = 100101
g2 = 11̂0101
g3 = 11011̂1
g4 = 110110̂ = t,

where the digit with ˆ has been renewed. It is clear from this construction
that if s and t differ in p bits, the shortest Gray code is made of p+1 elements.
It should be also clear that if s and t are of n digits, then m ≤ (n + 1) since
s and t differ at most in n bits.

With these preparations, we consider the implementation of U . The strat-
egy is to find gates providing the sequence of state changes

|s〉 = |g1〉 → |g2〉 → . . .→ |gm−1〉. (4.48)

Then gm−1 and gm differ only in one bit, which is identified with the single
qubit on which Ũ acts. In the example above, we have |g3〉 = |11011〉 ⊗ |1〉
and |t〉 = |g4〉 = |11011〉⊗ |0〉. Now the operator Ũ may be introduced so that
it acts on a two-dimensional subspace of the total Hilbert space, in which the
first five qubits are in the state |11011〉. Then we undo the sequence (4.48)
so that |gm−1〉 → |gm−2〉 → . . . → |g1〉 = |s〉. Each of these steps can be
easily implemented using simple gates that have been introduced previously
(see below).

Let us consider the following example of a three-qubit system, whose basis
is {|000〉, |001〉, . . . , |111〉}. Let

U =





a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
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



, (a, b, c, d ∈ C) (4.49)

be a two-level unitary matrix which we wish to implement. Note that U acts
non-trivially only in the subspace spanned by |000〉 and |111〉. The unitarity
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Ũ =
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b d
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(4.50)

is also unitary. An example of a Gray code connecting 000 and 111 is

q1 q2 q3

g1 = 0 0 0
g2 = 1 0 0
g3 = 1 1 0
g4 = 1 1 1

(4.51)

Since g3 and g4 differ only in the third qubit, which we call q3, we have to
bring g1 to g3 and then operate Ũ on the qubit q3 provided that the first and
the second qubits are in the state |11〉. (Namely we have a controlled-Ũ gate
with the target bit q3 and the control bits q1 and q2.) After this controlled
operation is done, we have to put |g3〉 = |110〉 back to the state |000〉 as

|110〉 → |100〉 → |000〉.

This operation is graphically shown in Fig. 4.5. Here ◦ denotes the negated
control node. This means that the unitary gate acts on the target bit only
when the control bit is in the state |0〉. This is easily implemented by adding
two X gates as

It is easy to see that this gate indeed implements U . Suppose the input is
|101〉, for example. Figure 4.6 shows that the gate has no effect on this basis
vector since U should act as a unit matrix on this vector. The operation of U

If s and t differ in p bits, the shortest Gray code is made of p+1 elements
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qubit on which Ũ acts. In the example above, we have |g3〉 = |11011〉 ⊗ |1〉
and |t〉 = |g4〉 = |11011〉⊗ |0〉. Now the operator Ũ may be introduced so that
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The basis vectors |s〉 and |t〉 may be put together to form a basis for a

single qubit using the following trick. This is done by introducing Gray
codes. For two binary numbers s = sn−1 . . . s1s0 and t = tn−1 . . . t1t0, a
Gray code connecting s and t is a sequence of binary numbers {g1, . . . , gm}
where the adjacent numbers, gk and gk+1, differ in exactly one bit. Moreover,
the sequence satisfies the boundary conditions g1 = s and gm = t.

Suppose s = 100101 and t = 110110, for example. An example of a Gray
code connecting s and t is

s = g1 = 100101
g2 = 11̂0101
g3 = 11011̂1
g4 = 110110̂ = t,

where the digit with ˆ has been renewed. It is clear from this construction
that if s and t differ in p bits, the shortest Gray code is made of p+1 elements.
It should be also clear that if s and t are of n digits, then m ≤ (n + 1) since
s and t differ at most in n bits.

With these preparations, we consider the implementation of U . The strat-
egy is to find gates providing the sequence of state changes

|s〉 = |g1〉 → |g2〉 → . . .→ |gm−1〉. (4.48)

Then gm−1 and gm differ only in one bit, which is identified with the single
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codes. For two binary numbers s = sn−1 . . . s1s0 and t = tn−1 . . . t1t0, a
Gray code connecting s and t is a sequence of binary numbers {g1, . . . , gm}
where the adjacent numbers, gk and gk+1, differ in exactly one bit. Moreover,
the sequence satisfies the boundary conditions g1 = s and gm = t.

Suppose s = 100101 and t = 110110, for example. An example of a Gray
code connecting s and t is

s = g1 = 100101
g2 = 11̂0101
g3 = 11011̂1
g4 = 110110̂ = t,

where the digit with ˆ has been renewed. It is clear from this construction
that if s and t differ in p bits, the shortest Gray code is made of p+1 elements.
It should be also clear that if s and t are of n digits, then m ≤ (n + 1) since
s and t differ at most in n bits.

With these preparations, we consider the implementation of U . The strat-
egy is to find gates providing the sequence of state changes

|s〉 = |g1〉 → |g2〉 → . . .→ |gm−1〉. (4.48)

Then gm−1 and gm differ only in one bit, which is identified with the single
qubit on which Ũ acts. In the example above, we have |g3〉 = |11011〉 ⊗ |1〉
and |t〉 = |g4〉 = |11011〉⊗ |0〉. Now the operator Ũ may be introduced so that
it acts on a two-dimensional subspace of the total Hilbert space, in which the
first five qubits are in the state |11011〉. Then we undo the sequence (4.48)
so that |gm−1〉 → |gm−2〉 → . . . → |g1〉 = |s〉. Each of these steps can be
easily implemented using simple gates that have been introduced previously
(see below).

Let us consider the following example of a three-qubit system, whose basis
is {|000〉, |001〉, . . . , |111〉}. Let

U =
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non-trivially only in the subspace spanned by |000〉 and |111〉. The unitarity
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of U ensures that the matrix

Ũ =
(

a c
b d

)
(4.50)

is also unitary. An example of a Gray code connecting 000 and 111 is

q1 q2 q3

g1 = 0 0 0
g2 = 1 0 0
g3 = 1 1 0
g4 = 1 1 1

(4.51)

Since g3 and g4 differ only in the third qubit, which we call q3, we have to
bring g1 to g3 and then operate Ũ on the qubit q3 provided that the first and
the second qubits are in the state |11〉. (Namely we have a controlled-Ũ gate
with the target bit q3 and the control bits q1 and q2.) After this controlled
operation is done, we have to put |g3〉 = |110〉 back to the state |000〉 as

|110〉 → |100〉 → |000〉.

This operation is graphically shown in Fig. 4.5. Here ◦ denotes the negated
control node. This means that the unitary gate acts on the target bit only
when the control bit is in the state |0〉. This is easily implemented by adding
two X gates as

It is easy to see that this gate indeed implements U . Suppose the input is
|101〉, for example. Figure 4.6 shows that the gate has no effect on this basis
vector since U should act as a unit matrix on this vector. The operation of U
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Ũ =
(

a c
b d

)
(4.50)

is also unitary. An example of a Gray code connecting 000 and 111 is

q1 q2 q3

g1 = 0 0 0
g2 = 1 0 0
g3 = 1 1 0
g4 = 1 1 1

(4.51)

Since g3 and g4 differ only in the third qubit, which we call q3, we have to
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qubit on which Ũ acts. In the example above, we have |g3〉 = |11011〉 ⊗ |1〉
and |t〉 = |g4〉 = |11011〉⊗ |0〉. Now the operator Ũ may be introduced so that
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(see below).
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is {|000〉, |001〉, . . . , |111〉}. Let

U =





a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d





, (a, b, c, d ∈ C) (4.49)

be a two-level unitary matrix which we wish to implement. Note that U acts
non-trivially only in the subspace spanned by |000〉 and |111〉. The unitarityIt changes

|x00> ➜ |x¬00>
It changes
|1x0> ➜ |1x¬0>
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of U ensures that the matrix

Ũ =
(

a c
b d

)
(4.50)

is also unitary. An example of a Gray code connecting 000 and 111 is

q1 q2 q3

g1 = 0 0 0
g2 = 1 0 0
g3 = 1 1 0
g4 = 1 1 1

(4.51)

Since g3 and g4 differ only in the third qubit, which we call q3, we have to
bring g1 to g3 and then operate Ũ on the qubit q3 provided that the first and
the second qubits are in the state |11〉. (Namely we have a controlled-Ũ gate
with the target bit q3 and the control bits q1 and q2.) After this controlled
operation is done, we have to put |g3〉 = |110〉 back to the state |000〉 as

|110〉 → |100〉 → |000〉.

This operation is graphically shown in Fig. 4.5. Here ◦ denotes the negated
control node. This means that the unitary gate acts on the target bit only
when the control bit is in the state |0〉. This is easily implemented by adding
two X gates as

It is easy to see that this gate indeed implements U . Suppose the input is
|101〉, for example. Figure 4.6 shows that the gate has no effect on this basis
vector since U should act as a unit matrix on this vector. The operation of U

It changes
|1x0> ➜ |1x¬0>

It changes
|1x0> ➜ |1x¬0>
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on the input α|000〉+ β|111〉 is
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





α
0
0
0
0
0
0
β





=





αa + βc
0
0
0
0
0
0

αb + βd





. (4.52)

If we use the circuit shown in Fig. 4.5, we produce the same result as shown
in Fig. 4.7

FIGURE 4.7
U -gate acting on α|000〉+ β|111〉 yields the desired output (aα + cβ)|000〉+
(bα+ dβ)|111〉.

This construction is easily generalized to any two-level unitary matrix U ∈
U(2n). It will be shown below that all the gates in the above circuit can

Let us consider  the effect on a qubit different from |s> and |t>, for 
example the qubit |101>  
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of U ensures that the matrix

Ũ =
(

a c
b d

)
(4.50)

is also unitary. An example of a Gray code connecting 000 and 111 is

q1 q2 q3

g1 = 0 0 0
g2 = 1 0 0
g3 = 1 1 0
g4 = 1 1 1

(4.51)

Since g3 and g4 differ only in the third qubit, which we call q3, we have to
bring g1 to g3 and then operate Ũ on the qubit q3 provided that the first and
the second qubits are in the state |11〉. (Namely we have a controlled-Ũ gate
with the target bit q3 and the control bits q1 and q2.) After this controlled
operation is done, we have to put |g3〉 = |110〉 back to the state |000〉 as

|110〉 → |100〉 → |000〉.

This operation is graphically shown in Fig. 4.5. Here ◦ denotes the negated
control node. This means that the unitary gate acts on the target bit only
when the control bit is in the state |0〉. This is easily implemented by adding
two X gates as

It is easy to see that this gate indeed implements U . Suppose the input is
|101〉, for example. Figure 4.6 shows that the gate has no effect on this basis
vector since U should act as a unit matrix on this vector. The operation of U
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on the input α|000〉+ β|111〉 is

U(α|000〉+ β|111〉) =





a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d









α
0
0
0
0
0
0
β





=





αa + βc
0
0
0
0
0
0

αb + βd





. (4.52)

If we use the circuit shown in Fig. 4.5, we produce the same result as shown
in Fig. 4.7

FIGURE 4.7
U -gate acting on α|000〉+ β|111〉 yields the desired output (aα + cβ)|000〉+
(bα+ dβ)|111〉.

This construction is easily generalized to any two-level unitary matrix U ∈
U(2n). It will be shown below that all the gates in the above circuit can

While on |000>  
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b|111i

<latexit sha1_base64="M7GZpH2KdGw+K8VAmLQT0H2QA/g=">AAAB/3icbVA9TwJBEN3DL8Qv1NJmIzGxIneGRO2INpaYyEcCFzK3DLhhb+/cnTMhSOGvsNXKztj6Uyz8L94hhYKvenlvJvPmBbGSllz308ktLa+sruXXCxubW9s7xd29ho0SI7AuIhWZVgAWldRYJ0kKW7FBCAOFzWB4mfnNezRWRvqGRjH6IQy07EsBlEp+8OB5XseAHijk3WLJLbtT8EXizUiJzVDrFr86vUgkIWoSCqxte25M/hgMSaFwUugkFmMQQxhgO6UaQrT+eBp6wo8SCxTxGA2Xik9F/L0xhtDaURikkyHQrZ33MvE/r51Q/8wfSx0nhFpkh0im32WHrDAybQN5Txokgiw5cqm5AANEaCQHIVIxSesppH14898vksZJ2auUz68rperFrJk8O2CH7Jh57JRV2RWrsToT7I49sWf24jw6r86b8/4zmnNmO/vsD5yPb4DhlfM=</latexit>

a|110i+

<latexit sha1_base64="809e4s4fhvre65Ww8nvNhfg/3LU=">AAACA3icbVA9SwNBEN3zM8aPnFraLAZBEMKdBNQuaGMZwXxAEsLcZhKX7O0du3NCiCn9FbZa2YmtP8TC/+JdTKGJr3q8N8O8eUGspCXP+3SWlldW19ZzG/nNre2dgru7V7dRYgTWRKQi0wzAopIaayRJYTM2CGGgsBEMrzK/cY/Gykjf0ijGTggDLftSAKVS1y3Ag+97bQN6oJCf8K5b9EreFHyR+DNSZDNUu+5XuxeJJERNQoG1Ld+LqTMGQ1IonOTbicUYxBAG2EqphhBtZzwNPuFHiQWKeIyGS8WnIv7eGENo7SgM0skQ6M7Oe5n4n9dKqH/eGUsdJ4RaZIdIpv9lh6wwMm0EeU8aJIIsOXKpuQADRGgkByFSMUkryqd9+PPfL5L6ackvly5uysXK5ayZHDtgh+yY+eyMVdg1q7IaEyxhT+yZvTiPzqvz5rz/jC45s5199gfOxze+sJaB</latexit>
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FIGURE 4.6
U -gate has no effect on the vector |101〉.

on the input α|000〉+ β|111〉 is

U(α|000〉+ β|111〉) =





a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d









α
0
0
0
0
0
0
β





=





αa + βc
0
0
0
0
0
0

αb + βd





. (4.52)

If we use the circuit shown in Fig. 4.5, we produce the same result as shown
in Fig. 4.7

FIGURE 4.7
U -gate acting on α|000〉+ β|111〉 yields the desired output (aα + cβ)|000〉+
(bα+ dβ)|111〉.

This construction is easily generalized to any two-level unitary matrix U ∈
U(2n). It will be shown below that all the gates in the above circuit can
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be implemented with single-qubit gates and CNOT gates, which proves the
universality of these gates.

EXERCISE 4.14 (1) Find the shortest Gray code which connects 000 with
110.
(2) Use this result to find a quantum circuit, such as Fig. 4.5, implementing
a two-level unitary gate

U =





a 0 0 0 0 0 c 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
b 0 0 0 0 0 d 0
0 0 0 0 0 0 0 1





, Ũ ≡
(

a c
b d

)
∈ U(2).

You may use various controlled-NOT gates and controlled-Ũ gates.

STEP 2: Two-level unitary gates are decomposed into single-qubit gates and
CNOT gates.

A controlled-U gate can be constructed from at most four single-qubit gates
and two CNOT gates for any single-qubit unitary U ∈ U(2). Let us prove
several Lemmas before we prove this statement.

LEMMA 4.2 Let U ∈ SU(2). Then there exist α,β, γ ∈ R such that U =
Rz(α)Ry(β)Rz(γ), where

Rz(α) = exp(iασz/2) =
(

eiα/2 0
0 e−iα/2

)
,

Ry(β) = exp(iβσy/2) =
(

cos(β/2) sin(β/2)
− sin(β/2) cos(β/2)

)
.

Proof. After some calculation, we obtain

Rz(α)Ry(β)Rz(γ) =
(

ei(α+γ)/2 cos(β/2) ei(α−γ)/2 sin(β/2)
−ei(−α+γ)/2 sin(β/2) e−i(α+γ)/2 cos(β/2)

)
. (4.53)

Any U ∈ SU(2) may be written in the form

U =
(

a b
−b∗ a∗

)
=
(

cos θeiλ sin θeiµ

− sin θe−iµ cos θe−iλ

)
, (4.54)

where we used the fact that detU = |a|2 + |b|2 = 1. Now we obtain U =
Rz(α)Ry(β)Rz(γ) by making identifications

θ =
β

2
,λ =

α+ γ

2
, µ =

α− γ
2

. (4.55)
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Notice that U acts non-trivially only on the states |000〉 and |111〉. We write a Gray code
connecting 000 and 111:

A B C
0 0 0
0 0 1
0 1 1
1 1 1

. (4.59)

From this we read off the required circuit, shown in Figure 4.16. The first two gates
shuffle the states so that |000〉 gets swapped with |011〉. Next, the operation Ũ is applied
to the first qubit of the states |011〉 and |111〉, conditional on the second and third qubits
being in the state |11〉. Finally, we unshuffle the states, ensuring that |011〉 gets swapped
back with the state |000〉.

! " # $% & ' ( ! " # $% & ' ( ! " # $% & ' ( ! " # $% & ' (

! " # $% & ' ( ! " # $% & ' (

Figure 4.16. Circuit implementing the two-level unitary operation defined by (4.58).

Returning to the general case, we see that implementing the two-level unitary operation
U requires at most 2(n−1) controlled operations to swap |g1〉 with |gm−1〉 and then back
again. Each of these controlled operations can be realized using O(n) single qubit and

gates; the controlled-Ũ operation also requires O(n) gates. Thus, implementing
U requires O(n2) single qubit and gates. We saw in the previous section that an
arbitrary unitary matrix on the 2n-dimensional state space of n qubits may be written as
a product of O(22n) = O(4n) two-level unitary operations. Combining these results, we
see that an arbitrary unitary operation on n qubits can be implemented using a circuit
containing O(n24n) single qubit and gates. Obviously, this construction does not
provide terribly efficient quantum circuits! However, we show in Section 4.5.4 that the
construction is close to optimal in the sense that there are unitary operations that require
an exponential number of gates to implement. Thus, to find fast quantum algorithms we
will clearly need a different approach than is taken in the universality construction.

Exercise 4.39: Find a quantum circuit using single qubit operations and s to
implement the transformation



























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 a 0 0 0 0 c
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 b 0 0 0 0 d



























, (4.60)



Next step

It will be shown next that all the gates in the above circuit can be 
implemented with single-qubit gates and CNOT gates, which proves the 
universality of these gates. 



Universality theorem: step 2
Step 2. The controlled-U gate is decomposed in the CNOT gate and single 
qubit gates
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LEMMA 4.3 Let U ∈ SU(2). Then there exist A, B, C ∈ SU(2) such that
U = AXBXC and ABC = I, where X = σx.

Proof. Lemma 4.2 states that U = Rz(α)Ry(β)Rz(γ) for some α,β, γ ∈ R.
Let

A = Rz(α)Ry

(
β

2

)
, B = Ry

(
−β

2

)
Rz

(
−α+ γ

2

)
, C = Rz

(
−α− γ

2

)
.

Then

AXBXC = Rz(α)Ry

(
β

2

)
XRy

(
−β

2

)
Rz

(
−α+ γ

2

)
XRz

(
−α− γ

2

)

= Rz(α)Ry

(
β

2

)[
XRy

(
−β

2

)
X

] [
XRz

(
−α+ γ

2

)
X

]
Rz

(
−α− γ

2

)

= Rz(α)Ry

(
β

2

)
Ry

(
β

2

)
Rz

(
α+ γ

2

)
Rz

(
−α− γ

2

)

= Rz(α)Ry(β)Rz(γ) = U,

where use has been made of the identities X2 = I and Xσy,zX = −σy,z.
It is also verified that

ABC = Rz(α)Ry

(
β

2

)
Ry

(
−β

2

)
Rz

(
−α+ γ

2

)
Rz

(
−α− γ

2

)

= Rz(α)Ry(0)Rz(−α) = I.

This proves the Lemma.

FIGURE 4.8
Controlled-U gate is made of at most three single-qubit gates and two CNOT
gates for any U ∈ SU(2).

LEMMA 4.4 Let U ∈ SU(2) be factorized as U = AXBXC as in the
previous Lemma. Then the controlled-U gate can be implemented with at
most three single-qubit gates and two CNOT gates (see Fig. 4.8).
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FIGURE 4.11
Controlled-U gate is implemented with at most four single-qubit gates and
two CNOT gates.

FIGURE 4.12
Controlled-controlled-U gate is equivalent to the gate made of controlled-V
gates with U = V 2 and CNOT gates.

LEMMA 4.6 The two quantum circuits in Fig. 4.12 are equivalent, where
U = V 2.

Proof. If both the first and the second qubits are 0 in the RHS, all the gates
are ineffective and the third qubit is unchanged; the gate in this subspace
acts as |00〉〈00| ⊗ I. In case the first qubit is 0 and the second is 1, the
third qubit is mapped as |ψ〉 $→ V †V |ψ〉 = |ψ〉; the gate is then |01〉〈01|⊗ I.
When the first qubit is 1 and the second is 0, the third qubit is mapped as
|ψ〉 $→ V V †|ψ〉 = |ψ〉; hence the gate in this subspace is |10〉〈10|⊗ I. Finally
let both the first and the second qubits be 1. Then the action of the gate on
the third qubit is |ψ〉 $→ V V |ψ〉 = U |ψ〉; namely the gate in this subspace is
|11〉〈11|⊗ U . Thus it has been proved that the RHS of Fig. 4.12 is

(|00〉〈00|+ |01〉〈01|+ |10〉〈10|)⊗ I + |11〉〈11|⊗ U, (4.58)

namely the controlled-controlled-U gate.

This decomposition is explained intuitively as follows. The first V operates
on the third qubit |ψ〉 if and only if the second qubit is 1. V † is in action
if and only if x1 ⊕ x2 = 1, where xk is the input bit of the kth qubit. The
second V operation is applied if and only if the first qubit is 1. Thus the
action of this gate on the third qubit is V 2 = U only when x1 ∧ x2 = 1 and
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be implemented with single-qubit gates and CNOT gates, which proves the
universality of these gates.

EXERCISE 4.14 (1) Find the shortest Gray code which connects 000 with
110.
(2) Use this result to find a quantum circuit, such as Fig. 4.5, implementing
a two-level unitary gate

U =





a 0 0 0 0 0 c 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
b 0 0 0 0 0 d 0
0 0 0 0 0 0 0 1





, Ũ ≡
(

a c
b d

)
∈ U(2).

You may use various controlled-NOT gates and controlled-Ũ gates.

STEP 2: Two-level unitary gates are decomposed into single-qubit gates and
CNOT gates.

A controlled-U gate can be constructed from at most four single-qubit gates
and two CNOT gates for any single-qubit unitary U ∈ U(2). Let us prove
several Lemmas before we prove this statement.

LEMMA 4.2 Let U ∈ SU(2). Then there exist α,β, γ ∈ R such that U =
Rz(α)Ry(β)Rz(γ), where

Rz(α) = exp(iασz/2) =
(

eiα/2 0
0 e−iα/2

)
,

Ry(β) = exp(iβσy/2) =
(

cos(β/2) sin(β/2)
− sin(β/2) cos(β/2)

)
.

Proof. After some calculation, we obtain

Rz(α)Ry(β)Rz(γ) =
(

ei(α+γ)/2 cos(β/2) ei(α−γ)/2 sin(β/2)
−ei(−α+γ)/2 sin(β/2) e−i(α+γ)/2 cos(β/2)

)
. (4.53)

Any U ∈ SU(2) may be written in the form

U =
(

a b
−b∗ a∗

)
=
(

cos θeiλ sin θeiµ

− sin θe−iµ cos θe−iλ

)
, (4.54)

where we used the fact that detU = |a|2 + |b|2 = 1. Now we obtain U =
Rz(α)Ry(β)Rz(γ) by making identifications

θ =
β

2
,λ =

α+ γ

2
, µ =

α− γ
2

. (4.55)
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LEMMA 4.3 Let U ∈ SU(2). Then there exist A, B, C ∈ SU(2) such that
U = AXBXC and ABC = I, where X = σx.

Proof. Lemma 4.2 states that U = Rz(α)Ry(β)Rz(γ) for some α,β, γ ∈ R.
Let

A = Rz(α)Ry

(
β

2

)
, B = Ry

(
−β

2
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Rz

(
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(
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Then
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)

= Rz(α)Ry(β)Rz(γ) = U,

where use has been made of the identities X2 = I and Xσy,zX = −σy,z.
It is also verified that

ABC = Rz(α)Ry

(
β

2

)
Ry

(
−β

2

)
Rz

(
−α+ γ

2

)
Rz

(
−α− γ

2

)

= Rz(α)Ry(0)Rz(−α) = I.

This proves the Lemma.

FIGURE 4.8
Controlled-U gate is made of at most three single-qubit gates and two CNOT
gates for any U ∈ SU(2).

LEMMA 4.4 Let U ∈ SU(2) be factorized as U = AXBXC as in the
previous Lemma. Then the controlled-U gate can be implemented with at
most three single-qubit gates and two CNOT gates (see Fig. 4.8).
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Proof. The proof is almost obvious. When the control bit is 0, the target bit
|ψ〉 is operated by C, B and A in this order so that

|ψ〉 "→ ABC|ψ〉 = |ψ〉,

while when the control bit is 1, we have

|ψ〉 "→ AXBXC|ψ〉 = U |ψ〉.

So far, we have worked with U ∈ SU(2). To implement a general U -gate
with U ∈ U(2), we have to deal with the phase. Let us first recall that any
U ∈ U(2) is decomposed as U = eiαV, V ∈ SU(2),α ∈ R.

LEMMA 4.5 Let
Φ(φ) = eiφI =

(
eiφ 0
0 eiφ

)

and

D = Rz(−φ)Φ
(
φ

2

)
=
(

e−iφ/2 0
0 eiφ/2

)(
eiφ/2 0

0 eiφ/2

)
=
(

1 0
0 eiφ

)
.

Then the controlled-Φ(φ) gate is expressed as a tensor product of single qubit
gates as

UCΦ(φ) = D ⊗ I. (4.56)

.

Proof. The LHS is

UCΦ(φ) = |0〉〈0|⊗ I + |1〉〈1|⊗ Φ(φ) = |0〉〈0|⊗ I + |1〉〈1|⊗ eiφI

= |0〉〈0|⊗ I + eiφ|1〉〈1|⊗ I,

while the RHS is

D ⊗ I =
(

1 0
0 eiφ

)
⊗ I

=
[
|0〉〈0| + eiφ|1〉〈1|

]
⊗ I = UCΦ(φ),

which proves the lemma.

Figure 4.9 shows the statement of the above lemma.

EXERCISE 4.15 Let us consider the controlled-V1 gate UCV1 and the
controlled-V2 gate UCV2 . Show that the controlled-V1 gate followed by the
controlled-V2 gate is the controlled-V2V1 gate UC(V2V1) as shown in Fig. 4.10.

Quantum Gates, Quantum Circuit and Quantum Computation 89

LEMMA 4.3 Let U ∈ SU(2). Then there exist A, B, C ∈ SU(2) such that
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LEMMA 4.4 Let U ∈ SU(2) be factorized as U = AXBXC as in the
previous Lemma. Then the controlled-U gate can be implemented with at
most three single-qubit gates and two CNOT gates (see Fig. 4.8).

Controlled-U gate with U in SU(2)
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This proves the Lemma.

FIGURE 4.8
Controlled-U gate is made of at most three single-qubit gates and two CNOT
gates for any U ∈ SU(2).

LEMMA 4.4 Let U ∈ SU(2) be factorized as U = AXBXC as in the
previous Lemma. Then the controlled-U gate can be implemented with at
most three single-qubit gates and two CNOT gates (see Fig. 4.8).
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Proof. The proof is almost obvious. When the control bit is 0, the target bit
|ψ〉 is operated by C, B and A in this order so that

|ψ〉 "→ ABC|ψ〉 = |ψ〉,

while when the control bit is 1, we have

|ψ〉 "→ AXBXC|ψ〉 = U |ψ〉.

So far, we have worked with U ∈ SU(2). To implement a general U -gate
with U ∈ U(2), we have to deal with the phase. Let us first recall that any
U ∈ U(2) is decomposed as U = eiαV, V ∈ SU(2),α ∈ R.

LEMMA 4.5 Let
Φ(φ) = eiφI =

(
eiφ 0
0 eiφ

)

and

D = Rz(−φ)Φ
(
φ

2

)
=
(

e−iφ/2 0
0 eiφ/2

)(
eiφ/2 0

0 eiφ/2

)
=
(

1 0
0 eiφ

)
.

Then the controlled-Φ(φ) gate is expressed as a tensor product of single qubit
gates as

UCΦ(φ) = D ⊗ I. (4.56)

.

Proof. The LHS is

UCΦ(φ) = |0〉〈0|⊗ I + |1〉〈1|⊗ Φ(φ) = |0〉〈0|⊗ I + |1〉〈1|⊗ eiφI

= |0〉〈0|⊗ I + eiφ|1〉〈1|⊗ I,

while the RHS is

D ⊗ I =
(

1 0
0 eiφ

)
⊗ I

=
[
|0〉〈0| + eiφ|1〉〈1|

]
⊗ I = UCΦ(φ),

which proves the lemma.

Figure 4.9 shows the statement of the above lemma.

EXERCISE 4.15 Let us consider the controlled-V1 gate UCV1 and the
controlled-V2 gate UCV2 . Show that the controlled-V1 gate followed by the
controlled-V2 gate is the controlled-V2V1 gate UC(V2V1) as shown in Fig. 4.10.
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FIGURE 4.9
Equality UCΦ(φ) = D ⊗ I.

FIGURE 4.10
Equality UCV2UCV1 = UC(V2V1).

Now we are ready to prove the main proposition.

PROPOSITION 4.1 Let U ∈ U(2). Then the controlled-U gate UCU can
be constructed by at most four single-qubit gates and two CNOT gates.

Proof. Let U = Φ(φ)AXBXC. According to the exercise above, the
controlled-U gate is written as a product of the controlled-Φ(φ) gate and the
controlled-AXBXC gate. Moreover, Lemma 4.5 states that the controlled-
Φ(φ) gate may be replaced by a single-qubit phase gate acting on the first
qubit. The rest of the gate, the controlled-AXBXC gate is implemented with
three SU(2) gates and two CNOT gates as proved in Lemma 4.3. Therefore
we have the following decomposition:

UCU = (D ⊗A)UCNOT(I ⊗B)UCNOT(I ⊗ C), (4.57)

where
D = Rz(−φ)Φ(φ/2)

and use has been made of the identity (D ⊗ I)(I ⊗A) = D ⊗A.

Figure 4.11 shows the statement of the proposition.

STEP 3: CCNOT gate and its variants are implemented with CNOT gates
and their variants.

Now our final task is to prove that controlled-U gates with n − 1 control
bits are also constructed using single-qubit gates and CNOT gates. Let us
start with the simplest case, in which n = 3.
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FIGURE 4.11
Controlled-U gate is implemented with at most four single-qubit gates and
two CNOT gates.

FIGURE 4.12
Controlled-controlled-U gate is equivalent to the gate made of controlled-V
gates with U = V 2 and CNOT gates.

LEMMA 4.6 The two quantum circuits in Fig. 4.12 are equivalent, where
U = V 2.

Proof. If both the first and the second qubits are 0 in the RHS, all the gates
are ineffective and the third qubit is unchanged; the gate in this subspace
acts as |00〉〈00| ⊗ I. In case the first qubit is 0 and the second is 1, the
third qubit is mapped as |ψ〉 $→ V †V |ψ〉 = |ψ〉; the gate is then |01〉〈01|⊗ I.
When the first qubit is 1 and the second is 0, the third qubit is mapped as
|ψ〉 $→ V V †|ψ〉 = |ψ〉; hence the gate in this subspace is |10〉〈10|⊗ I. Finally
let both the first and the second qubits be 1. Then the action of the gate on
the third qubit is |ψ〉 $→ V V |ψ〉 = U |ψ〉; namely the gate in this subspace is
|11〉〈11|⊗ U . Thus it has been proved that the RHS of Fig. 4.12 is

(|00〉〈00|+ |01〉〈01|+ |10〉〈10|)⊗ I + |11〉〈11|⊗ U, (4.58)

namely the controlled-controlled-U gate.

This decomposition is explained intuitively as follows. The first V operates
on the third qubit |ψ〉 if and only if the second qubit is 1. V † is in action
if and only if x1 ⊕ x2 = 1, where xk is the input bit of the kth qubit. The
second V operation is applied if and only if the first qubit is 1. Thus the
action of this gate on the third qubit is V 2 = U only when x1 ∧ x2 = 1 and
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FIGURE 4.13
Decomposition of the C3U gate.

I otherwise. This intuitive picture is of help when we implement the U gate
with more control qubits.

EXERCISE 4.16 Prove Lemma 4.6 by writing down the action of each gate
in the RHS of Fig. 4.12 explicitly using bras, kets and I, U, V, V †. (For exam-
ple, UCNOT = |0〉〈0|⊗ I + |1〉〈1|⊗X for a two-qubit system.)

A simple generalization of the above construction is applied to a controlled-
U gate with three control bits as the following exercise shows.

EXERCISE 4.17 Show that the circuit in Fig. 4.13 is a controlled-U gate
with three control bits, where U = V 2.

Now it should be clear how these examples are generalized to gates with
more control bits.

PROPOSITION 4.2 The quantum circuit in Fig. 4.14 with U = V 2 is a
decomposition of the controlled-U gate with n− 1 control bits.

The proof of the above proposition is very similar to that of Lemma 4.6
and Exercise 4.17 and is left as an exercise to the readers.

Theorem 4.2 has been now proved.

Other types of gates are also implemented with single-qubit gates and the
CNOT gates. See Barenco et al. [14] for further details. A few remarks are in
order. The above controlled-U gate with (n − 1) control bits requires Θ(n2)
elementary gates.∗† Let us write the number of the elementary gates required

∗We call single-qubit gates and the CNOT gates elementary gates from now on.
†We will be less strict in the definition of “the order of.” In the theory of computational
complexity, people use three types of “order of magnitude.” One writes “f(n) is O(g(n))”
if there exist n0 ∈ N and c ∈ R such that f(n) ≤ cg(n) for n ≥ n0. In other words, O sets
the asymptotic upper bound of f(n). A function f(n) is said to be Ω(g(n)) if there exist

Quantum Gates, Quantum Circuit and Quantum Computation 93

FIGURE 4.13
Decomposition of the C3U gate.

I otherwise. This intuitive picture is of help when we implement the U gate
with more control qubits.

EXERCISE 4.16 Prove Lemma 4.6 by writing down the action of each gate
in the RHS of Fig. 4.12 explicitly using bras, kets and I, U, V, V †. (For exam-
ple, UCNOT = |0〉〈0|⊗ I + |1〉〈1|⊗X for a two-qubit system.)

A simple generalization of the above construction is applied to a controlled-
U gate with three control bits as the following exercise shows.

EXERCISE 4.17 Show that the circuit in Fig. 4.13 is a controlled-U gate
with three control bits, where U = V 2.

Now it should be clear how these examples are generalized to gates with
more control bits.

PROPOSITION 4.2 The quantum circuit in Fig. 4.14 with U = V 2 is a
decomposition of the controlled-U gate with n− 1 control bits.

The proof of the above proposition is very similar to that of Lemma 4.6
and Exercise 4.17 and is left as an exercise to the readers.

Theorem 4.2 has been now proved.

Other types of gates are also implemented with single-qubit gates and the
CNOT gates. See Barenco et al. [14] for further details. A few remarks are in
order. The above controlled-U gate with (n − 1) control bits requires Θ(n2)
elementary gates.∗† Let us write the number of the elementary gates required

∗We call single-qubit gates and the CNOT gates elementary gates from now on.
†We will be less strict in the definition of “the order of.” In the theory of computational
complexity, people use three types of “order of magnitude.” One writes “f(n) is O(g(n))”
if there exist n0 ∈ N and c ∈ R such that f(n) ≤ cg(n) for n ≥ n0. In other words, O sets
the asymptotic upper bound of f(n). A function f(n) is said to be Ω(g(n)) if there exist



Cn-U gate

Quantum Gates, Quantum Circuit and Quantum Computation 93

FIGURE 4.13
Decomposition of the C3U gate.

I otherwise. This intuitive picture is of help when we implement the U gate
with more control qubits.

EXERCISE 4.16 Prove Lemma 4.6 by writing down the action of each gate
in the RHS of Fig. 4.12 explicitly using bras, kets and I, U, V, V †. (For exam-
ple, UCNOT = |0〉〈0|⊗ I + |1〉〈1|⊗X for a two-qubit system.)

A simple generalization of the above construction is applied to a controlled-
U gate with three control bits as the following exercise shows.

EXERCISE 4.17 Show that the circuit in Fig. 4.13 is a controlled-U gate
with three control bits, where U = V 2.

Now it should be clear how these examples are generalized to gates with
more control bits.

PROPOSITION 4.2 The quantum circuit in Fig. 4.14 with U = V 2 is a
decomposition of the controlled-U gate with n− 1 control bits.

The proof of the above proposition is very similar to that of Lemma 4.6
and Exercise 4.17 and is left as an exercise to the readers.

Theorem 4.2 has been now proved.

Other types of gates are also implemented with single-qubit gates and the
CNOT gates. See Barenco et al. [14] for further details. A few remarks are in
order. The above controlled-U gate with (n − 1) control bits requires Θ(n2)
elementary gates.∗† Let us write the number of the elementary gates required

∗We call single-qubit gates and the CNOT gates elementary gates from now on.
†We will be less strict in the definition of “the order of.” In the theory of computational
complexity, people use three types of “order of magnitude.” One writes “f(n) is O(g(n))”
if there exist n0 ∈ N and c ∈ R such that f(n) ≤ cg(n) for n ≥ n0. In other words, O sets
the asymptotic upper bound of f(n). A function f(n) is said to be Ω(g(n)) if there exist

94 QUANTUM COMPUTING

FIGURE 4.14
Decomposition of the C(n−1)U gate. The number on the top denotes the layer
refered to in the text.

to construct the gate in Fig. 4.14 by C(n). Construction of layers I and III
requires elementary gates whose number is independent of n. It can be shown
that the number of the elementary gates required to construct the controlled
NOT gate with (n − 2) control bits is Θ(n) [14]. Therefore layers II and IV
require Θ(n) elementary gates. Finally the layer V, a controlled-V gate with
(n − 2) control bits, requires C(n − 1) basic gates by definition. Thus we
obtain a recursion relation

C(n)− C(n− 1) = Θ(n). (4.59)

The solution to this recursion relation is

C(n) = Θ(n2). (4.60)

Therefore, implementation of a controlled-U gate with U ∈ U(2) and (n− 1)
control bits requires Θ(n2) elementary gates.

n0 ∈ N and c ∈ R such that f(n) ≥ cg(n) for n ≥ n0. In other words, Ω sets the asymptotic
lower bound of f(n). Finally f(n) is said to be Θ(f(n)) if f(n) behaves asymptotically as
g(n), namely if f(n) is both O(g(n)) and Ω(g(n)).
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complexity, people use three types of “order of magnitude.” One writes “f(n) is O(g(n))”
if there exist n0 ∈ N and c ∈ R such that f(n) ≤ cg(n) for n ≥ n0. In other words, O sets
the asymptotic upper bound of f(n). A function f(n) is said to be Ω(g(n)) if there exist
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FIGURE 4.14
Decomposition of the C(n−1)U gate. The number on the top denotes the layer
refered to in the text.

to construct the gate in Fig. 4.14 by C(n). Construction of layers I and III
requires elementary gates whose number is independent of n. It can be shown
that the number of the elementary gates required to construct the controlled
NOT gate with (n − 2) control bits is Θ(n) [14]. Therefore layers II and IV
require Θ(n) elementary gates. Finally the layer V, a controlled-V gate with
(n − 2) control bits, requires C(n − 1) basic gates by definition. Thus we
obtain a recursion relation

C(n)− C(n− 1) = Θ(n). (4.59)

The solution to this recursion relation is

C(n) = Θ(n2). (4.60)

Therefore, implementation of a controlled-U gate with U ∈ U(2) and (n− 1)
control bits requires Θ(n2) elementary gates.

n0 ∈ N and c ∈ R such that f(n) ≥ cg(n) for n ≥ n0. In other words, Ω sets the asymptotic
lower bound of f(n). Finally f(n) is said to be Θ(f(n)) if f(n) behaves asymptotically as
g(n), namely if f(n) is both O(g(n)) and Ω(g(n)).
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