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Newtonian Physics

Classical Mechanics describes the motion of point particles subject to 
forces = Newtonian Mechanics

1. Law of inertia
2. F = ma
3. Action-reaction law



Newtonian Physics

QuesQon: When are they valid? Always?

Answer: No. They are valid only for inerQal reference frames

QuesQon: What is an inerQal frame?

Answer: It is a frame where the first law is valid.



Newtonian Physics

Therefore, the first law establishes the reference frames where the 
other two laws are valid (for this reason, the first law is not a special 
case of the second, as it might seem at first sight). 

The second law can be extended to non-inertial frames, by introducing 
fictitious forces ➔ more complicated dynamics



Absolute Space

Question: Why are inertial frames so special?

Answer (Newton, 1642 – 1727): Because they are those at rest or 
moving at constant speed with respect to absolute space.

In this way, Newton introduced a new concept in his theory, having a 
metaphysical character.  



Absolute Space

“Absolute space, in its own nature, without regard to anything external, 
remains always similar and immovable…”

“Absolute, true and mathematical time, of itself, and from its own 
nature flows equably without regard to anything external, and by 
another name is called duration…”

(Newton, Principia)



Absolute Space

The idea of absolute space and Qme proved parQcularly controversial 
from Newton’s Qmes to present. In parQcular:

Leibnitz (1646 - 1716) thought that space made no sense expect as 
relaQve locaQon of bodies; same for Qme. 

Bishop Berkeley (1685 - 1753) had similar ideas.



Absolute Space – the Bucket Experiment

To justify the introduction of these new concepts, Newton devised the 
bucket experiment 

1 2

3 4

1-3 and 2-4 are 
examples of same 
relative motion, yet 
they are different. The 
concavity of water is 
not due to relative 
motion, but to motion 
with respect to absolute 
space.



Mach - back to rela@ve mo@on

Mach (1838 - 1916) proposed that mechanics is entirely about relative 
motion. The inertial properties of a body (its mass) are an expression of 
the interaction with the other bodies in the universe.

According to Mach, Newton’s bucket example illustrates relative motion 
with respect to the bulk of the universe.

There is an important piece of evidence in support of Mach’s ideas: the 
fixed stars are not accelerating with respect to absolute space. This is a 
coincidence according to Newton, a necessity according to Mach.



General Relativity

Einstein (1879 - 1955) was very influenced by Mach’s ideas. The story 
brings to General RelaQvity, but we will stop here. 

It is important to stress that what was thought to be philosophical 
quesQons brought to deep changes in our understanding of nature and 
to new theories. 



Principle of Relativity

Newton’s laws satisfy the principle of relativity, first formulated by 
Galileo (1564 - 1642)

Physical laws are the same in every inertial frame

In particular, the second law (F = ma) satisfies  the principle of relativity. 
How?



Galilei transformations

To prove invariance, we need to relate two inertial frames. We use 
Galilei transformations connecting coordinates  (t,x,y,z) of an inertial 
frame O to the coordinates (t’,x’,y’,z’) of another inertial frame O’.



Example

Take two particles interacting through a force depending on the 
modulus of the distance: F(r1, r2) = F(|r1 – r2|). Then:

In frame O, for particle 1, we have: 
m1a1 = F(|r1 – r2|)

A trivial calculation shows that in frame O’: 
m1a1’ = F(|r1’ – r2’|)



Why Galilei transformations?

Because they reflect the geometric proper-es of Newtonian 
spaceQme!

Absolute -me: Δt = |t1 – t2| is the same for every frame. In parQcular, 
this implies that simultaneous events in one frame are simultaneous in 
every frame.

Absolute space:  Δr = |r1 – r2| is the same for every frame. 



Electromagnetism: Maxwell equation (1860s)



Electromagnetism
They imply the wave equation (in vacuum)

This is not invariant under Galilei transformations!

Is it a problem?



Wave equa@ons and Galilei transforma@ons

In a moving frame related to the rest frame of the medium by the Galilean transformation
(4) we have seen that k′ = k and ω′ = ω − k · v, so the group velocity in that frame is given
by1

u′
g =

∂ω′(k′
0)

∂k′ =
∂ω′(k′

0)

∂k
=

dω(k0)

dk
k̂ − v = ug − v. (14)

That is, the Galilean transformation of group velocity has the same form as that of particle
velocity, eq. (1), in contrast with the transformation (8) for phase velocity.2

This result is in agreement with the quantum view that waves have quanta that behave
like particles, where the effective particle velocity of a wave packet of such quanta is the
group velocity, not the phase velocity. For discussion of different aspects of quantum theory
and Galilean transformations, see [1, 4].

Group velocity is the same as the velocity of energy flow in most examples of wave
phenomenon [5]. A pictorial derivation of the Galilean transformation of energy flow velocity
has been given in sec. 11.2 of [2] (without comment that energy flow velocity is the same
as group velocity, which is the same as phase velocity for light waves with the dispersion
relation ω = kc, and hence the pictorial derivation is contradictory for light waves).

2.3 Galilean Transformation of the Wave Equation

The wave equation is

∇2f − 1

u2

∂2f

∂t2
= 0 (15)

in the inertial frame with coordinates (x, t) where the medium is at rest and the wave velocity
is u (at angular frequency ω). The Galilean coordinate transformation to an inertial frame
that moves with velocity v with respect to the rest frame of the medium is given by eq. (4).
The transformations of derivatives with respect to the coordinates are

∂

∂x
=

∂x′

∂x
· ∇′ +

∂t′

∂x

∂

∂t′
=

∂

∂x′ ,
∂

∂t
=

∂x′

∂t
· ∇′ +

∂t′

∂t

∂

∂t′
=

∂

∂t′
− v · ∇′, (16)

so the wave equation (15) transforms to

∇′2f ′ − 1

u2

∂2f ′

∂t′2
+

2

u2

∂

∂t′
v · ∇′f ′ − (v · ∇′)2

u2
f ′ = 0 (17)

1If ω < k · v then k′ = −k and ω′ = −ω + k · v, so that the result of eq. (14) still obtains.
2A counterintuitive result of the transformation (14) is that while the phase and group velocities might

have the same direction in the rest frame of a medium, their directions will be different in frames where the
medium has a velocity whose direction is different from the common direction of the wave velocities in the
rest frame. For example, consider a medium with the dispersion relation (in the rest frame of that medium)
ω = uk for constant u. Then, for a packet of waves all propagating in the x̂-direction, up = ug = u x̂, which
is not of the form ω′ = u′k′; a medium that is dispersion free in its rest frame has dispersion in frames
where the medium is moving (according to Galilean transformations). In the ′ frame where the medium has
velocity v, the dispersion relation transforms to ω′ = uk′ − k̂′ · v according to eqs. (6) and (7), while the
waves of the packet still have phase velocity in the x̂ = x̂′ direction. However, the group velocity in the ′

frame is u′
g = ∇k′ω′ = u k̂′ − v = ug − v. Unless velocity v is along the x axis, the group velocity in the

′ frame has a component perpendicular to the phase velocity. There is no formal contradiction here, but
we see that care is required to identify the group velocity of waves in a moving medium. In particular, we
should not write ω′ = (u − v cos θ)k′, where the angle θ between v and k = k′ is constant for waves in the
packet, and thereby incorrectly conclude that u′

g = (u − v cos θ)k̂′.

4

in the moving frame.
The wave function (5) is readily verified to be a solution to equation (17) for u = ω/k.
The noninvariance of the wave equation (15) under Galilean transformations led W. Voigt

in 1887 to deduce a form of the coordinate transformation for which the wave equation is
invariant [6], namely what is now called the Lorentz transformation if u = c. He considered
a (conformal) generalization of eq. (4),3

x′ = s[a(x‖ − vt) + x⊥] = s[x + (a − 1)(x · v̂)v̂ − avt], t′ = bs
(
t − v

u2
· x

)
, (18)

where a, b and s are positive constants, and

x‖ = (x · v̂)v̂, x⊥ = x − (x · v̂)v̂. (19)

The transformations of derivatives are now

∂

∂x
=

∂x′

∂x
· ∇′ +

∂t′

∂x

∂

∂t′
= s

[
∂

∂x′ + (a − 1)v̂x(v̂ · ∇′) − b
vx

u2

∂

∂t′

]
, (20)

∂

∂t
=

∂x′

∂t
· ∇′ +

∂t′

∂t

∂

∂t′
= s

[
b

∂

∂t′
− av · ∇′

]
, (21)

so that

∇2 = s2

[
∇′2 +

b2v2

u4

∂2

∂t′2
− 2ab

u2

∂

∂t′
v · ∇′ + (a2 − 1)(v̂ · ∇′)2

]
, (22)

and the wave equation (15) with u = c transforms to

∇′2f ′ − b2

c2

(
1 − v2

c2

)
∂2f ′

∂t′2
+

[
a2

(
1 − v2

c2

)
− 1

]
(v̂ · ∇′)2f ′ = 0 (23)

in the moving frame for any nonzero value of s. If

a = b =
1√

1 − v2/u2
, (24)

then the wave equation in the moving frame reduces to

∇′2f ′ − 1

u2

∂2f ′

∂t′2
= 0, (25)

i.e., its form is invariant under the transformation (18) with a and b given by eq. (24) for
any nonzero value of s.

A consequence is that the wave velocity is u in both the rest frame of the medium
and in the moving frame. This would make sense only if the wave velocity had a more
universal character than understood in the year 1887. Voigt noted that his transformation
predicted aberration of stellar lightwaves observed on the moving Earth. He also noted that

3Voigt actually used transformation (18) subject to the condition that d = 1/a which makes x′
‖ = x‖−vt

as in the classic Galilean transformation. Transformation (18) with arbitrary d was first considered by
Poincaré in 1905 [7].

5



Wave equations and Galilei transformations

Galilean Transformation of Wave Velocity
José Luis Junquera Fernandez-Diez

Barcelona, Spain
Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(January 14, 2007; updated October 20, 2019)

1 Problem

In Galilean relativity an object with velocity u in one inertial frame appears to have velocity

u′ = u− v (1)

to an observer moving with velocity v with respect to the original frame.
What is the Galilean transformation for the phase velocity up = ω k̂/k of a wave of

angular frequency ω > 0 and wave vector k, for waves where the phase velocity is much less
than the speed of light?

Show that the component of phase velocity perpendicular to velocity v is not invariant
under the Galilean transformation, so that the sign of the transverse velocity can be opposite
in different frames of reference.

Discuss also the Galilean transformation of group velocity, and of the wave equation.
Restrict your discussion to classical physics. The possibly paradoxical behavior of Galilean
transformations of quantum theoretic wave functions is reviewed in [1].

For completeness, consider also the Lorentz transformations of phase and group velocity.

2 Solution

2.1 Galilean Transformation of Phase Velocity

Much of the content of this section is also in sec. 11.2 of [2].
Consider a wave

f = cos(k · x − ωt), (2)

in the inertial frame with coordinates (x, t) in which the elastic medium that supports the
wave is at rest. The phase velocity of this wave has magnitude u = ω/k and direction k.
That is, the phase velocity vector of the wave is

up =
ω

k
k̂ =

ω

k2
k. (3)

An observer whose velocity is v with respect to the original frame uses coordinates (x′, t′)
to describe an event (x, t) in the original frame obtained by the Galilean transformation

x′ = x − vt, t′ = t, (4)

1

supposing that the spatial axes in the two frames are parallel. The moving observer sees
the wave to have the same amplitude as described by eq. (2), which he describes in terms of
(x′, t′) as the wave function f ′,

f ′ ≡ cos(k′ · x′ − ω′t′) = f = cos(k · x − ωt) = cos[k · x′ − (ω − k · v)t′]. (5)

From eq. (5) we see that the wave vector is the same in the moving frame as in the
original frame,

k′ = k, (6)

so the wavelength is the same in both frames, and the direction of the wave vector is the
same in both frames (or the direction of the wave in the moving frame is opposite to that in
the original frame if k · v > ω). Similarly, the wave frequency in the moving frame is

ω′ = |ω − k · v| , (7)

which is the well-known Doppler effect for a source at rest and a moving observer.
Thus, the phenomenon of the aberration of light (apparent change of direction a light

ray depending on the motion of the observer, as discovered in 1728 by Bradley) would not
exist if light waves obeyed Galilean transformations. However, if light consists of particles
with a finite speed, as advocated by Newton, then aberration of light is expected in Galilean
relativity. Advocates of the wave theory of light in the 1800’s went to considerable lengths to
explain how the dragging of the ether by the Earth renders a wave theory of light compatible
with the observation of stellar aberration. See, for example, [3].

The phase velocity u′
p of the wave in the moving frame is given by

u′
p =

ω′

k′2
k′ =

ω′

k2
k =

ω − k · v
k2

k = up − (v · ûp)ûp = up − v‖ = up − v + v⊥ (8)

if k · v < ω, noting that the components of velocity v that are parallel and perpendicular to
velocity up are v‖ = (v · ûp)ûp and v⊥ = v − v‖, respectively. When k · v > ω, the phase
velocity in the moving frame is

u′
p = −ω′

k2
k = −k · v − ω

k2
k = up − (v · ûp)ûp, (9)

so the form of the phase velocity transformation is independent of the magnitude of k · v.
However, the transformation of the wave velocity is NOT the same as the transformation of
velocity of a particle (u′ = u− v) if the direction k of the wave is different from that of the
boost v.

Example:

k =
(1,−1, 0)√

2
ω = 1, and v = (v, 0, 0). (10)

Then k = 1 and the phase velocity in the original frame is

up =
ω

k2
k =

(1,−1, 0)√
2

. (11)

2

Solution of (15)



Wave equa@ons and Galilei transforma@ons

Solution of (17)

supposing that the spatial axes in the two frames are parallel. The moving observer sees
the wave to have the same amplitude as described by eq. (2), which he describes in terms of
(x′, t′) as the wave function f ′,

f ′ ≡ cos(k′ · x′ − ω′t′) = f = cos(k · x − ωt) = cos[k · x′ − (ω − k · v)t′]. (5)

From eq. (5) we see that the wave vector is the same in the moving frame as in the
original frame,

k′ = k, (6)

so the wavelength is the same in both frames, and the direction of the wave vector is the
same in both frames (or the direction of the wave in the moving frame is opposite to that in
the original frame if k · v > ω). Similarly, the wave frequency in the moving frame is

ω′ = |ω − k · v| , (7)

which is the well-known Doppler effect for a source at rest and a moving observer.
Thus, the phenomenon of the aberration of light (apparent change of direction a light

ray depending on the motion of the observer, as discovered in 1728 by Bradley) would not
exist if light waves obeyed Galilean transformations. However, if light consists of particles
with a finite speed, as advocated by Newton, then aberration of light is expected in Galilean
relativity. Advocates of the wave theory of light in the 1800’s went to considerable lengths to
explain how the dragging of the ether by the Earth renders a wave theory of light compatible
with the observation of stellar aberration. See, for example, [3].

The phase velocity u′
p of the wave in the moving frame is given by

u′
p =

ω′

k′2
k′ =

ω′

k2
k =

ω − k · v
k2

k = up − (v · ûp)ûp = up − v‖ = up − v + v⊥ (8)

if k · v < ω, noting that the components of velocity v that are parallel and perpendicular to
velocity up are v‖ = (v · ûp)ûp and v⊥ = v − v‖, respectively. When k · v > ω, the phase
velocity in the moving frame is

u′
p = −ω′

k2
k = −k · v − ω

k2
k = up − (v · ûp)ûp, (9)

so the form of the phase velocity transformation is independent of the magnitude of k · v.
However, the transformation of the wave velocity is NOT the same as the transformation of
velocity of a particle (u′ = u− v) if the direction k of the wave is different from that of the
boost v.

Example:

k =
(1,−1, 0)√

2
ω = 1, and v = (v, 0, 0). (10)

Then k = 1 and the phase velocity in the original frame is

up =
ω

k2
k =

(1,−1, 0)√
2

. (11)

2



Wave equations and Galilei transformations

supposing that the spatial axes in the two frames are parallel. The moving observer sees
the wave to have the same amplitude as described by eq. (2), which he describes in terms of
(x′, t′) as the wave function f ′,

f ′ ≡ cos(k′ · x′ − ω′t′) = f = cos(k · x − ωt) = cos[k · x′ − (ω − k · v)t′]. (5)

From eq. (5) we see that the wave vector is the same in the moving frame as in the
original frame,

k′ = k, (6)

so the wavelength is the same in both frames, and the direction of the wave vector is the
same in both frames (or the direction of the wave in the moving frame is opposite to that in
the original frame if k · v > ω). Similarly, the wave frequency in the moving frame is

ω′ = |ω − k · v| , (7)

which is the well-known Doppler effect for a source at rest and a moving observer.
Thus, the phenomenon of the aberration of light (apparent change of direction a light

ray depending on the motion of the observer, as discovered in 1728 by Bradley) would not
exist if light waves obeyed Galilean transformations. However, if light consists of particles
with a finite speed, as advocated by Newton, then aberration of light is expected in Galilean
relativity. Advocates of the wave theory of light in the 1800’s went to considerable lengths to
explain how the dragging of the ether by the Earth renders a wave theory of light compatible
with the observation of stellar aberration. See, for example, [3].

The phase velocity u′
p of the wave in the moving frame is given by

u′
p =

ω′

k′2
k′ =

ω′

k2
k =

ω − k · v
k2

k = up − (v · ûp)ûp = up − v‖ = up − v + v⊥ (8)

if k · v < ω, noting that the components of velocity v that are parallel and perpendicular to
velocity up are v‖ = (v · ûp)ûp and v⊥ = v − v‖, respectively. When k · v > ω, the phase
velocity in the moving frame is

u′
p = −ω′

k2
k = −k · v − ω

k2
k = up − (v · ûp)ûp, (9)

so the form of the phase velocity transformation is independent of the magnitude of k · v.
However, the transformation of the wave velocity is NOT the same as the transformation of
velocity of a particle (u′ = u− v) if the direction k of the wave is different from that of the
boost v.

Example:

k =
(1,−1, 0)√

2
ω = 1, and v = (v, 0, 0). (10)

Then k = 1 and the phase velocity in the original frame is

up =
ω

k2
k =

(1,−1, 0)√
2

. (11)

2

If u and v are parallel, then: u’ = u – v.



Wave equations and Galilei transformations

There is nothing problemaQc, and there should not be: waves exist in 
Galilean physics: water and sound waves are an example.

The point here is that waves move in a medium, which selects a 
preferred reference frame, that in which the medium is at rest.

The wave equaQon takes a simple form in the frame in which the 
medium is at rest; in all other frames it takes a different form.  

The wave is an effec-ve effect. At the fundamental level there is the 
dynamics of the medium (interacQons among molecules), which is 
Galilei invariant.



The medium

Waver waves: water

Sound waves: air

Earthquakes: ground

Electromagnetic waves: aether

To assuming the existence of the aether was the most natural thing to 
do at the time. 



Chasing the aether

If all this is true, one has to look after the aether, which we do not have 
direct experience of. 

First thing to do: Since only in the reference frame at rest with respect 
to the aether the speed of light is c, while in all other inertial frames it 
is different, one can look for such differences.

Since the Earth revolves around the Sun, it cannot always be at rest 
with respect to the aether, therefore we should be able to detect such 
differences.



Fizeau Experiment
O O’

v

In O, at rest with respect to the 
aether, light has speed c. 
In O’ it has speed c-v.

Ray of light

L

v speed of the aether

O’
c - v

c + v=
2L

c
· 1

1� v2/c2
=

2L

c


1 +

v2

c2
. . .

�

<latexit sha1_base64="nnAzddyPl+GJA8tGZ5tr3Khk2yA=">AAACVnicbZBNaxRBEIZ7R2OS9SOjHr0ULoIgrjNLQD0Egl48eIjgJoGdyVJTW7tp0vNBd00gDPP/8hP04F/wqiexZzMHk1inl6fe6qp+s8poJ1H0fRDcubtxb3Nre3j/wcNHO+HjJ4eurC3xlEpT2uMMHRtd8FS0GD6uLGOeGT7Kzj52/aNztk6XxVe5qDjNcVXopSYUj+ZhtgfJ0iI1k89tQy0ktCilR3HbxK/h/GTyhk4mLVx3JoaXMoMYXvXY+zzvjInxbzhIrF6dSgrzcBSNo3XBbRH3YqT6OpiHP5JFSXXOhZBB52ZxVEnaoBVNhtthUjuukM5wxTMvC8zZpc06ixZe1A6lhIotaANryP9ONJg7d5Fn3pmjnLqbvQ7+rzerZfkubXRR1cIFdYtEG14vcmS1D5lhoS2LYHc5gy6A0KIIWw1I5GHtUx/6POKbv78tDifjeHf8/svuaP9Dn8yWeqaeq5cqVm/VvvqkDtRUkbpUP9Uv9XvwbfAn2Ag2r6zBoJ95qq5VEP4F3xy0PA==</latexit>

Very small to detect

T =
L

c+ v
+

L

c� v
=

2L

c2 � v2
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Michelson-Morley  Experiment (1887)



Michelson-
Morley  
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Michelson-Morley  Experiment 
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In the aether’s rest frame, the lab 
moves.

The total path is:

Since in this frame the speed of light is c:



Michelson-Morley  
Experiment 
The Qme difference between the 
two paths is
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Time difference means different paths. An interference will appear. 
Suppose the apparatus is rotated. Then the fringes will change. No change!



Lorentz theory (1853-1928)
The aether has an effect on majer, because maAer is held together by 
electrosta-c forces, and these changes depending on the aether’s moQon

Lattice at rest 
with respect to 
the aether

Lattice moving 
with respect to 
the aether

D
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Contraction of objects along the 
direction of motion through the aether L = L0
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Lorentz theory
This explains the null result of 
Michelson-Morley.

The longitudinal and verQcal 
distances are not equal as iniQally 
assumed. Then  
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New term

One can show that this holds for any position of the arms



Lorentz theory
To make everything consistent, also clocks have to run differently. Looking 
back at the experiment by Fizeau 

We now know that lengths are contracted, so the correct answer is 

T =
2L
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The time difference is not 0, therefore this experiment could reveal the 
aether  



Lorentz theory
Lorentz assumed that clock run slower 
when in moQon with respect to the aether

Then when we are at rest with respect to the aether:

When we are in motion: 
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The two expression, the one at rest and the one in motion, coincide. One 
cannot detect any difference. 

together with



Lorentz theory
The theory described by Lorentz works and is capable of describing the 
(null) outcomes of measurements.

But it also implies that we will never be able to detect the existence of 
the aether, because its effects cancel out. This is something completely 
different with respect to other media supporting waves. 

Then Einstein came….



On the 
Electrodynamics 

of moving bodies 
(1905)

It is known that Maxwell’s electrodynamics—as usually 
understood at the present time—when applied to moving bodies, 
leads to asymmetries which do not appear to be inherent in the 
phenomena. Take, for example, the reciprocal electrodynamic 
action of a magnet and a conductor. The observable 
phenomenon here depends only on the relative motion of the 
conductor and the magnet, whereas the customary view draws a 
sharp distinction between the two cases in which either the one 
or the other of these bodies is in motion. For if the magnet is in 
motion and the conductor at rest, there arises in the 
neighbourhood of the magnet an electric field with a certain 
definite energy, producing a current at the places where parts of 
the conductor are situated. But if the magnet is stationary and 
the conductor in motion, no electric field arises in the 
neighbourhood of the magnet. In the conductor, however, we find 
an electromotive force, to which in itself there is no 
corresponding energy, but which gives rise—assuming equality of 
relative motion in the two cases discussed—to electric currents of 
the same path and intensity as those produced by the electric 
forces in the former case. 

Electromagnetic 
phenomena are the same 
in all inertial frames 

The descrip4on given by 
Maxwell’s equa4on is not



On the Electrodynamics of moving bodies (1905)

Examples of this sort, together with the unsuccessful 
attempts to discover any motion of the earth relatively 
to the “light medium,” suggest that the phenomena of 
electrodynamics as well as of mechanics possess no 
properties corresponding to the idea of absolute rest. 
They suggest rather that, as has already been shown to 
the first order of small quantities, the same laws of 
electrodynamics and optics will be valid for all frames 
of reference for which the equations of mechanics hold 
good. 



On the Electrodynamics of moving bodies (1905)

We will raise this conjecture (the purport of which will 
hereafter be called the “Principle of Relativity”) to the 
status of a postulate, and also introduce another 
postulate, which is only apparently irreconcilable with 
the former, namely, that light is always propagated in 
empty space with a definite velocity c which is 
independent of the state of motion of the emitting body. 
These two postulates suffice for the attainment of a 
simple and consistent theory of the electrodynamics of 
moving bodies based on Maxwell’s theory for stationary 
bodies. The introduction of a “luminiferous ether” will 
prove to be superfluous inasmuch… 



Lorentz Transformations

We now derive Lorentz transformation from the following assumptions:

• Homogeneity of spacetime
• Isotropy of spacetime
• The principle of relativity
• The constancy of the speed of light

We will se that – in a sense – Galileo could have discovered them (in a sense!)
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Simple derivation of the special theory of relativity without the speed of light axiom 5

where K is an arbitrary constant independent on v. This is the Lorentz (K > 0) and

Galilean (K = 0) transformation.

Let us first review the equations above to see that they really are what we mean

by the homogeneity, isotropy and the principle of relativity. And then we’ll discuss the

above result more thoroughly.

3. Assumptions

3.1. Homogeneity

The most general transformation from S to S ′ is:

t′ = T (t, x, y, z, v)

x′ = X(t, x, y, z, v)

y′ = Y (t, x, y, z, v)

z′ = Z(t, x, y, z, v)

The length of a rod put on the x-axis in the frame S is

l = x2 − x1

and in the frame S ′ the length will generally be different:

l′ = x′
2 − x′

1 = X(t, x2, 0, 0, v) − X(t, x1, 0, 0, v)

Homogeneity means, that if we move the left end of the rod in the frame S from x1 to

x1 +h, the right end will move to x2 +h giving the same length l = (x2 +h)− (x1 +h) =
x2−x1 and that in the frame S ′ the new length l′ = X(t, x2+h, 0, 0, v)−X(t, x1+h, 0, 0, v)

will also be the same as before:

X(t, x2, 0, 0, v) − X(t, x1, 0, 0, v) = X(t, x2 + h, 0, 0, v) − X(t, x1 + h, 0, 0, v)

so

X(t, x2 + h, 0, 0, v) − X(t, x2, 0, 0, v) = X(t, x1 + h, 0, 0, v) − X(t, x1, 0, 0, v)

and dividing by h and taking a limit h → 0:
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but x1 and x2 are arbitrary, so ∂X
∂x

is constant so X(t, x, y, z, v) is linear with respect to

x. Similar procedure shows, that X(t, x, y, z, v) is linear with respect to y, z and t, and

the same for Y , Z and T , which means, that
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x2−x1 and that in the frame S ′ the new length l′ = X(t, x2+h, 0, 0, v)−X(t, x1+h, 0, 0, v)

will also be the same as before:

X(t, x2, 0, 0, v) − X(t, x1, 0, 0, v) = X(t, x2 + h, 0, 0, v) − X(t, x1 + h, 0, 0, v)

so

X(t, x2 + h, 0, 0, v) − X(t, x2, 0, 0, v) = X(t, x1 + h, 0, 0, v) − X(t, x1, 0, 0, v)

and dividing by h and taking a limit h → 0:

∂X

∂x

∣

∣

∣

∣

∣

t,x2,0,0

=
∂X

∂x

∣

∣

∣

∣

∣

t,x1,0,0

but x1 and x2 are arbitrary, so ∂X
∂x

is constant so X(t, x, y, z, v) is linear with respect to

x. Similar procedure shows, that X(t, x, y, z, v) is linear with respect to y, z and t, and

the same for Y , Z and T , which means, that












t′

x′

y′

z′













= A(v)













t

x

y

z













x1 + h x2 + h



O O’
v

t

x’

x

t’

x1 x2 x1 + h x2 + h
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where K is an arbitrary constant independent on v. This is the Lorentz (K > 0) and

Galilean (K = 0) transformation.

Let us first review the equations above to see that they really are what we mean

by the homogeneity, isotropy and the principle of relativity. And then we’ll discuss the

above result more thoroughly.

3. Assumptions

3.1. Homogeneity

The most general transformation from S to S ′ is:

t′ = T (t, x, y, z, v)

x′ = X(t, x, y, z, v)

y′ = Y (t, x, y, z, v)

z′ = Z(t, x, y, z, v)

The length of a rod put on the x-axis in the frame S is

l = x2 − x1

and in the frame S ′ the length will generally be different:

l′ = x′
2 − x′

1 = X(t, x2, 0, 0, v) − X(t, x1, 0, 0, v)

Homogeneity means, that if we move the left end of the rod in the frame S from x1 to

x1 +h, the right end will move to x2 +h giving the same length l = (x2 +h)− (x1 +h) =
x2−x1 and that in the frame S ′ the new length l′ = X(t, x2+h, 0, 0, v)−X(t, x1+h, 0, 0, v)

will also be the same as before:

X(t, x2, 0, 0, v) − X(t, x1, 0, 0, v) = X(t, x2 + h, 0, 0, v) − X(t, x1 + h, 0, 0, v)

so

X(t, x2 + h, 0, 0, v) − X(t, x2, 0, 0, v) = X(t, x1 + h, 0, 0, v) − X(t, x1, 0, 0, v)

and dividing by h and taking a limit h → 0:

∂X

∂x

∣

∣

∣

∣

∣

t,x2,0,0

=
∂X

∂x

∣

∣

∣

∣

∣

t,x1,0,0

but x1 and x2 are arbitrary, so ∂X
∂x

is constant so X(t, x, y, z, v) is linear with respect to

x. Similar procedure shows, that X(t, x, y, z, v) is linear with respect to y, z and t, and

the same for Y , Z and T , which means, that












t′

x′

y′

z′













= A(v)













t

x

y

z













Simple derivation of the special theory of relativity without the speed of light axiom 6

where

A(v) =













a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33













and the coefficients aµν only depend on v. This is the assumption (1a).

3.2. Principle of relativity

The relativity principle means, that the functional form of the transformation A(v) is
the same when transforming from S ′ to S. The S ′ has the speed v as seen from S,

however, the reciprocal speed of S as seen from S ′ can be generally anything, so we

denote it by ϕ(v):












t

x

y

z













= A(ϕ(v))













t′

x′

y′

z′













from which we get:












t

x

y

z













= A(ϕ(v))A(v)













t

x

y

z













or

A(ϕ(v))A(v) = 1

In our derivation, we assume ϕ(v) = −v (and we get the assumption (1e)), because it

is natural. However, as is shown in [19], it is not necessary, but it adds a complexity
to the derivation and our motive is not to find the weakest assumptions possible, but a

reasonable set of natural assumptions, such that the Lorentz transformation inevitably

follows from them.

Now let S ′′ be moving with a speed u with respect to S ′. Then the relativity

principle requires, that transforming from S to S ′ and then to S ′′ is the same as

transforming from S to S ′′ directly (with some other speed w):

A(u)A(v) = A(w)

This is the assumption (1f).

3.3. Isotropy

Isotropy of space implies (among other things), that the transformation doesn’t change

when we reverse the x-axis, i.e. that reversing the x-axis, applying the transformation

A inhomogeneous term B(v) can be 
added, which amounts to translaQons in 
space and Qme. We do not consider it.

Lorentz Transformations - homogeneity 
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v
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for the speed v and reversing the x′-axis again is the same as applying the transformation

directly (but for some other speed v̄). The matrix that reverses the x axis is:

T =













1 0 0 0

0 −1 0 0

0 0 1 0
0 0 0 1













So the above statement means:

TA(v)T = A(v̄)

This is the assumption (1g).

The isotropy also implies, that since the only significant spacial direction is that of
the (x, x′)-axis – the direction of motion – the transformation A(v) must be the same

as if we first rotate about the (x, x′)-axis, transform and then rotate back:

R(−α)A(v)R(α) = A(v)

where the R(α) is a matrix, that rotates the system around the x axis:

R(α) =













1 0 0 0

0 1 0 0

0 0 cosα sin α

0 0 − sin α cos α













And this is the assumption (1h).

4. Discussion

In Appendix A it is shown, that the above equations imply

A(v) =















1√
1−Kv2

− Kv√
1−Kv2

0 0

− v√
1−Kv2

1√
1−Kv2

0 0

0 0 1 0

0 0 0 1















where K is a constant independent on v.

It can be shown [1] that K < 0 is inconsistent, so we set K = 1
c2

, where c is a

constant, independent of the frame of reference (because K is), with a dimension of
speed (possibly c = ∞) and we get our final formula:













t′

x′

y′

z′













=





















1
√

1− v
2

c
2

−
v

c
2

√

1− v
2

c
2

0 0

− v
√

1− v
2

c
2

1
√

1− v
2

c
2

0 0

0 0 1 0

0 0 0 1

































t

x

y

z













Lorentz Transformations - isotropy 
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and

A(w) =















Aw −A2
w
−1

wAw

0 0

−wAw Aw 0 0

0 0 1 0
0 0 0 1















so comparing the two expressions for Aw (the first and the second diagonal element) we

get:
A2

v − 1

v2A2
v

=
A2

u − 1

u2A2
u

where the left hand side only depends on v, the right hand side only on u, thus both

sides are equal to a constant K, that is independent of the frame of reference, because

it doesn’t depend on the coordinates or v, so we get (remember A(0)=1, so we take the

positive square root)

Av =
1√

1 − Kv2

and we arrive at the expression for the transformation between S and S ′:













t′

x′

y′

z′













=















1√
1−Kv2

− Kv√
1−Kv2

0 0

− v√
1−Kv2

1√
1−Kv2

0 0

0 0 1 0

0 0 0 1



























t

x

y

z













Appendix B. Rotations

For each α, we have:

R(α)A(v) = A(v)R(α)

where

R(α) =













1 0 0 0

0 1 0 0

0 0 cosα sin α

0 0 − sin α cos α













=

(

1 0

0 P (α)

)

P (α) =

(

cos α sin α

− sin α cos α

)

= 1 cosα + iσ2 sin α = eiασ2

A(v) =

(

A1 A2

A3 A4

)

and the σ1, σ2 and σ3 are the Pauli matrices. Then

R(α)A(v) − A(v)R(α) =

(

1 0

0 P (α)

)(

A1 A2

A3 A4

)

−
(

A1 A2

A3 A4

)(

1 0

0 P (α)

)

=

=

(

0 A2(1− P (α))

(P (α) − 1)A3 P (α)A4 − A4P (α)

)

= 0
Simple derivation of the special theory of relativity without the speed of light axiom 13

The parameter α is arbitrary, so A2 = A3 = 0 and (we set A4 = a01+a1σ1+a2σ2+a3σ3)

P (α)A4 − A4P (α) = eiασ2(a0 + a1σ1 + a2σ2 + a3σ3) − (a0 + a1σ1 + a2σ2 + a3σ3)e
iασ2 =

= eiασ2(a1σ1 +a3σ3)− (a1σ1 +a3σ3)e
iασ2 = i sin α (σ2(a1σ1 + a3σ3) − (a1σ1 + a3σ3)σ2) =

= 2 sin α(a1σ3 − a3σ1) = 0

Multiplying by σ3 from the left and taking a trace we get

Tr 2σ3 sin α(a1σ3 − a3σ1) = 2 sin α(a1 Tr1− ia3 Tr σ2) = 0

but Tr σ2 = 0 and Tr1 = 2 so a1 = 0. Similarly a3 = 0. So

A4 = a0 + a2σ2 = keiθσ2 = kP (θ)

where k =
√

a2
0 + a2

2, cos θ = a0

k
and sin θ = a2

k
. So the matrix A(v) can always be

written as:

A(v) =

(

A1 0

0 kP (θ)

)

for some values of the parameters k(v) and θ(v), that are functions of v. Note, that if

we rotate the axes before doing the transformation:

A(v)R(α) =

(

A1 0
0 kP (θ)

)(

1 0
0 P (α)

)

=

(

A1 0
0 kP (θ)P (α)

)

We see that by rotating around the x-axis by the angle α = −θ, we get

A(v)R(−θ) =

(

A1 0
0 k1

)

Geometrically this means, that the A(v)R(−θ) doesn’t rotate the y and z axes (only

scales them by a factor of k).
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Lorentz Transforma@ons - isotropy 

So we end up with 

𝐴 𝑣 =

𝐷 𝐶 0 0
𝐵 𝐴 0 0
0 0 𝐹 𝐺
0 0 𝐻 𝐿
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Lorentz Transformations - relativity 

Distances perpendicular to the direction of motion should not be affected: 
y’ = y
z’ = z

Therefore

𝐴 𝑣 =

𝐷 𝐶 0 0
𝐵 𝐴 0 0
0 0 1 0
0 0 0 1



Lorentz Transformations 
We are len with:

x’ = Ax + Bt
t’ = Cx + Dt 

The inverse relaQons are:

x = !"!#$%!

&! #$'

t = &%
!#'"!

&! #$'



Lorentz Transformations 

Consider now the origin of O‘, which is x’ = 0:

Ax + Bt = 0 ➔ x/t = -B/A = v         (velocity of O’ with respect to O)
Then: B = -vA

So we have:
x’ = A(x -vt)
t’ =  Cx + Dt



Lorentz Transforma@ons 

Now consider the origin of O, which is x = 0. From the inverse relations:

Dx’ – Bt’ = Dx’ + vAt’ 0 ➔ x’/t’ = -vA/D = -v  
(velocity of O with respect to O’)

Then: A = D



Lorentz Transformations 
So we have:

x’ = A(x – vt)
t’ = A(t + Cx/A)

The inverse relations are:

x = &("!)*%!)
&")*&'

t = &(%
!#,"!/&)
&")*&'

Because of relativity, since 
the two frames are 
equivalent, any difference in 
the transformations can only 
be due to the fact that O 
sees O’ moving with velocity 
v, while O’ sees O’ moving 
with velocity –v. Then:

A2 + vAC = 1 or

C = - &
" #.
*&



Lorentz Transforma@ons

So we end up with 
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Using (1e) and the symmetries (A.2) – (A.6) we get:

A(−v)A(v) =













D(v) −C(v) 0 0

−B(v) A(v) 0 0

0 0 E(v) 0

0 0 0 E(v)

























D(v) C(v) 0 0

B(v) A(v) 0 0

0 0 E(v) 0

0 0 0 E(v)













= 1

multiplying:












D2 − BC C(D − A) 0 0

B(A − D) A2 − BC 0 0

0 0 E2 0

0 0 0 E2













= 1

or

A2 − BC = 1 (A.7)

B(A − D) = 0 (A.8)

D2 − BC = 1 (A.9)

C(A − D) = 0 (A.10)

E2 = 1 (A.11)

From (A.11) we get E(v) = ±1, but from (1b) we have E(0) = 1 so E(v) = 1 (of course

we require that matrix elements are continuous).

If for some v the A(v) "= D(v), then B(v) = 0 from (A.8), thus A(v) = ±1 from
(A.7) and from (A.1) we get v = − 0

±1 = 0, which means that A(0) "= D(0), but that is

a contradiction with (1b), that asserts A(0) = D(0) = 1.

So we must have A(v) = D(v) for all v, then from (A.7) we get C(v) = A2(v)−1
B(v) and

from (A.1) follows B(v) = −vA(v):












t′

x′

y′

z′













=













A −A2−1
vA

0 0
−vA A 0 0

0 0 1 0

0 0 0 1

























t

x

y

z













where A(v) is an unknown function of v, except that A(0) = 1 (follows from (1b)). Now
we use (1f):

A(u)A(v) =















Au −A2
u
−1

uAu

0 0

−uAu Au 0 0

0 0 1 0

0 0 0 1





























Av −A2
v
−1

vAv

0 0

−vAv Av 0 0

0 0 1 0

0 0 0 1















= A(w)

Multiplying the matrices:

A(u)A(v) =













AuAv + (A2
u − 1) vAv

uAu

. . . 0 0

. . . AuAv + (A2
u − 1)uAu

vAv

0 0

0 0 1 0

0 0 0 1













Now we use again relativity
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where A(v) is a matrix

A(v) =













a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33













(1a)

and the coefficients aµν only depend on v (homogeneity). We require

A(0) = 1 (1b)

and also (relation between origins and parallel axes)

x′ = 0 when x = vt, y = 0, z = 0 (1c)

x′ = 0 y′ = 0 when x = 0, y = 0, z arbitrary (1d)

For each v (relativity):

A(−v)A(v) = 1 (1e)

For each u and v there exist w such that (relativity):

A(u)A(v) = A(w) (1f)

For each v there exist v̄ such that (isotropy)

TA(v)T = A(v̄) (1g)

where the matrix T is

T =













1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1













For each v and each α (isotropy):

R(−α)A(v)R(α) = A(v) (1h)

where the matrix R(α) is:

R(α) =













1 0 0 0
0 1 0 0

0 0 cosα sin α

0 0 − sin α cos α













In Appendix A it is shown, that by a pure algebraic manipulation, the above

assumptions directly imply that

A(v) =















1√
1−Kv2

− Kv√
1−Kv2

0 0

− v√
1−Kv2

1√
1−Kv2

0 0

0 0 1 0

0 0 0 1














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Using (1e) and the symmetries (A.2) – (A.6) we get:

A(−v)A(v) =













D(v) −C(v) 0 0

−B(v) A(v) 0 0

0 0 E(v) 0

0 0 0 E(v)

























D(v) C(v) 0 0

B(v) A(v) 0 0

0 0 E(v) 0

0 0 0 E(v)













= 1

multiplying:












D2 − BC C(D − A) 0 0

B(A − D) A2 − BC 0 0

0 0 E2 0

0 0 0 E2













= 1

or

A2 − BC = 1 (A.7)

B(A − D) = 0 (A.8)

D2 − BC = 1 (A.9)

C(A − D) = 0 (A.10)

E2 = 1 (A.11)

From (A.11) we get E(v) = ±1, but from (1b) we have E(0) = 1 so E(v) = 1 (of course

we require that matrix elements are continuous).

If for some v the A(v) "= D(v), then B(v) = 0 from (A.8), thus A(v) = ±1 from
(A.7) and from (A.1) we get v = − 0

±1 = 0, which means that A(0) "= D(0), but that is

a contradiction with (1b), that asserts A(0) = D(0) = 1.

So we must have A(v) = D(v) for all v, then from (A.7) we get C(v) = A2(v)−1
B(v) and

from (A.1) follows B(v) = −vA(v):












t′

x′

y′

z′













=













A −A2−1
vA

0 0
−vA A 0 0

0 0 1 0

0 0 0 1

























t

x

y

z













where A(v) is an unknown function of v, except that A(0) = 1 (follows from (1b)). Now
we use (1f):

A(u)A(v) =















Au −A2
u
−1

uAu

0 0

−uAu Au 0 0

0 0 1 0

0 0 0 1





























Av −A2
v
−1

vAv

0 0

−vAv Av 0 0

0 0 1 0

0 0 0 1















= A(w)

Multiplying the matrices:

A(u)A(v) =













AuAv + (A2
u − 1) vAv

uAu

. . . 0 0

. . . AuAv + (A2
u − 1)uAu

vAv

0 0

0 0 1 0

0 0 0 1












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and

A(w) =















Aw −A2
w
−1

wAw

0 0

−wAw Aw 0 0

0 0 1 0
0 0 0 1















so comparing the two expressions for Aw (the first and the second diagonal element) we

get:
A2

v − 1

v2A2
v

=
A2

u − 1

u2A2
u

where the left hand side only depends on v, the right hand side only on u, thus both

sides are equal to a constant K, that is independent of the frame of reference, because

it doesn’t depend on the coordinates or v, so we get (remember A(0)=1, so we take the

positive square root)

Av =
1√

1 − Kv2

and we arrive at the expression for the transformation between S and S ′:













t′

x′

y′

z′













=















1√
1−Kv2

− Kv√
1−Kv2

0 0

− v√
1−Kv2

1√
1−Kv2

0 0

0 0 1 0

0 0 0 1



























t

x

y

z













Appendix B. Rotations

For each α, we have:

R(α)A(v) = A(v)R(α)

where

R(α) =













1 0 0 0

0 1 0 0

0 0 cosα sin α

0 0 − sin α cos α













=

(

1 0

0 P (α)

)

P (α) =

(

cos α sin α

− sin α cos α

)

= 1 cosα + iσ2 sin α = eiασ2

A(v) =

(

A1 A2

A3 A4

)

and the σ1, σ2 and σ3 are the Pauli matrices. Then

R(α)A(v) − A(v)R(α) =

(

1 0

0 P (α)

)(

A1 A2

A3 A4

)

−
(

A1 A2

A3 A4

)(

1 0

0 P (α)

)

=

=

(

0 A2(1− P (α))

(P (α) − 1)A3 P (α)A4 − A4P (α)

)

= 0

(A2
v � 1)

<latexit sha1_base64="+JH6IVbwsCWXuK6zfjqlAk/VJW0=">AAAB/XicbVC7TsNAEDyHVwivACXNiQgpFER2FAnoAjSUQSIPyTHR+bIJp5wfultHiqyIr6CFig7R8i0U/Au2cQGBqUYzu9rZcUMpNJrmh1FYWl5ZXSuulzY2t7Z3yrt7HR1EikObBzJQPZdpkMKHNgqU0AsVMM+V0HUnV6nfnYLSIvBvcRaC47GxL0aCM0wku3pxVx9M6Qm1jgflilkzM9C/xMpJheRoDcqf/WHAIw985JJpbVtmiE7MFAouYV7qRxpCxidsDHZCfeaBduIs8pweRZphQENQVEiaifBzI2ae1jPPTSY9hvd60UvF/zw7wtGZEws/jBB8nh5CISE7pLkSSRdAh0IBIkuTAxU+5UwxRFCCMs4TMUrKKSV9WIvf/yWdes1q1M5vGpXmZd5MkRyQQ1IlFjklTXJNWqRNOAnII3kiz8aD8WK8Gm/fowUj39knv2C8fwFVvpQO</latexit>
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u
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sides are equal to a constant K, that is independent of the frame of reference, because

it doesn’t depend on the coordinates or v, so we get (remember A(0)=1, so we take the
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
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























t

x

y

z












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)

= 1 cosα + iσ2 sin α = eiασ2

A(v) =

(

A1 A2

A3 A4

)
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)(

1 0

0 P (α)

)

=

=

(
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(P (α) − 1)A3 P (α)A4 − A4P (α)

)

= 0



Lorentz Transformations

Simple derivation of the special theory of relativity without the speed of light axiom 12
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










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w
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0 0
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0 0 1 0
0 0 0 1















so comparing the two expressions for Aw (the first and the second diagonal element) we

get:
A2

v − 1

v2A2
v

=
A2

u − 1

u2A2
u

where the left hand side only depends on v, the right hand side only on u, thus both

sides are equal to a constant K, that is independent of the frame of reference, because

it doesn’t depend on the coordinates or v, so we get (remember A(0)=1, so we take the

positive square root)

Av =
1√

1 − Kv2

and we arrive at the expression for the transformation between S and S ′:













t′

x′

y′

z′













=















1√
1−Kv2

− Kv√
1−Kv2

0 0
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1−Kv2

1√
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0 0 0 1


























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


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Appendix B. Rotations

For each α, we have:

R(α)A(v) = A(v)R(α)

where

R(α) =













1 0 0 0

0 1 0 0

0 0 cosα sin α

0 0 − sin α cos α













=

(

1 0

0 P (α)

)

P (α) =

(

cos α sin α

− sin α cos α

)

= 1 cosα + iσ2 sin α = eiασ2

A(v) =

(

A1 A2

A3 A4

)

and the σ1, σ2 and σ3 are the Pauli matrices. Then

R(α)A(v) − A(v)R(α) =

(

1 0

0 P (α)

)(

A1 A2

A3 A4

)

−
(

A1 A2

A3 A4

)(

1 0

0 P (α)

)

=

=

(

0 A2(1− P (α))

(P (α) − 1)A3 P (α)A4 − A4P (α)

)

= 0

which are the Lorentz transformations… almost.
Note that so far we did not use the constancy of the speed of light
Note that it must be: v < K. There is a limit to the allowed speeds



Lorentz Transformations – speed of light
Consider an electromagneQc wave 
In O:  x2 + y2 + z2 - c2t2 = 0                   (A)      
In O’:  x’2 + y’2 + z’2 - c2t’2 = 0             (B)

By using Lorentz transformaQons to go from (B) to (A):

This should be equivalent to (A). This implies:  K = 1/c2

<latexit sha1_base64="hVCTNp4mkCPfiIJNXaEBiyOwhGM="></latexit>
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Length contraction

O O’
v

t

x’

x

t’

x1 x2

Formula on a wall in Leiden

Einstein also argued in that paper, that length contraction is not simply the product of arbitrary
definitions concerning the way clock regulations and length measurements are performed. He
presented the following thought experiment: Let A'B' and A"B" be the endpoints of two rods of the
same proper length L0, as measured on x' and x" respectively. Let them move in opposite directions
along the x* axis, considered at rest, at the same speed with respect to it. Endpoints A'A" then meet
at point A*, and B'B" meet at point B*. Einstein pointed out that length A*B* is shorter than A'B' or
A"B", which can also be demonstrated by bringing one of the rods to rest with respect to that
axis.[22]

Due to superficial application of the contraction formula some paradoxes can occur. Examples are
the ladder paradox and Bell's spaceship paradox. However, those paradoxes can simply be solved
by a correct application of relativity of simultaneity. Another famous paradox is the Ehrenfest
paradox, which proves that the concept of rigid bodies is not compatible with relativity, reducing
the applicability of Born rigidity, and showing that for a co-rotating observer the geometry is in fact
non-Euclidean.

Length contraction refers to measurements of
position made at simultaneous times according to a
coordinate system. This could suggest that if one
could take a picture of a fast moving object, that the
image would show the object contracted in the
direction of motion. However, such visual effects
are completely different measurements, as such a
photograph is taken from a distance, while length
contraction can only directly be measured at the
exact location of the object's endpoints. It was
shown by several authors such as Roger Penrose
and James Terrell that moving objects generally do
not appear length contracted on a photograph.[23]

This result was popularized by Victor Weisskopf in
a Physics Today article.[24] For instance, for a small angular diameter, a moving sphere remains
circular and is rotated.[25] This kind of visual rotation effect is called Penrose-Terrell rotation.[26]

Length contraction can be derived in several ways:

In an inertial reference frame S,  and  shall denote the endpoints of an object in motion in this
frame. There, its length  was measured according to the above convention by determining the
simultaneous positions of its endpoints at . Now, the proper length of this object in S' shall
be calculated by using the Lorentz transformation. Transforming the time coordinates from S into

Paradoxes

Visual effects

Derivation

Known moving length

S' results in different times, but this is not problematic, as the object is at rest in S' where it does
not matter when the endpoints are measured. Therefore, the transformation of the spatial
coordinates suffices, which gives:[7]

Since , and by setting  and , the proper length in S' is given by

with respect to which the measured length in S is contracted by

According to the relativity principle, objects that are at rest in S have to be contracted in S' as well.
By exchanging the above signs and primes symmetrically, it follows:

Thus the contracted length as measured in S' is given by:

Conversely, if the object rests in S and its proper length is known, the simultaneity of the
measurements at the object's endpoints has to be considered in another frame S', as the object
constantly changes its position there. Therefore, both spatial and temporal coordinates must be
transformed:[27]

Computing length interval  as well as assuming simultaneous time measurement 
, and by plugging in proper length , it follows:

Equation (2) gives

which, when plugged into (1), demonstrates that  becomes the contracted length :

.

Known proper length



Length contractionS' results in different times, but this is not problematic, as the object is at rest in S' where it does
not matter when the endpoints are measured. Therefore, the transformation of the spatial
coordinates suffices, which gives:[7]

Since , and by setting  and , the proper length in S' is given by

with respect to which the measured length in S is contracted by

According to the relativity principle, objects that are at rest in S have to be contracted in S' as well.
By exchanging the above signs and primes symmetrically, it follows:

Thus the contracted length as measured in S' is given by:

Conversely, if the object rests in S and its proper length is known, the simultaneity of the
measurements at the object's endpoints has to be considered in another frame S', as the object
constantly changes its position there. Therefore, both spatial and temporal coordinates must be
transformed:[27]

Computing length interval  as well as assuming simultaneous time measurement 
, and by plugging in proper length , it follows:

Equation (2) gives

which, when plugged into (1), demonstrates that  becomes the contracted length :

.

Known proper length

Moving objects are 
contracted



Length contraction - comments

As we saw, length contraction was first proposed by Lorentz. He assumed 
that when moving through the aether, the intermolecular forces change in 
such a way to cause the contraction of the object. 

According to Einstein, the situation is entirely different. The contraction is a 
property of space, which affects objects living in it. In fact, in place of the 
rod we could have considered two “mathematical” points in spacetime.



Time dila@on

O O’
v

t

x’

x

t’ Clock at rest in O’. It emits two Qcks at 
Qmes t1’ and t2’. The Qme difference is:

T’ = t2’ – t1’

The two spaceQme events are (t1’, x’) and 
(t2’, x’) – same space point since it is at rest. 

Then according to Lorentz transformations:
t1 = 𝛾(t1’ + (v/c2) x’)
t2 = 𝛾(t2’ + (v/c2) x’)

T = t2 – t1 = 𝛾 T’ > T’



Time dila@on - comments
Moving clocks run slower. As for length contraction, this is not a feature of 
the mechanical working of the clock, is it a property of time.

Best experimental evidence: increase of the lifetime of radioactive particles 
moving at speed close to c.  

6 CHAPTER 6. SPECIAL RELATIVITY

6.3.3 Simultaneity

In Newtonian dynamics, where time is absolute, all observers agree on the set of events that are
simultaneous with a given event. Clearly, they will not agree in Special Relativity because the
transformation law (6.2) means that time is different in different frames.12 To an observer stationary
in S, all events with

t = constant

are simultaneous. Similarly, to an observer stationary in S
�, the all events with

t
� = constant

but this corresponds to
t− vx/c

2 = constant

in S.

ct
ct
�

Lines of simultaneity in S (horizontal, in the diagram on the left) and in S
� (slanted, in the diagram

on the right).
Note that, given an event E outside the light cone of the event (0, 0), there exists a Lorentz

transformation to a new frame in which these two events are simultaneous, but if the event E lies
inside the light cone of the event (0, 0), there is no Lorentz transformation to a new frame in which
these two events are simultaneous. It therefore makes sense to say that events within the light cone
of (0, 0) with t > 0 (the future light cone) are to the future of (0, 0) and events within the light cone
with t < 0 (the past light cone) are to the past of (0, 0); this statement is invariant under Lorentz
transformations (there is no frame, related to the original frame by a Lorentz transformation, in
which the statement is false). It follows that the event at the origin can be influenced by events
within or on the past light cone but not by other events (assuming of course that no signals can
travel fast than the speed of light).

6.4 Time dilation and length contraction

These two phenomena are closely related: the same observations can often be explained in one
frame in terms of time dilation and in another frame in terms of length contraction. It is helpful,
before defining exactly what these terms mean and doing the mathematics, to give an example.

6.4.1 Meson decay

A muon is a charged particle that decays into an electron or positron, a neutrino and an anti-
neutrino:

µ
+ → e

+ + n1 + n2 or µ
− → e

− + n1 + n2

Muons occur in cosmic rays travelling through the atmosphere at speeds very close to that of light.13
In 1941, Rossi and Hall measured the flux of muons in a laboratory at 6300 feet above sea level
(top of Mount Washington) and in a laboratory at 2000 feet above sea level (bottom of Mount
Washington).

At the top they measured 550 muons per hour. At the foot (simultaneously) they measured
422 muons per hour. The half-life of the muon is 1.56 microseconds.

12They don’t have to argue over it: all they have to do is respect the other observer’s point of view and then there
is no inconsistency, though you wouldn’t think so from the spats that occur in some web sites.

13They are created by collisions between protons in cosmic rays with atoms of air in the upper atmosphere.



Muon decay
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From this information, one can calculate how long the muons spend travelling between the
two laboratories and hence the speed of the muons and the speed turns out to be much faster than
the speed of light. The muons travel a distance D at speed v taking time T = D/v; during this time
the number N(T ) of muons remaining is given by

N(T ) = N(0)
°

1
2

¢(T/Thalf)
.

Thus

v =
D

T
=

D log 1
2

Thalf log (N(T )/N(0))
=

4300 log 1
2

1.56 log(422/550)
= 7212

in units of feet per microsecond. The speed of light in these units is about 1000.
To put it another way, the observed flux of muons at the lower laboratory is far too high for

particles covering the distance at less than the speed of light: many more should have decayed in
the travel time.

What is the explanation? As we will see, it depends on whether we work in the rest frame of
the muon or the rest frame of the laboratory, the two being in relative motion at close to the speed
of light.

In the rest frame of the laboratory, the explanation is time dilation: time in the moving frame
is dilated relative to time in the rest frame, which means that clocks are ticking slower, by a factor
of γ, in the moving frame. Suppose the travel time is T seconds as measured (by distance/speed)
in the laboratory frame. Then in this interval, only T/γ seconds have elapsed in the moving muon
frame, so far fewer muons will decay, corresponding to a half-life of 1.56γ microseconds.

But how can this be explained in the muon frame, where the half-life is 1.56 microseconds?
The explanation now is length contraction. In the rest frame of the muon, Mount Washington,
which is zooming towards the muon at high speed, is only 6000/γ feet high, because lengths of
moving rulers are contracted. Thus the time taken to cover this contracted distance is short: only
T/γ seconds. There is little time for the muons to decay.

6.4.2 Length contraction

We consider a rod of length L
� (in its own rest frame). It is moving (along its length, like a javelin)

at velocity v relative to the lab frame.
The space-time diagrams below show the world lines of the two ends of the rod, in the lab

frame (left hand diagram) and in the rest frame of the rod (right hand diagram).

ct

x

x
�

ct
�

x1 x2

x
�
4

x
�
3

rod rod

The event with coordinates (0, x1) and (0, x2) in S are simultaneous in S and the events with
coordinates (0, x

�
3) and (0, x

�
4) in S

� are simultaneous in S
�.14

What does it mean to say that the rod has length L in S? Clearly, you have to contrive to
measure the position of each end of the rod at the same time, and then subtract the x coordinates:
that will give you the length. Thus the length L in S of the moving rod is given by

L = x2 − x1

14You can save a bit of writing by choosing axes such that x1 = x�
3 = 0; it is just a translation of the origins of

the two frames.
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t2 – t1 = 𝛾(t2’ – t1’) + 𝛾(v/c2)(x2’ – x1’) = 𝛾(v/c2)(x2’ – x1’) ≠ 0 

The two events are not simultaneous in O 
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6.4. TIME DILATION AND LENGTH CONTRACTION 9

meson), which is why fewer decay in the transit time than would have been expected in Newtonian
dynamics. This is time dilation.18

Of course, one can present this result from the point of view of the observer in S
�, who sees

S as the moving frame. Such an observer would notice that the time interval between two events
in his or her rest frame (S�) is shorter than in any other frame.

It is instructive to see what would have happened if we had woodenly used the forward
transformation (6.2 with v instead of −v) to obtain (6.13). We have, for both t

�
1 and t

�
2,

t
� = γ(t− vx/c

2), 0 = x
� = γ(x− vt).

The second of these equations gives x = vt, which we knew anyway, and substituting this into the
first equation gives

t
� =

t− vx/c
2

p
1− v2/c2

(by definition of γ)

=
t− v

2
t/c

2

p
1− v2/c2

(using x = vt)

= t/γ

which is the same result as before.
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6.4.4 The ladder-and-barn non-paradox

A builder runs towards a barn of length L carrying a ladder of length 2L at a speed19 such that
γ = 2 so that the length contraction factor is 1

2 .

• In the barn’s rest frame, the moving ladder undergoes length contraction and has length L.
It can therefore fit snugly in the barn.

• In the builder’s rest frame, the barn is rushing towards the ladder and undergoes length
contraction to L/2. There is no way the ladder can fit in.

How can these two statements be reconciled?

The answer stems, as is often the case with apparent paradoxes in relativity, from loose use
of language. In this case, it is the use of the word ‘fit’; what does it mean to say the ladder ‘fits’‘
exactly into the barn? Clearly, we mean that the two events:

18I’m not sure that this is a helpful description: what exactly is dilated?? It is better, as always in Special
Relativity, to fix on a precise space-time description of the situation: what events we are considering and in which
frame.

19If v =
√

3c/2, then γ−2 = 1− 3/4 and γ = 2.
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10 CHAPTER 6. SPECIAL RELATIVITY

(i) front end of ladder hits back of barn; (ii) back end of ladder goes through the door

are simultaneous. But observers in different frames do not agree on simultaneity, so ‘fit into’ is a
frame-dependent concept: we should not expect observers in different frames to agree so there is
no paradox to account for. The two statements are true and compatible and that is really the end
of the story. However, we can investigate further.

The situation can best be understood by means of space-time diagrams.

ct

x

L1 L2

ct

x

�1 �2

The lines L1 (x = 0) and L2 (x = L) in the left hand figure are the world lines of the ends
of the barn in axes corresponding to the rest-frame of the barn; the barn door is L1. The lines of
simultaneity in the barn frame, t = constant, are shown as broken lines.

The lines �1 (x = vt) and �2 (x = vt + L) in the right hand figure are the world lines of
the ends of the ladder, again in the axes corresponding to the rest-frame of the barn. The lines of
simultaneity in the ladder frame, t

� = constant, i.e. t − vx/c
2 = constant, are shown as broken

lines. The light cone is shown as a dotted line.

x
A

B

B
�

ct

The previous diagrams are superimposed. The event A is ‘back of ladder goes through barn door’.
The event B is ‘front of ladder hits back of barn’. In the barn frame, these events are simultaneous.
In the ladder frame, A is simultaneous with B

�: by the time A occurs, the front of the ladder has
burst through the back of the barn.

Regarded from the point of view of a space-time diagram, the paradox dissolves. One con-
sequence of time not being invariant under Lorentz transformations is that the ladder ‘fits in’ the
barn in one frame but does not ‘fit in’ in another.

6.4.5 The twins non-paradox

Twins Alice and Bob synchronise watches in an inertial frame and then Bob sets off at speed
√

3c/2,
which corresponds to γ = 2. When Bob has been travelling for a time T according to Alice, he
reaches Proxima Centauri20 and turns round by means of accelerations that are very large in his

20The closest star to the Sun: about 4.2 light years away.
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frame and goes back to Alice at the same speed. Since Bob is in a moving frame, relative to Alice,
his time runs slower by a factor of γ than Alice’s, so he will only have aged by 2T × 1

2 on the two
legs of the journey. Thus when they meet up again, Alice has aged by 2T but Bob has aged only
by T . This is not the paradox: it is just a fact of life.21

The difficulty some people have with Alice and Bob is the apparent symmetry: surely exactly
the same argument could be made, from Bob’s point of view, to show that Alice would be the
younger when they met again? But the same argument cannot be made for Bob because the
situation is not symmetric: Alice’s frame is inertial, whereas Bob has to accelerate to turn round:
while he is accelerating, his frame is not inertial.

BUT, some people might say, suppose we just consider the event of Bob’s arrival at Proxima
Centauri, so as not to worry about acceleration. Now the situation is symmetric. Surely from
Alice’s point of view, when Bob arrives he will have aged half as much as Alice, and from Bob’s
point of view, when he arrives, Alice will have aged half as much as Bob? The answer to this is a
simple ‘yes’. Surely, they would then say, this doesn’t make sense? But it does, as long as you are
careful about the word ‘when’.

x

ct

C

B

A

P

In the above diagram, Alice’s world line is the ct (containing points A, B and C) axis and Bob’s
world line is the line containing A and P . P represents the event ‘Bob arrives at Proxima Centauri’.

The line CP is a line of simultaneity in Alice’s frame and C is the event ‘Alice is at this point
in space-time when — according to Alice — Bob arrives at Proxima Centauri’; the first use of the
word ‘when’.

The line BP is a line of simultaneity in Bob’s frame and B is the event ‘Alice is at this point
in space-time when — according to Bob — he arrives Proxima Centauri’; the second use of the
word ‘when’. The two ‘whens’ don’t mean the same thing, since one is a ‘when’ in Alice’s frame
the other is a ‘when’ in Bob’s frame.

We can do the calculation. Let us assume for simplicity that Bob sets off the moment he
is born. The event C has coordinates (cT, 0) in Alice’s frame, and the event P has coordinates
(cT, vT ). In Bob’s frame, the elapsed time T

� is given by the Lorentz transformation:

T
� = γ(T − v

2
T/c

2) = T/γ = 1
2T.

This is just the usual time dilation calculation. Thus Bob and Alice agree that Bob’s age at Proxima
Centauri is 1

2T . In Alice’s frame, Bob has aged half as much as Alice.
We now work out the coordinates of the event B, sticking with Alice’s frame. The line of

simultaneity, BP has equation t
� = 1

2T , i.e. (using a Lorentz transformation)

γ(t + vx/c
2) =

1
2
T

21In 1971, Hafele and Keating packed four atomic (caesium) clocks into suitcases and went round the Earth, in
different directions, on commercial flights. When they returned, they found that the clocks were slightly behind a
clock remaining at the first airport. The result was somewhat inconclusive. The calculations are complicated by the
fact that the rate of the clocks is also affected by the gravitational field: clocks run slower in stronger fields, and in
fact the two affects balance at 3R/2 (where R is the radius of the Earth). Thus the heights of the aircraft had to be
taken into account as well as their speeds, and it turns out that the two effects are of comparable magnitude, namely
of the order of 100 nanoseconds.
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(cT, vT ). In Bob’s frame, the elapsed time T

� is given by the Lorentz transformation:
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This is just the usual time dilation calculation. Thus Bob and Alice agree that Bob’s age at Proxima
Centauri is 1

2T . In Alice’s frame, Bob has aged half as much as Alice.
We now work out the coordinates of the event B, sticking with Alice’s frame. The line of
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� = 1
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21In 1971, Hafele and Keating packed four atomic (caesium) clocks into suitcases and went round the Earth, in
different directions, on commercial flights. When they returned, they found that the clocks were slightly behind a
clock remaining at the first airport. The result was somewhat inconclusive. The calculations are complicated by the
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of the order of 100 nanoseconds.
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so the point B, for which x = 0, has coordinates ( 1
2cT/γ, 0), i.e. ( 1

4cT, 0). Alice’s age when,
according to Bob, he arrives at Proxima Centauri is therefore 1

4T , which is indeed half of Bob’s age.
So no paradox there either.

BUT, some other people might say, suppose Bob does not turn round but just synchronises
his watch at Proxima Centauri with that of another astronaut, Bob�, who is going at speed v in the
opposite direction (like two trains passing at a station). Each leg of the journey is then symmetric,
so why should Alice age faster or slower Bob and Bob� during their legs of the journey? There’s
no mystery here, either: the situation is indeed symmetric and Alice does indeed age by the same
amount as Bob+Bob�. But at the synchronisation event, Bob and Bob� do not agree on Alice’s age,
because in their different frames the synchronisation event is simultaneous with different times in
Alice’s life.

Let us see how this looks in a space-time diagram.
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The outward journey. The heavy line is
Bob’s world line. The dotted line through
the origin is the light cone. The dashed
lines are the lines of simultaneity in Bob’s
frame.

The return journey. The heavy line is
the world line of Bob�. The dotted line
through the turn-round event is the light
cone. The dashed lines are the lines of
simultaneity in the frame of Bob�.
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The superposition of the previous two pictures.
As before, Bob ages by 1

2T on the outward journey to Proxima Centauri. By symmetry Bob�

ages by 1
2T on the inward journey from Proxima Centauri.

However, according to Bob’s idea of time, the clock synchronisation occurs when Alice is
at B, and according to Bob�’s it occurs when Alice is at D. Thus Bob�’s clock will read time T

when he meets Alice and Alice’s clock will read 2T . But the time Alice spends between B and D

is accounted for by Bob in his journey after Proxima Centauri and by Bob� in his journey before
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Alice. She: T + T. They: T/2 + T/2
Bobs. Them: T/2 + T/2. She: T/4 + T/4
However BD is missing, which accounts 
for another T/2 + T/2 for the Bobs
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6.6 Proper time

6.6.1 Definition

The fact that the concept of time is frame dependent can be rather unsettling. It would be good to
have some quantity that corresponds to time but does not vary at the whim of the observer. Such
a quantity exists and is called proper time.

We define the proper time ∆τ between two events E1 and E2 on the world line of an observer,
with coordinates (ct, x) and (ct + c∆t, x + ∆x) respectively, by
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is in the past light cone of E2, or vice versa (which is why we specified that the events are on the
world line of an observer). In the former case, we choose ∆τ ≥ 0.

Note that (∆τ)2 > 0 if the vector joining E1 and E2 is time-like, and (∆τ)2 = 0 if the vector
joining E1 and E2 is null. For points joined by a space-like vector, one can define proper distance,
s, by

(∆s)2 = (∆x)2 − c
2(∆t)2 .

In the rest frame of the observer, ∆x = 0, and ∆τ = ∆t. Thus proper time measures rest
frame time.
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Again, we note that if these points represent events on the world line of an observer then in the
rest frame of the observer

dτ = dtrest

so infinitesimal proper time measures infinitesimal time displacements in the rest frame; ticks of
the observer’s clock. Comparing with (6.18) we see that in a general frame

p
dt2 − dx2/c2 = dτ = dtrest

so
dt > dtrest

which is time dilation.
Rather confusingly, this comparison cannot be easily inferred from a space-time diagram: in

fact, there is a temptation (which must be resisted) to assume that lengths behave in a Euclidean
fashion (so that Pythagoras applies) which would lead to completely incorrect conclusions22. This
illustrated in the following diagrams. In both diagrams, the null cone is represented by the pair of
dotted lines.

∆t ∆trest

E1

E2

∆t

∆trest

E1

E2

E1 and E2 are events on the world line
of an observer represented in this dia-
gram as moving with respect to a ‘gen-
eral’ observer. The horizontal dashed line
is simultaneity for the ‘general’ observer.
∆trest < ∆t, even though it doesn’t look
as if this is the case.

E1 and E2 are events on the world line
of an observer represented in this dia-
gram as stationary. The world line of the
‘general’ observer is slanted. The dashed
lines are simultaneity for the ‘general’ ob-
server. ∆trest < ∆t, which does look to be
the case, though the difference in times is
not as much as it ‘seems’.

Now suppose that these two points represent events on the world line of an observer moving
with velocity v with respect to some given frame (the ‘lab frame’). The world line can be written
in the form

x = x(t)

in which case
v =

dx

dt
.

Then

dτ
2 = dt

2

µ
1− 1

c2

(dx)2

(dt)2

∂

= dt
2

µ
1− v

2

c2

∂

and
dt

dτ
= γ. (6.19)

Note that here γ is not linked to the velocity between two frames explicitly, though of course it is
implicitly related to the velocity between the rest frame of the observer and the lab frame.

22You wouldn’t dream of using Pythagoras in an A-level type distance-time graph; nevertheless, it is a good instinct
to suppose that there is some concept of length that can be applied to a space-time diagram in Special Relativity
and this is touched on in the next section.

By construction, the 
proper time is the same 
for all inertial frames, 
since:
c2dt2 – dx2 = c2dt’2 – dx’2
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From Lorentz transformations

The cosmos of Galileo consists of absolute space and time and the addition of velocities corresponds to composition of Galilean transformations.
The relativity principle is called Galilean relativity. It is obeyed by Newtonian mechanics.

According to the theory of special relativity, the frame of the ship has a different clock rate and distance measure, and the notion of simultaneity in
the direction of motion is altered, so the addition law for velocities is changed. This change is not noticeable at low velocities but as the velocity
increases towards the speed of light it becomes important. The addition law is also called a composition law for velocities. For collinear
motions, the speed of the object (e.g. a cannonball fired horizontally out to sea) as measured from the ship would be measured by someone
standing on the shore and watching the whole scene through a telescope as[5]

The composition formula can take an algebraically equivalent form, which can be easily derived by using only the principle of constancy of the
speed of light,[6]

The cosmos of special relativity consists of Minkowski spacetime and the addition of velocities corresponds to composition of Lorentz
transformations. In the special theory of relativity Newtonian mechanics is modified into relativistic mechanics.

The formulas for boosts in the standard configuration follow most straightforwardly from taking differentials of the inverse Lorentz boost in

standard configuration.[7][8] If the primed frame is travelling with speed  with Lorentz factor  in the positive x-direction
relative to the unprimed frame, then the differentials are

Divide the first three equations by the fourth,

or

which is

Transformation of velocity (Cartesian components)

in which expressions for the primed velocities were obtained using the standard recipe by replacing v by –v and swapping primed and unprimed
coordinates. If coordinates are chosen so that all velocities lie in a (common) x–y plane, then velocities may be expressed as

(see polar coordinates) and one finds[2][9]

Transformation of velocity (Plane polar components)

Special relativity

Standard configuration
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Therefore
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with no surprise
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We consider the simple case of acceleration 
along the x (x’) axis.

We start with the velocity at a given time:
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x

t’

a

a'
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6.7 Constant acceleration in Special Relativity

This section is not examinable and is included for interest
It is often said, erroneously, that Special Relativity cannot deal with acceleration because

it deals only with inertial frames, and that therefore acceleration must be the preserve of General
Relativity. We must, of course, only allow transformations between inertial frames; the frames must
not accelerate, but the observers in the frame can move as the please. Special Relativity can deal
with anything kinematic but General Relativity is required when gravitational forces are present.

As an example of non-uniform motion, we consider an observer who is moving with constant
acceleration.

The first step is to define what we mean by ‘constant acceleration’ which is certainly a frame-
dependent concept. The most common situation is that of an observer in a rocket experiencing
a constant ‘G-force’ due to the rocket thrust. This corresponds to the acceleration measured in
the instantaneous (inertial) rest frame of the rocket being constant (acceleration having the usual
definition of dv/dt), so we take this to be our definition.

For reasons that will later become clear, we need to determine the way that acceleration
transforms under Lorentz transformations. We can do this in a number of ways. We will here
start with the velocity transformation law (6.20) for an observer with world line given in S by°
ct(τ), x(τ)

¢
and in S

� by
°
ct
�(τ), x�(τ)

¢
. Forgetting the acceleration problem for the moment, we

assume that these frames have a constant relative velocity v.
The velocities u and u

� in the two frames are related by

u
� =

u− v

1− uv/c2
≡ (c2

/v)(1− v
2
/c

2)
1− uv/c2

− c
2

v

(the equivalent form is just a bit of algebra to obtain a useful expression). Differentiating this with
respect to τ gives

du
�

dτ
=

1− v
2
/c

2

(1− uv/c2)2
du

dτ
. (6.22)

The acceleration, a, in S is by definition du/dt and similarly for S
� so

a
� =

du
�

dt�

=
du

�

dτ

¡
dt

�

dτ

=
1− v

2
/c

2

(1− uv/c2)2
du

dτ

¡
dt

�

dτ
(using (6.22)

=
1− v

2
/c

2

(1− uv/c2)2
du

dτ

¡
γ(1− uv/c

2)
dt

dτ
(using (6.20))

=
(1− v

2
/c

2) 3
2

(1− uv/c2)3
a. (6.23)

As mentioned above there are other ways of obtaining this result; for example, more elegantly using
four-vectors (see section 6.7).

In the situation we have in mind, S
� is the instantaneous rest frame of the accelerating observer,

so that u
� = 0 and u = v, and the acceleration a

� in this frame is constant (i.e. independent of v).
Thus (6.23) becomes

a = (1− u
2
/c

2)
3
2 a

�

Now

a =
du

dτ

¡
dt

dτ
and

dt

dτ
= (1− u

2
/c

2)−
1
2

so we can find the parameterised equation of the world line by integrating

du

dτ
= a

dt

dτ
= (1− u

2
/c

2)a�.

This gives
u = c tanh(a�τ/c) (choosing the origin of τ so that u = 0 when τ = 0)

u

u'
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� in this frame is constant (i.e. independent of v).
Thus (6.23) becomes
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Now
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so we can find the parameterised equation of the world line by integrating

du

dτ
= a
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dτ
= (1− u

2
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2)a�.

This gives
u = c tanh(a�τ/c) (choosing the origin of τ so that u = 0 when τ = 0)
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6.7 Constant acceleration in Special Relativity

This section is not examinable and is included for interest
It is often said, erroneously, that Special Relativity cannot deal with acceleration because

it deals only with inertial frames, and that therefore acceleration must be the preserve of General
Relativity. We must, of course, only allow transformations between inertial frames; the frames must
not accelerate, but the observers in the frame can move as the please. Special Relativity can deal
with anything kinematic but General Relativity is required when gravitational forces are present.

As an example of non-uniform motion, we consider an observer who is moving with constant
acceleration.

The first step is to define what we mean by ‘constant acceleration’ which is certainly a frame-
dependent concept. The most common situation is that of an observer in a rocket experiencing
a constant ‘G-force’ due to the rocket thrust. This corresponds to the acceleration measured in
the instantaneous (inertial) rest frame of the rocket being constant (acceleration having the usual
definition of dv/dt), so we take this to be our definition.

For reasons that will later become clear, we need to determine the way that acceleration
transforms under Lorentz transformations. We can do this in a number of ways. We will here
start with the velocity transformation law (6.20) for an observer with world line given in S by°
ct(τ), x(τ)

¢
and in S

� by
°
ct
�(τ), x�(τ)

¢
. Forgetting the acceleration problem for the moment, we

assume that these frames have a constant relative velocity v.
The velocities u and u

� in the two frames are related by

u
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u− v
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2
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(the equivalent form is just a bit of algebra to obtain a useful expression). Differentiating this with
respect to τ gives
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The acceleration, a, in S is by definition du/dt and similarly for S
� so

a
� =

du
�

dt�

=
du

�

dτ

¡
dt

�

dτ

=
1− v

2
/c

2

(1− uv/c2)2
du

dτ

¡
dt

�

dτ
(using (6.22)

=
1− v

2
/c

2

(1− uv/c2)2
du

dτ

¡
γ(1− uv/c

2)
dt

dτ
(using (6.20))

=
(1− v

2
/c

2) 3
2

(1− uv/c2)3
a. (6.23)

As mentioned above there are other ways of obtaining this result; for example, more elegantly using
four-vectors (see section 6.7).

In the situation we have in mind, S
� is the instantaneous rest frame of the accelerating observer,

so that u
� = 0 and u = v, and the acceleration a

� in this frame is constant (i.e. independent of v).
Thus (6.23) becomes

a = (1− u
2
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3
2 a

�

Now

a =
du
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¡
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dτ
and

dt

dτ
= (1− u

2
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2

so we can find the parameterised equation of the world line by integrating

du

dτ
= a

dt

dτ
= (1− u

2
/c

2)a�.

This gives
u = c tanh(a�τ/c) (choosing the origin of τ so that u = 0 when τ = 0)

Acceleration is not absolute anymore! (Should not be a surprise) 



Relativistic kinematics – uniform acceleration
Analyzing	acceleration	in	SR

• What	does	uniform	acceleration	look	like	in	frame	&?

• Initial	guess	:				'(') = constant	→ + = +, + %.
• Does	this	make	sense??

/

0

+
.

Frame	&

How do we define constant acceleraQon?
IniQal guess:

dv/dt = constant = a  ➔ v = v0 + at

Does it make sense? No

Velocity will eventually exceed c. And 
moreover it will not be true that a will be 
constant in other frames



Relativistic kinematics – uniform acceleration

We define uniform acceleration as “feeling constant to the object being 
accelerated”. The accelerate observer can measure it with an accelerometer.

How doe we analyse this in terms of inertial frames?

Analyzing	acceleration	in	SR

• How	can	we	analyze this	in	terms	of	inertial	frames?

• Set	up	a	large	number	of	inertial	frames	with	a	range	of	
relative	velocities,	such	that	the	accelerating	object	is	
temporarily	at	rest	in	each	– analyze the	motion	by	patching	
all	the	frames	together

&′ &′′&

+ + + ∆+

/

0
We consider the instantaneous 
reference frame, where the object is as 
rest at that specific time. 



Relativistic kinematics – uniform acceleration

O O’
v
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t’
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a'

u

u'

Let us consider the instantaneous rest frame of the accelera-ng observer:
u’ = 0 and u = v. Then:
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it deals only with inertial frames, and that therefore acceleration must be the preserve of General
Relativity. We must, of course, only allow transformations between inertial frames; the frames must
not accelerate, but the observers in the frame can move as the please. Special Relativity can deal
with anything kinematic but General Relativity is required when gravitational forces are present.

As an example of non-uniform motion, we consider an observer who is moving with constant
acceleration.

The first step is to define what we mean by ‘constant acceleration’ which is certainly a frame-
dependent concept. The most common situation is that of an observer in a rocket experiencing
a constant ‘G-force’ due to the rocket thrust. This corresponds to the acceleration measured in
the instantaneous (inertial) rest frame of the rocket being constant (acceleration having the usual
definition of dv/dt), so we take this to be our definition.

For reasons that will later become clear, we need to determine the way that acceleration
transforms under Lorentz transformations. We can do this in a number of ways. We will here
start with the velocity transformation law (6.20) for an observer with world line given in S by°
ct(τ), x(τ)
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and in S

� by
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As mentioned above there are other ways of obtaining this result; for example, more elegantly using
four-vectors (see section 6.7).

In the situation we have in mind, S
� is the instantaneous rest frame of the accelerating observer,

so that u
� = 0 and u = v, and the acceleration a

� in this frame is constant (i.e. independent of v).
Thus (6.23) becomes
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so we can find the parameterised equation of the world line by integrating

du
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= (1− u

2
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This gives
u = c tanh(a�τ/c) (choosing the origin of τ so that u = 0 when τ = 0)
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a = �2a =
d

dt
[�u]
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a’ is called the proper acceleration (as measured by an instantaneous rest 
frame).

Or:
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a0 = constant ! d

dt
[�u] = constant = ↵


