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Relativistic kinematics - acceleration
We consider the simple case of acceleration 
along the x (x’) axis. 

We start with the velocity at a given time: 
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6.7 Constant acceleration in Special Relativity

This section is not examinable and is included for interest
It is often said, erroneously, that Special Relativity cannot deal with acceleration because

it deals only with inertial frames, and that therefore acceleration must be the preserve of General
Relativity. We must, of course, only allow transformations between inertial frames; the frames must
not accelerate, but the observers in the frame can move as the please. Special Relativity can deal
with anything kinematic but General Relativity is required when gravitational forces are present.

As an example of non-uniform motion, we consider an observer who is moving with constant
acceleration.

The first step is to define what we mean by ‘constant acceleration’ which is certainly a frame-
dependent concept. The most common situation is that of an observer in a rocket experiencing
a constant ‘G-force’ due to the rocket thrust. This corresponds to the acceleration measured in
the instantaneous (inertial) rest frame of the rocket being constant (acceleration having the usual
definition of dv/dt), so we take this to be our definition.

For reasons that will later become clear, we need to determine the way that acceleration
transforms under Lorentz transformations. We can do this in a number of ways. We will here
start with the velocity transformation law (6.20) for an observer with world line given in S by°
ct(τ), x(τ)

¢
and in S

� by
°
ct
�(τ), x�(τ)

¢
. Forgetting the acceleration problem for the moment, we

assume that these frames have a constant relative velocity v.
The velocities u and u

� in the two frames are related by

u
� =

u− v

1− uv/c2
≡ (c2

/v)(1− v
2
/c

2)
1− uv/c2

− c
2

v

(the equivalent form is just a bit of algebra to obtain a useful expression). Differentiating this with
respect to τ gives

du
�

dτ
=

1− v
2
/c

2

(1− uv/c2)2
du

dτ
. (6.22)

The acceleration, a, in S is by definition du/dt and similarly for S
� so

a
� =

du
�

dt�

=
du

�

dτ

¡
dt

�

dτ

=
1− v

2
/c

2

(1− uv/c2)2
du

dτ

¡
dt

�

dτ
(using (6.22)

=
1− v

2
/c

2

(1− uv/c2)2
du

dτ

¡
γ(1− uv/c

2)
dt

dτ
(using (6.20))

=
(1− v

2
/c

2) 3
2

(1− uv/c2)3
a. (6.23)

As mentioned above there are other ways of obtaining this result; for example, more elegantly using
four-vectors (see section 6.7).

In the situation we have in mind, S
� is the instantaneous rest frame of the accelerating observer,

so that u
� = 0 and u = v, and the acceleration a

� in this frame is constant (i.e. independent of v).
Thus (6.23) becomes

a = (1− u
2
/c

2)
3
2 a

�

Now

a =
du

dτ

¡
dt

dτ
and

dt

dτ
= (1− u

2
/c

2)−
1
2

so we can find the parameterised equation of the world line by integrating

du

dτ
= a

dt

dτ
= (1− u

2
/c

2)a�.

This gives
u = c tanh(a�τ/c) (choosing the origin of τ so that u = 0 when τ = 0)



Relativistic kinematics - acceleration
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Acceleration is not absolute anymore! (Should not be a surprise) 
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As mentioned above there are other ways of obtaining this result; for example, more elegantly using
four-vectors (see section 6.7).

In the situation we have in mind, S
� is the instantaneous rest frame of the accelerating observer,

so that u
� = 0 and u = v, and the acceleration a

� in this frame is constant (i.e. independent of v).
Thus (6.23) becomes
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so we can find the parameterised equation of the world line by integrating
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This gives
u = c tanh(a�τ/c) (choosing the origin of τ so that u = 0 when τ = 0)
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As mentioned above there are other ways of obtaining this result; for example, more elegantly using
four-vectors (see section 6.7).

In the situation we have in mind, S
� is the instantaneous rest frame of the accelerating observer,
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Relativistic kinematics – uniform acceleration
How do we define constant acceleration? 
Initial guess: 

dv/dt = constant = a  ➔  v = v0 + at 

Does it make sense? No 

Velocity will eventually exceed c. And 
moreover it will not be true that a will be 
constant in other frames



Relativistic kinematics – uniform acceleration
We define uniform acceleration as “feeling constant to the object being 
accelerated”. The accelerate observer can measure it with an accelerometer. 

How doe we analyse this in terms of inertial frames?

We consider the instantaneous 
reference frame, where the object is as 
rest at that specific time. 



Relativistic kinematics – uniform acceleration
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Let us consider the instantaneous rest frame of the accelerating observer: 
u’ = 0 and u = v. Then: 

a’ is called the proper acceleration (as measured by an instantaneous rest 
frame). 

Or: 
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As mentioned above there are other ways of obtaining this result; for example, more elegantly using
four-vectors (see section 6.7).
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Relativistic kinematics – uniform acceleration

a′ = constant →
d
dt

[γu] = constant = α

γu = αt (ini[al condi[ons: u = 0 for t = 0)

u

1 − u2

c2

= αt → u =
αt

1 + α2t2

c2

The solution is: 

Classical answer

Relativistic correction

We see that u remain always smaller than c, and approaches c for large times.  



Relativistic kinematics – uniform acceleration

x = x0 + ∫
t

0
u dt′ = x0 +

c2

α
1 +

α2t2

c2
− 1 =

c2

α
1 +

α2t2

c2

With the choice x0 = c2/α

Then we have:

x2 − (ct)2 = (c2/α)2



Relativistic 
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and hence
γ = cosh(a�

τ/c).

Then from dt/dτ = γ, we find that

t = c/a
� sinh(a�

τ/c) (choosing the origin of t such that t = 0 when τ = 0)

Finally,

dx

dτ
=

dx

dt

dt

dτ

= uγ

= c sinh(a�
τ/c)

so
x = c

2
/a

� cosh(a�
τ/c). (choosing the origin of x such that x = c

2
/a

� when t = 0)

Uniformly accelerated particles therefore move on rectangular hyperbolas of the form

x
2 − (ct)2 = (c2

/a
�)2.

The diagram shows the trajectory. The dotted lines are the light cones. An event taking
place within the dashed lines can influence an accelerated observer at the position shown, but
events taking place outside the dashed lines would have to move faster than the speed of light to do
so. As τ →∞, the whole of the space-time to the left of the dotted line x = ct would be inaccessible
to the observer. This line is called the Rindler event horizon for the accelerated observer. In some
ways, it performs the same function as the event horizon of a black hole. In particular, the observer
has to accelerate to avoid falling through it and anything happening on the other side would be
hidden to the observer. Of course, the accelerating observer could just stop accelerating whereas
the observer in a black hole space-time can do nothing to affect the event horizon.

x

ct

x = ct

The space-time diagram for an accelerated observer. The thick hyperbola is the observer’s world
line. An observer ‘below’ the dashed lines could in principle send a message to the observer marked
as a heavy dot; other observers could not.

6.8 Four-vectors

6.8.1 definitions

In 1 + 3 dimensions (i.e. one time dimension and three space dimensions), we write the position
4-vector X in the form

X =

0

BB@

ct

x

y

z

1

CCA



Relativistic kinematics – momentum

Conservation of mass: 

Before

After

A B

C D

Conservation of momentum: 

Conservation of energy: 

Classically we have

mA + mB = mC + mD

mAuA + mBuB = mCuC + mDuD

1
2

mAu2
A +

1
2

mBu2
B =

1
2

mCu2
C +

1
2

mDu2
D



Relativistic kinematics – momentum

conservation of momentum

If these transformations hold true in a reference frame, Galilei’s transformation 
laws make sure that they hold in any other (inertial) frame. In particular

−v[mAu′ A + mBu′ B − mCu′ C − mDu′ D]

1
2

mAu2
A +

1
2

mBu2
B =

1
2

mCu2
C +

1
2

mDu2
D

1
2

mAu′ 
2
A +

1
2

mBu′ 
2
B =

1
2

mCu′ 
2
C +

1
2

mDu′ 
2
D −

1
2

v2[mA + mB − mC − mD]

(u = u′ + v)

conservation of mass



Relativistic kinematics – momentum

mAuA + mBuB = mCuC + mDuD (u = u′ + v)

mAu′ A + mBu′ B = mCu′ C + mDu′ D − v[mA + mB − mC − mD]
conservation of mass

This is how conservation properties are linked to each other

In a relativistic context, given the transformation properties of velocities, 
momentum as defined above is nor conserved in all inertial frames. If it is 
conserved in one frame, it is not in the others. 
A new definition is needed!!   



Relativistic kinematics – momentum
Two criteria for a new definition of momentum: 

1. Momentum should be conserved in every inertial frame  
2. It reduces to classical momentum for low velocities

p =
mu

1 − u2

c2

It clearly reduces to the classical definition for low velocities. We now consider 
the issue of conservation



u′ x =
ux − v

1 − vux

c2
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Relativistic kinematics – momentum

u′ y =
uy

γ (1 − vux

c2 )
u′ z =

uz

γ (1 − vux

c2 )
One can prove that:

1

1 − u2/c2
= γ

1 + u′ xv/c2

1 − u′ 2/c2

γ =
1

1 − v2/c2



Relativistic kinematics – momentum
Then:

px =
mux

1 − u2/c2
= m (γ

1 + u′ xv/c2

1 − u′ 2/c2 ) ( u′ x + v
1 + vu′ x /c2 )

= γ
mu′ x

1 − u′ 2/c2
+ γ

mv

1 − u′ 2/c2
= γ p′ x + γ

v
c2

mc2

1 − u′ 2/c2

= γ (p′ x +
v
c2

E′ ) E′ =
mc2

1 − u′ 2/c2



Relativistic kinematics – momentum
Then:

py =
muy

1 − u2/c2
= m (γ

1 + u′ xv/c2

1 − u′ 2/c2 ) (
u′ y

γ(1 + vu′ x /c2) )

= m
u′ y

1 − u′ 2/c2
= p′ y

And same for the z-component



Relativistic kinematics – momentum
To summarize we have:

px = γ (p′ x +
v
c2

E′ ) p′ x = γ (px −
v
c2

E)
py = p′ y p′ y = py

pz = p′ z p′ z = pz

With: E =
mc2

1 − u2/c2



Relativistic kinematics – momentum
Coming back to conservation of momentum, conservation along the y and z 
directions is trivial. Along the x direction:

pxA + pxB = pxC + pxD

Therefore momentum is conserved if also E is conserved.

γ (p′ xA +
v
c2

E′ A) + γ (p′ xB +
v
c2

E′ B) = γ (p′ xC +
v
c2

E′ C) + γ (p′ xD +
v
c2

E′ D)
p′ xA + p′ xB = p′ xC + p′ xD −

v
c2 (E′ A + E′ B − E′ C − E′ D)



Relativistic kinematics – energy
What is E?

E =
mc2

1 − u2/c2
= mc2 +

1
2

mu2 +
3
8

m
u4

c2
+ …

Constant 
term

Classical 
kinetic 
term

Relativistic 
corrections

E = total energy 

T = E - mc2  
Kinetic energy



Relativistic kinematics – energy
The transformation properties of E are:

E =
mc2

1 − u2/c2
= mc2γ

1 + u′ xv/c2

1 − u′ 2/c2
= γ [E′ + vp′ x]

It is easy to show that the following relation holds:

E2 − p2c2 = m2c4 It takes the same value 
in all reference frames



Relativistic kinematics – energy and momentum
If we want to have that momentum is conserved in all frames, then also the 
energy must be conserved. Then 

pxA + pxB = pxC + pxD

EA + EB = EC + ED

in one frame implies 

p′ xA + p′ xB = p′ xC + p′ xD − (v/c2)[E′ A + E′ B − E′ C − E′ D]

E′ A + E′ B = E′ C + E′ D − v[p′ xA + p′ xB − p′ xC − p′ xD]

in any other frame

p′ xA + p′ xB = p′ xC + p′ xD

E′ A + E′ B = E′ C + E′ D



Relativistic kinematics – energy and momentum

Conservation of energy and momentum in one frame implies conservation in 
all other frames.  

But are they conserved? 

Postulate: for every closed system (no external forces) energy an momentum 
are conserved. 

It is experimentally verified (so far)



Relativistic kinematics – mass

And what about the mass?  

The conservation of the mass is not necessary anymore - as it was in classical 
mechanics - to have conservation of energy and momentum. 

And in fact in special relativity the mass is not conserved any more.



Relativistic kinematics – mass

Classically

m m1 m2

u1 u2

m = m1 + m2 0 =
1
2

(m1u2
1 + m2u2

2)0 = m1u1 + m2u2

Impossible



Relativistic kinematics – mass

In special relativity

m m1 m2

u1 u2

E = mc2 = E1 + E2 =
m1c2

1 − u2
1 /c2

+
m2c2

1 − u2
2 /c2

0 = p1 + p2

(m − m1 − m2)c2 = m1c2[ m1c2

1 − u2
1 /c2

− 1] + m2c2[ m2c2

1 − u2
2 /c2

− 1] = T1 + T2



Relativistic kinematics – mass

We see that this process is consistent with the theory: mass is lost in favour 
of kinetic energy.  

Also, the amount of kinetic energy is equal to , which is very largeΔmc2

m m1 m2

u1 u2

Δm =
T1 + T2

c2



Relativistic kinematics – mass

From the conceptual point of view, what is remarkable is that all this comes 
from the structure of space and time, and this structure affects the 
properties of matter: how fat they can travel, how their mass and energy 
behaves.

m m1 m2

u1 u2



Relativistic kinematics – massless particles
From the relation 

E2 − p2c2 = m2c4

Taking m = 0, we have: E = |p|c.  

Relativity opens to the possibility of particles of zero mass. They have to 
travel at the sped of light. 

Classically, without mass there is no momentum and no kinetic energy. 



Relativistic dynamics
Newton’s first law of inertia: ok 

Newton’s second law: F =
dp
dt

It remains valid, provided that with p we use the relativistic momentum. 

Remembering that  and that the proper acceleration is 
, we see that a constant force exerts a constant proper 

acceleration, thus a hyperbolic motion.      

p = mγu
a′ = d(γu)/dt



Work & Energy

12.2 Relativistic Mechanics 543 

To complete the problem we must integrate again: 

x(t) = F t t' dt' 
m Jo y'1 + (Ft' jmc)2 

mc
2 It mc

2 
[ J = F -/1 + (Ft'jmc)2 

0 
= F -/1 + (Ftjmc)2 -1 . (12.61) 

In place of the classical parabola, x(t) = (F j2m)t2, the graph is a hyperbola 
(Fig. 12.30); for this reason, motion under a constant force is often called 
hyperbolic motion. It occurs, for example, when a charged particle is placed 
in a uniform electric field. 

ct 

/ 
/ 

Relativistic 
(hyperbola) 

FIGURE 12.30 

Work, as always, is the line integral of the force: 

W= f F·dl. 

X 

(12.62) 

The work-energy theorem ("the net work done on a particle equals the increase 
in its kinetic energy") holds relativistically: 

W = j dp. dl = j dp. dl dt = j dp. udt 
dt dt dt dt ' 

while 



Transformation rules for the Force
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so 

(12.64) 

(Since the rest energy is constant, it doesn't matter whether we use the total en-
ergy, here, or the kinetic energy.) 

Unlike the first two, Newton's third law does not, in general, extend to the 
relativistic domain. Indeed, if the two objects in question are separated in space, 
the third law is incompatible with the relativity of simultaneity. For suppose the 
force of A on Bat some instant tis F(t), and the force of B on A at the same in-
stant is -F(t); then the third law applies in this reference frame. But a moving 
observer will report that these equal and opposite forces occurred at different 
times; in his system, therefore, the third law is violated. Only in the case of con-
tact interactions, where the two forces are applied at the same physical point (and 
in the trivial case where the forces are constant) can the third law be retained. 

Because F is the derivative of momentum with respect to ordinary time, it 
shares the ugly behavior of (ordinary) velocity, when you go from one inertial 
system to another: both the numerator and the denominator must be transformed. 
Thus,18 

- dpy dpy Fy = - -- = __ ....::....::.--=-- dpy/dt Fy 

dt ydt- yf3 dx 
c 

y ( 1 _ !!_ dx) = y(1- f3uxfc)' 
c dt 

and similarly for the z component: 

- Fz 
Fz = . 

y(1- f3uxfc) 

The x component is even worse: 

- dfix Y dpx - yf3 dp0 
Fx= - - = = 

dt ydt- yf3 dx 
c 

dpx _ f3dp 0 

dt dt 
f3 dx 1- --
c dt 

We calculated dE j dt in Eq. 12.63; putting that in, 

Fx- f3(u · F)/c Fx= ------
1- f3uxfc 

F _!!_(dE) 
X C dt 
1 - f3uxfc 

(12.65) 

(12.66) 

In one special case these equations are reasonably tractable: If the particle is (in-
stantaneously) at rest inS, so that u = 0, then 

- 1 -
F_1_= - F_i, F11=F11. 

y 
(12.67) 

18Remember: y and {J pertain to the motion of S with respectS-they are constants; u is the velocity 
of the particle with respect to S. 
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Relativistic dynamics
Newton’s third law: 

It does not extend to relativistic motion, because it is incompatible with the 
relativity of simultaneity. It holds only for contact interactions. 

In relativity, forces are rep by fields mediating the interaction.



Geometry of spacetime - vectors
What does it mean that a vector is a vector? 
It means that it has magnitude and a direction.  
It can be expressed by its components, which 
however are not intrinsic, but relative to the 
reference frame.
Mathematically, a vector is expressed by three components (since space is three 
dimensional)  

 

with i = 1,2,3

r ↔ ri



Geometry of spacetime - vectors
In another frame the components are 

 

where  is an orthogonal rotation matrix.  

r′ i = Oi
jr

j

Oi
jWe used Einstein’s summation: repeated indices are summed. 

The components of the vector change when changing the reference frame. 

Let us see that the length and direction do not change



Geometry of spacetime - vectors

Let us introduce the metric ηij =

Then we define 

Scalar product:  

Norm:  

Distance:  

These objects are defined by the metric tensor. It reflects the structure of 
Euclidean space 

p ⋅ q = piηijqj

∥p∥2 = piηij p j

∥p − q∥

3x3 Identity
matrix

Identity matrix
In linear algebra, the identity matrix (sometimes ambiguously called a unit
matrix) of size n is the n × n square matrix with ones on the main diagonal
and zeros elsewhere. It is denoted by In, or simply by I if the size is immaterial
or can be trivially determined by the context.[1][2] In some fields, such as
quantum mechanics, the identity matrix is denoted by a boldface one, 1;
otherwise it is identical to I. Less frequently, some mathematics books use U or
E to represent the identity matrix, meaning "unit matrix"[3] and the German
word Einheitsmatrix respectively.[4]

When A is m×n, it is a property of matrix multiplication that

In particular, the identity matrix serves as the unit of the ring of all n×n matrices, and as the
identity element of the general linear group GL(n) (a group consisting of all invertible n×n
matrices). In particular, the identity matrix is invertible—with its inverse being precisely itself.

Where n×n matrices are used to represent linear transformations from an n-dimensional vector
space to itself, In represents the identity function, regardless of the basis.

The ith column of an identity matrix is the unit vector ei (the vector whose ith entry is 1 and 0
elsewhere) It follows that the determinant of the identity matrix is 1, and the trace is n.

Using the notation that is sometimes used to concisely describe diagonal matrices, we can write

The identity matrix can also be written using the Kronecker delta notation:[4]

When the identity matrix is the product of two square matrices, the two matrices are said to be the
inverse of each other.

The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only
matrix such that:

1. When multiplied by itself, the result is itself
2. All of its rows and columns are linearly independent.



Geometry of spacetime - vectors

Now we can prove that the length of a vector is the same in every frame 

∥r′ ∥2 = r′ iηijr′ j = Oi
kr

kηijO
j
ℓrℓ = [Oi

kηijO
j
ℓ]rkrℓ = [Oj

kO
j
ℓ]rkrℓ

= [(Ok
j )TOj

ℓ]rkrℓ = rkηkℓrℓ = ∥r∥2

Same for the direction of a vector relative to another vector (scalar product) 



Geometry of spacetime - Minkowski space

Minkowski: relativistic space has a different geometric structure. One should 
consider it has a four-dimensional space (space-time = space and time) with 
the following metric:

ημν =

From the second postulate of special relativity, together with homogeneity of spacetime and isotropy of
space, it follows that the spacetime interval between two arbitrary events called 1 and 2 is:[15]

This quantity is not consistently named in the literature. The interval is sometimes referred to as the square
of the interval as defined here.[16] It is not possible to give an exhaustive list of notational inconsistencies.
One has to first check out the definitions when consulting the relativity literature.

The invariance of the interval under coordinate transformations between inertial frames follows from the
invariance of

(with either sign ± preserved), provided the transformations are linear. This quadratic form can be used to
define a bilinear form

via the polarization identity. This bilinear form can in turn be written as

where [η] is a 4×4 matrix associated with η. Possibly confusingly, denote [η] with just η as is common
practice. The matrix is read off from the explicit bilinear form as

and the bilinear form

with which this section started by assuming its existence, is now identified.

For definiteness and shorter presentation, the signature (− + + +) is adopted below. This choice (or the
other possible choice) has no (known) physical implications. The symmetry group preserving the bilinear
form with one choice of signature is isomorphic (under the map given here) with the symmetry group
preserving the other choice of signature. This means that both choices are in accord with the two postulates
of relativity. Switching between the two conventions is straightforward. If the metric tensor η has been used
in a derivation, go back to the earliest point where it was used, substitute η for −η, and retrace forward to
the desired formula with the desired metric signature.

A standard basis for Minkowski space is a set of four mutually orthogonal vectors { e0, e1, e2, e3 } such that

These conditions can be written compactly in the form

Standard basis

• It is not Euclidean anymore. It is Minkowski space  
• Space and time are put together (but not unified) 
• Conventions with opposite signs are allowed



Geometry of spacetime - Minkowski space

In analogy with Euclidean geometry, we define 4-vectors 
 

where the components  depend on the reference frame and are related to 

those in another frame by Lorentz transformations:  

Then we define again 

Scalar product:  

‘Norm’:  (not always positive) 

Distance:  (not always positive) 

p ↔ pμ

pμ

p′ μ = Λμ
νpν

p ⋅ q = pμημνqν

p2 = pμημνpν

(p − q)2



Geometry of spacetime - Minkowski space

We show that length and direction of 4-vectors do not change:

∥p∥2 = pμημνpν → ∥p′ ∥2 = p′ μημνp′ ν = Λμ
α pαημνΛν

β pβ = (Λμ
αημνΛν

β)pα pβ

= (ΛTηΛ)αβ pα pβ = ηαβ pα pβ = ∥p∥2

Let us show that  (matrix identity) ΛTηΛ = η

Same for scalar product and distance



Geometry of spacetime - Minkowski space

Let us rewrite

Lorentz boost of an electric charge, the charge is at rest in one
frame or the other.

is running over a row index of the matrix representing Λ−1. Thus, in terms of matrices, this transformation should be thought of as the inverse transpose of
Λ acting on the column vector Aμ. That is, in pure matrix notation,

This means exactly that covariant vectors (thought of as column matrices) transform according to the dual representation of the standard representation of the
Lorentz group. This notion generalizes to general representations, simply replace Λ with Π(Λ).

If A and B are linear operators on vector spaces U and V, then a linear operator A ⊗ B may be defined on the tensor product of U and V, denoted U ⊗ V
according to[20]

               (T1)

From this it is immediately clear that if u and v are a four-vectors in V, then u ⊗ v ∈ T2V ≡ V ⊗ V transforms as

               (T2)

The second step uses the bilinearity of the tensor product and the last step defines a 2-tensor on component form, or rather, it just renames the tensor u ⊗ v.

These observations generalize in an obvious way to more factors, and using the fact that a general tensor on a vector space V can be written as a sum of a
coefficient (component!) times tensor products of basis vectors and basis covectors, one arrives at the transformation law for any tensor quantity T. It is given
by[21]

               (T3)

where Λχʹ
ψ is defined above. This form can generally be reduced to the form for general n-component objects given above with a single matrix (Π(Λ))

operating on column vectors. This latter form is sometimes preferred; e.g., for the electromagnetic field tensor.

Lorentz transformations can also be used to illustrate that the magnetic field B and electric field E
are simply different aspects of the same force — the electromagnetic force, as a consequence of
relative motion between electric charges and observers.[22] The fact that the electromagnetic field
shows relativistic effects becomes clear by carrying out a simple thought experiment.[23]

An observer measures a charge at rest in frame F. The observer will detect a static electric
field. As the charge is stationary in this frame, there is no electric current, so the observer
does not observe any magnetic field.
The other observer in frame F′ moves at velocity v relative to F and the charge. This observer
sees a different electric field because the charge moves at velocity −v in their rest frame. The
motion of the charge corresponds to an electric current, and thus the observer in frame F′ also
sees a magnetic field.

The electric and magnetic fields transform differently from space and time, but exactly the same
way as relativistic angular momentum and the boost vector.

The electromagnetic field strength tensor is given by

in SI units. In relativity, the Gaussian system of units is often preferred over SI units, even in texts
whose main choice of units is SI units, because in it the electric field E and the magnetic induction
B have the same units making the appearance of the electromagnetic field tensor more
natural.[24] Consider a Lorentz boost in the x-direction. It is given by[25]

where the field tensor is displayed side by side for easiest possible reference in the manipulations below.

The general transformation law (T3) becomes

Tensors

Transformation of the electromagnetic field

γ =
1

1 − β2
β =

v
c

Then:

ΛTηΛ =

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

=

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

−γ βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

=

−γ2 + βγ2 0 0 0
0 γ2 − βγ2 0 0
0 0 1 0
0 0 0 1

=

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Geometry of spacetime - four vectors

Spacetime event: .  
Its components transform with the Lorentz trnafotremahions,  therefore it is a 
4-vector. 

The metric does not have a definite signature, therefore three types of events 
are possible.  

Let us consider two events  and  and let .

xμ = (ct, x)

xA xB I = xB − xA



Geometry of spacetime - four vectors

1. Space-like separated events:  

Example: : two events that occur simultaneously ( ) in 
frame O, at a distance  along the x axis. Then in another frame O’: 

 
They are not simultaneous anymore. 

The order of events depends on the reference frame. This does not conflict 
with causality because the two events cannot be connected. In fact the 
average speed would be  since 

I2 > 0

I = (0,Δx,0,0) Δt = 0
Δx

Δt′ = γΔt − βΔx/c = − βΔx/c ≠ 0

(Δx/Δt)2 > c2 I > 0



Geometry of spacetime - four vectors

2. Time-like separated events:  

Example: : two events that occur in the same place ( ) in 
frame O, at different times. Then in another frame O’: 

 
The time ordering is preserved. No problem with causality, it is a fact that one 
occurs before the other. 

3. Light-like separated events:  
Events that are connect by a ray of light

I2 < 0

I = (Δt,0,0,0) Δx = 0

Δt′ = γΔt − βΔx/c = γΔt

I2 = 0



Geometry of spacetime 
- spacetime diagram

Subdivision of Minkowski 
space[me with respect to an 
event in four disjoint sets. The 
light cone, the absolute future, 
the absolute past, and 
elsewhere. 

https://en.wikipedia.org/wiki/Light_cone


Geometry of spacetime - four velocity

The velocity  it is not a good definition of 4-velocity because it does not 
have the right transformation properties. A good definition is: 

 

where  is the proper time of the particle. The relation to the usual velocity is: 

    (nothing new) and          

It is easy to see that: , which is invariant.  

dxμ/dt

ημ =
dxμ

dτ
τ

η0 =
dx0

dτ
= c

dt
dτ

= γc η =
dx
dτ

= γu

η2 = − c2



Geometry of spacetime - four momentum

The 4-momentum is defined as:  

The previous calculations show that it is a 4-vector, i.e. that its components 
transform as:  

(it is not for granted that every object with 4 components si a 4-vector) 

The length is:  
which is invariant.

pμ = (E/c, p) = mημ = mdxμ/dτ

p′ μ = Λμ
νpν

p2 = − E2/c2 + p2 = − m2c2



Geometry of spacetime - Minkowski force

The Minkowski force is defined as: 

 

Then: 

    and      

Kμ =
dpμ

dτ

K0 =
1
c

dE
dτ

K = γ
dp
dt

= γF
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Because v_ is greater than v+, the Lorentz contraction of the spacing between 
negative charges is more severe than that between positive charges; in this frame, 
therefore, the wire carries a net negative charge! In fact, 

(12.78) 

where 

(12.79) 

and )..0 is the charge density of the positive line in its own rest system. That's not 
the same as A, of course-inS they're already moving at speed v, so 

)., = YAo, (12.80) 

where 

(12.81) 
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12.3 • RELATIVISTIC ELECTRODYNAMICS 

12.3.1 • Magnetism as a Relativistic Phenomenon 
Unlike Newtonian mechanics, classical electrodynamics is already consistent 
with special relativity. Maxwell's equations and the Lorentz force law can be ap-
plied legitimately in any inertial system. Of course, what one observer interprets 
as an electrical process another may regard as magnetic, but the actual particle 
motions they predict will be identical. To the extent that this did not work out 
for Lorentz and others, who studied the question in the late nineteenth century, 
the fault lay with the nonrelativistic mechanics they used, not with the electro-
dynamics. Having corrected Newtonian mechanics, we are now in a position to 
develop a complete and consistent formulation of relativistic electrodynamics. 
I emphasize that we will not be changing the rules of electrodynamics in the 
slightest-rather, we will be expressing these rules in a notation that exposes and 
illuminates their relativistic character. As we go along, I shall pause now and then 
to rederive, using the Lorentz transformations, results obtained earlier by more 
laborious means. But the main purpose of this section is to provide you with a 
deeper understanding of the structure of electrodynamics-laws that had seemed 
arbitrary and unrelated before take on a kind of coherence and inevitability when 
approached from the point of view of relativity. 

To begin with, I'd like to show you why there had to be such a thing as mag-
netism, given electrostatics and relativity, and how, in particular, you can calculate 
the magnetic force between a current-carrying wire and a moving charge with-
out ever invoking the laws of magnetism.23 Suppose you had a string of positive 
charges moving along to the right at speed v. I'll assume the charges are close 
enough together so that we may treat them as a continuous line charge A. Super-
imposed on this positive string is a negative one, -A proceeding to the left at the 
same speed v. We have, then, a net current to the right, of magnitude 

I= 2Av. (12.76) 

Meanwhile, a distance s away there is a point charge q traveling to the right 
at speed u < v (Fig. 12.34a). Because the two line charges cancel, there is no 
electrical force on q in this system (S). 

However, let's examine the same situation from the point of view of system S, 
which moves to the right with speed u (Fig. 12.34b ). In this reference frame, q 
is at rest. By the Einstein velocity addition rule, the velocities of the positive and 
negative lines are now 

V=fU 
V±= ----=-

1 =f vufc2 • 
(12.77) 

23This and several other arguments in this section are adapted from E. M. Purcell's Electricity and 
Magnetism, 2d ed. (New York: McGraw-Hill, 1985). 
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It takes some algebra to put Y± into simple form: 

1 
Y± = ----;::::========= 

j1- c\-(v =f u)2(1 =f vujc2)-2 

(12.82) 

The net line charge in S, then, is 

(12.83) 

Conclusion: As a result of unequal Lorentz contraction of the positive and nega-
tive lines, a current-carrying wire that is electrically neutral in one inertial system 
will be charged in another. 

Now, a line charge Atot sets up an electric field 

A tot E= --, 
2nEos 

so there is an electrical force on q in S, to wit: 

A.v qu 
nEoc2s J1- u2 jc2 · 

F=qE= (12.84) 

But if there's a force on q in S, there must be one in S; in fact, we can calculate 
it by using the transformation rules for forces. Since q is at rest inS, and F is 
perpendicular to u, the force inS is given by Eq. 12.67: 

- A.v qu 
F = y'1- u2 jc2 F = - ---. 

nEoc2 s 
(12.85) 

The charge is attracted toward the wire by a force that is purely electrical in S 
(where the wire is charged, and q is at rest), but distinctly nonelectrical in S 
(where the wire is neutral). Taken together, then, electrostatics and relativity im-
ply the existence of another force. This "other force" is, of course, magnetic. In 
fact, we can cast Eq. 12.85 into more familiar form by using c2 = (EoJLo)-1 and 
expressing A.v in terms of the current (Eq. 12.76): 

(JLol) 
F = -qu 2ns · (12.86) 

The term in parentheses is the magnetic field of a long straight wire, and the 
force is precisely what we would have obtained by using the Lorentz force law in 
systemS. 
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(summation over v implied), where A is the Lorentz transformation matrix. If S 
is moving in the x direction at speed v, A has the form 

( 
A-- 0 

0 

-yfi 0 0 ) 
y 0 0 
0 1 0 ' 
0 0 1 

(12.114) 

and is the entry in row JL, column v. A (second-rank) tensor is an object with 
two indices, which transforms with two factors of A (one for each index): 

(12.115) 

A tensor (in 4 dimensions) has 4 x 4 = 16 components, which we can display in 
a 4 x 4 array: 

However, the 16 elements need not all be different. For instance, a symmetric 
tensor has the property 

tJLv = tvJL (symmetric tensor). (12.116) 

In this case there are 10 distinct components; 6 of the 16 are repeats (t01 = 
tw, to2 = t2o, to3 = t3o, t12 = t21, tB = t31, t23 = t32). Similarly, an 
antisymmetric tensor obeys 

tJLv = -tvJL (antisymmetric tensor). (12.117) 

Such an object has just 6 distinct elements-of the original 16, six are repeats 
(the same ones as before, only this time with a minus sign) and four are zero 
(t 00 , t 11 , t22 , and t 33 ). Thus, the general antisymmetric tensor has the form 

Let's see how the transformation rule (Eq. 12.115) works, for the six distinct 
components of an antisymmetric tensor. Starting with fl1, we have 

but according to Eq. 12.114, 0 unless A.= 0 or 1, and = 0 unless a = 0 
or 1. So there are four terms in the sum: 

Like for 4-vectors, components change, but the generalization of length and 
direction remains invariant (for example ) tμνtμν
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On the other hand, t00 = t 11 = 0, while t 01 = -t10, so 

I'll let you work out the others-the complete set of transformation rules is 

j01 = 101, 

j23 = t23, 
j02 = y(t02- f3t12), 
j31 = y(t31 + f3t03), (12.118) 

These are precisely the rules we obtained on physical grounds for the electromag-
netic fields (Eq. 12.109)-in fact, we can construct the field tensor FJLv by direct 
comparison:25 

F 01 = Ex, F02 =- Ey, 03 Ez 12 31 23 F = - , F = B F = B F = B C C C - Z• - Y• - X• 

Written as an array, 

0 
-Exfc 
-Ey/c 
-Ezfc 

(12.119) 

Thus relativity completes and perfects the job begun by Oersted, combining the 
electric and magnetic fields into a single entity, FJLv. 

If you followed that argument with exquisite care, you may have noticed that 
there was a different way of imbedding E and B in an antisymmetric tensor: In-
stead of comparing the first line of Eq. 12.109 with the first line of Eq. 12.118, 
and the second with the second, we could relate the first line of Eq. 12.109 to the 
second line of Eq. 12.118, and vice versa. This leads to dual tensor, GJLv: 

(12.120) 

GJLv can be obtained directly from FJLv by the substitution Ejc -+ B, B-+ 
-Ejc. Notice that this operation leaves Eq. 12.109 unchanged-that's why both 
tensors generate the correct transformation rules for E and B. 

Problem 12.49 Work out the remaining five parts to Eq. 12.118. 

Problem 12.50 Prove that the symmetry (or antisymmetry) of a tensor is preserved 
by Lorentz transformation (that is: if t11-v is symmetric, show that [11-v is also sym-
metric, and likewise for antisymmetric ). 

25 Some authors prefer the convention F 01 =Ex, F 12 = cBz, and so on, and some use the opposite 
signs. Accordingly, most of the equations from here on will look a little different, depending on the 
text. 

Let us define

Then it is not difficult to see that under a boost along the x direction
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y 

z I 

FIGURE 12.40 

where n is the number of turns per unit length, and I is the current. In system S, 
the length contracts, son increases: 

ii = yn. (12.107) 

On the other hand, time dilates: The S clock, which rides along with the solenoid, 
runs slow, so the current (charge per unit time) in S is given by 

- 1 
I= - I. 

y 

The two factors of y exactly cancel, and we conclude that 

Bx = Bx. 

Like E, the component of B parallel to the motion is unchanged. 
Here, then, is the complete set of transformation rules: 

Two special cases warrant particular attention: 
1. IfB = 0 inS, then 

or, since v = v :i, 

- 1 -
B = - 2 (v x E). 

c 

(12.108) 

(12.109) 

(12.110) 

This is the way E and B transform according to special relativity
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by Lorentz transformation (that is: if t11-v is symmetric, show that [11-v is also sym-
metric, and likewise for antisymmetric ). 

25 Some authors prefer the convention F 01 =Ex, F 12 = cBz, and so on, and some use the opposite 
signs. Accordingly, most of the equations from here on will look a little different, depending on the 
text. 

The lesson here is that E and B are not independent quantities, but 
components of the same  object, which is the electromagnetic tensor . 
What is E in one frame can be B in another frame - as we saw before - as it 
happens from any component of a vector/tensor.

Fμν
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stead of comparing the first line of Eq. 12.109 with the first line of Eq. 12.118, 
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GJLv can be obtained directly from FJLv by the substitution Ejc -+ B, B-+ 
-Ejc. Notice that this operation leaves Eq. 12.109 unchanged-that's why both 
tensors generate the correct transformation rules for E and B. 

Problem 12.49 Work out the remaining five parts to Eq. 12.118. 

Problem 12.50 Prove that the symmetry (or antisymmetry) of a tensor is preserved 
by Lorentz transformation (that is: if t11-v is symmetric, show that [11-v is also sym-
metric, and likewise for antisymmetric ). 

25 Some authors prefer the convention F 01 =Ex, F 12 = cBz, and so on, and some use the opposite 
signs. Accordingly, most of the equations from here on will look a little different, depending on the 
text. 

Question: if E and B are components of a larger tensor, and can mix with each 
other, why did people think they were independent 3-vectors?
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Answer: because they behave like independent three vectors under rotations



The Field Tensor

Le us consider a rotation along the z axis: Λμ
ν =

1 0 0 0
0 cos θ sin θ 0
0 −sin θ cos θ 0
0 0 0 1Then (c = 1):

Ex = F01 → E′ x = F′ 01 = Λ0
αΛ1

βFαβ

= Λ0
0Λ1

0F01 + Λ0
0Λ1

2F02

= Ex cos θ + Ey sin θ

which is how 3-vectors behave under rotations
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where Vo is the rest volume of the cloud. Because one dimension (the one along 
the direction of motion) is Lorentz-contracted, 

(12.121) 

and hence 

(12.122) 

Comparing this with Eqs. 12.40 and 12.42, we recognize here the components 
of proper velocity, multiplied by the invariant p0 • Evidently charge density and 
current density go together to make a 4-vector: 

whose components are 

We'll call it the current density 4-vector. 
The continuity equation (Eq. 5.29), 

ap 
V·J=- -

at' 

(12.123) 

(12.124) 

expressing the local conservation of charge, takes on a nice compact form when 
written in terms of J J..L. For 

3 . 
v. J = aJx + aJy + aJz = L aJ:, 

ax ay az i=l axz 

while 

ap 1 aJ0 aJ0 

at= -;;Tt = ax0 • 
(12.125) 

Thus, bringing ap j at over to the left side (in the continuity equation), we have: 

(12.126) 

with summation over JL implied. Incidentally, aJf-L ;axJ..L is the four-dimensional 
divergence of Jf-L, so the continuity equation states that the current density 
4-vector is divergenceless. 

Charge density and current
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whose components are 

We'll call it the current density 4-vector. 
The continuity equation (Eq. 5.29), 

ap 
V·J=- -

at' 

(12.123) 

(12.124) 

expressing the local conservation of charge, takes on a nice compact form when 
written in terms of J J..L. For 

3 . 
v. J = aJx + aJy + aJz = L aJ:, 

ax ay az i=l axz 

while 

ap 1 aJ0 aJ0 

at= -;;Tt = ax0 • 
(12.125) 

Thus, bringing ap j at over to the left side (in the continuity equation), we have: 

(12.126) 

with summation over JL implied. Incidentally, aJf-L ;axJ..L is the four-dimensional 
divergence of Jf-L, so the continuity equation states that the current density 
4-vector is divergenceless. 
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every value of J-L. If J-L = 0, the first equation reads 
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-- =-- +-- +-- +--axv axo ax 1 ax2 ax3 

1 (aEx aEy aEz) 1 = - - + - + - = - (V·E) 
c ax ay az c 

1 
V ·E= - p. 

Eo 

This, of course, is Gauss's law. If J-L = 1, we have 

Combining this with the corresponding results for J-L = 2 and J-L = 3 gives 

aE 
V x B = J-LoJ + J-LoEo - , at 

which is Ampere's law with Maxwell's correction. 
Meanwhile, the second equation in 12.127, with J-L = 0, becomes 
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On the other hand, t00 = t 11 = 0, while t 01 = -t10, so 

I'll let you work out the others-the complete set of transformation rules is 

j01 = 101, 

j23 = t23, 
j02 = y(t02- f3t12), 
j31 = y(t31 + f3t03), (12.118) 

These are precisely the rules we obtained on physical grounds for the electromag-
netic fields (Eq. 12.109)-in fact, we can construct the field tensor FJLv by direct 
comparison:25 

F 01 = Ex, F02 =- Ey, 03 Ez 12 31 23 F = - , F = B F = B F = B C C C - Z• - Y• - X• 

Written as an array, 

0 
-Exfc 
-Ey/c 
-Ezfc 

(12.119) 

Thus relativity completes and perfects the job begun by Oersted, combining the 
electric and magnetic fields into a single entity, FJLv. 

If you followed that argument with exquisite care, you may have noticed that 
there was a different way of imbedding E and B in an antisymmetric tensor: In-
stead of comparing the first line of Eq. 12.109 with the first line of Eq. 12.118, 
and the second with the second, we could relate the first line of Eq. 12.109 to the 
second line of Eq. 12.118, and vice versa. This leads to dual tensor, GJLv: 

(12.120) 

GJLv can be obtained directly from FJLv by the substitution Ejc -+ B, B-+ 
-Ejc. Notice that this operation leaves Eq. 12.109 unchanged-that's why both 
tensors generate the correct transformation rules for E and B. 

Problem 12.49 Work out the remaining five parts to Eq. 12.118. 

Problem 12.50 Prove that the symmetry (or antisymmetry) of a tensor is preserved 
by Lorentz transformation (that is: if t11-v is symmetric, show that [11-v is also sym-
metric, and likewise for antisymmetric ). 

25 Some authors prefer the convention F 01 =Ex, F 12 = cBz, and so on, and some use the opposite 
signs. Accordingly, most of the equations from here on will look a little different, depending on the 
text. 
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12.3 Relativistic Electrodynamics 

As for Maxwell's equations, they can be written 

apJLv 
-- = uoJIL axv fA' ' 

aGJLv 
-- =0 axv ' 

567 

(12.127) 

with summation over v implied. Each of these stands for four equations--one for 
every value of J-L. If J-L = 0, the first equation reads 

or 

apov apoo apol apo2 apo3 
-- =-- +-- +-- +--axv axo ax 1 ax2 ax3 

1 (aEx aEy aEz) 1 = - - + - + - = - (V·E) 
c ax ay az c 

1 
V ·E= - p. 

Eo 

This, of course, is Gauss's law. If J-L = 1, we have 
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(the third of Maxwell's equations), whereas JL = 1 yields 

aa1v aG10 aG11 aG12 aG13 
-- = -- +-- +-- +--axv ax0 ax 1 ax2 ax3 

= aBx - aEz + aEy = (aB + v X E) = 0. 
c at c ay c az c at x 

So, combining this with the corresponding results for JL = 2 and JL = 3, 

aB 
V xE= - -

at' 
which is Faraday's law. In relativistic notation, then, Maxwell's four rather cum-
bersome equations reduce to two delightfully simple ones. 

In terms of FJLv and the proper velocity 17JL, the Mink:owski force on a charge 
q is given by 

(12.128) 

For if JL = 1, we have 

Kl = q1JvFlv = q( _ 11o plO + 17 1 p11 + 112 p12 + 1J3 F13) 

= q [ -c (-Ex)+ Uy (Bz) + Uz (-By)] 
y'1- u2 jc2 c y'1- u2 jc2 y'1- u2 jc2 

q [E+(uxB)]x, 
.j1- u2 jc2 

with a similar formula for JL = 2 and JL = 3. Thus, 

K = q [E + (u x B)], 
.j1- u2 jc2 

(12.129) 

and therefore, referring back to Eq. 12.69, 

F = q[E + (u x B)], 

which is the Lorentz force law. Equation 12.128, then, represents the Lorentz 
force law in relativistic notation. I'll leave for you the interpretation of the zeroth 
component (Prob. 12.55). 

Problem 12.53 Obtain the continuity equation (Eq. 12.126) directly from Maxwell's 
equations (Eq. 12.127). 

Problem 12.54 Show that the second equation in Eq. 12.127 can be expressed in 
terms of the field tensor p•v as follows: 

(12.130) 
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Problem 12.55 Work out, and interpret physically, the JL = 0 component of the 
electromagnetic force law, Eq. 12.128. 

12.3.5 • Relativistic Potentials 
From Chapter 10, we know that the electric and magnetic fields can be expressed 
in terms of a scalar potential V and a vector potential A: 

a A 
E=-VV-at, B=VxA. 

As you might guess, V and A together constitute a 4-vector: 

I Att = (V jc, Ax, Ay, Az)· I 

In terms of this 4-vector potential, the field tensor can be written 

(12.131) 

(12.132) 

(12.133) 

(Observe that the differentiation is with respect to the covariant vectors xtt and 
xv; remember, that changes the sign of the zeroth component: x0 = - x0 • See 
Prob. 12.56.) 

To check that Eq. 12.133 is equivalent to Eq. 12.131, let's evaluate a few terms 
explicitly. For J-t = 0, v = 1, 

01 aA1 aA0 aAx 1 av 
F = - - - =--- - --

axo ax1 a(ct) c ax 

= (aA + vv) 
c at x 

That (and its companions with v = 2 and v = 3) is the first equation in Eq. 12.131. 
For J-t = 1, v = 2, we get 

12 aA2 a A 1 aAy a Ax 
F = - - - = - - - = (V X A)z = Bz 

ax1 ax2 ax ay ' 

which (together with the corresponding results for F 23 and F 31 ) is the second 
equation in Eq. 12.131. 

The potential formulation automatically takes care of the homogeneous Max-
well equation (aGttv jaxv = 0). As for the inhomogeneous equation (aFttv jaxv = 
J-toftt), that becomes 

- -- - - -- - J-toltt a (aAv) a (aAtt) 
axtt axv axv axv - . (12.134) 



Electrodynamics in relativistic notation

Relativistic potentials

12.3 Relativistic Electrodynamics 569 

Problem 12.55 Work out, and interpret physically, the JL = 0 component of the 
electromagnetic force law, Eq. 12.128. 

12.3.5 • Relativistic Potentials 
From Chapter 10, we know that the electric and magnetic fields can be expressed 
in terms of a scalar potential V and a vector potential A: 

a A 
E=-VV-at, B=VxA. 

As you might guess, V and A together constitute a 4-vector: 

I Att = (V jc, Ax, Ay, Az)· I 

In terms of this 4-vector potential, the field tensor can be written 

(12.131) 

(12.132) 

(12.133) 

(Observe that the differentiation is with respect to the covariant vectors xtt and 
xv; remember, that changes the sign of the zeroth component: x0 = - x0 • See 
Prob. 12.56.) 

To check that Eq. 12.133 is equivalent to Eq. 12.131, let's evaluate a few terms 
explicitly. For J-t = 0, v = 1, 

01 aA1 aA0 aAx 1 av 
F = - - - =--- - --

axo ax1 a(ct) c ax 

= (aA + vv) 
c at x 

That (and its companions with v = 2 and v = 3) is the first equation in Eq. 12.131. 
For J-t = 1, v = 2, we get 

12 aA2 a A 1 aAy a Ax 
F = - - - = - - - = (V X A)z = Bz 

ax1 ax2 ax ay ' 

which (together with the corresponding results for F 23 and F 31 ) is the second 
equation in Eq. 12.131. 

The potential formulation automatically takes care of the homogeneous Max-
well equation (aGttv jaxv = 0). As for the inhomogeneous equation (aFttv jaxv = 
J-toftt), that becomes 

- -- - - -- - J-toltt a (aAv) a (aAtt) 
axtt axv axv axv - . (12.134) 570 Chapter 12 Electrodynamics and Relativity 

This is an intractable equation as it stands. However, you will recall that the poten-
tials are not uniquely determined by the fields-in fact, it's clear from Eq. 12.133 
that you could add to Att the gradient of any scalar function A.: 

a .A Att ----+ AW = Att + --, 
axtt 

(12.135) 

without changing Fttv. This is precisely the gauge invariance we noted in 
Chapter 10; we can exploit it to simplify Eq. 12.134. In particular, the Lorenz 
gauge condition (Eq. 10.12) 

1 av 
V·A=---

c2 at 
becomes, in relativistic notation, 

aAtt 
- =0. axtt 

In the Lorenz gauge, therefore, Eq. 12.134 reduces to 

I 02 AM= -f.LoJM' 

where 0 2 is the d' Alembertian, 

2 a a 2 1 a2 
0 = -- =V - --. 

axv axv c2 at2 

(12.136) 

(12.137) 

(12.138) 

Equation 12.137 combines our previous results into a single 4-vector equation-it 
represents the most elegant formulation of Maxwell's equations.27 

Problem 12.56 You may have noticed that the four-dimensional gradient operator 
a;ax11 functions like a covariant 4-vector-in fact, it is often written aiL, for short. 
For instance, the continuity equation, aiL J IL = 0, has the form of an invariant product 
of two vectors. The corresponding contravariant gradient would be a11 = a;axw 
Prove that a11 ljJ is a (contravariant) 4-vector, if l/J is a scalar function, by working out 
its transformation law, using the chain rule. 

Problem 12.57 Show that the potential representation (Eq. 12.133) automatically 
satisfies aGILv jaxv = 0. [Suggestion: Use Prob. 12.54.] 

Problem 12.58 Show that the Lienard-Wiechert potentials (Eqs. 10.46 and 10.47) 
can be expressed in relativistic notation as 

27Incidentally, the Coulomb gauge is bad, from the point of view of relativity, because its defining 
condition, V · A = 0, is destroyed by Lorentz transformation. To restore this condition, it is necessary 
to perform an appropriate gauge transformation every time you go to a new inertial system, in addition 
to the Lorentz transformation itself. In this sense, AIL is not a true 4-vector, in the Coulomb gauge. 



Example: Field generated by a moving charge

O O’
v

t

x’

x

t’

u

u'

In O’ the particle is at rest: 

            

                    
The charge is assumed to sit at the origin of O’. 

E′ =
q
r′ 3

(x′ , y′ , z′ ) r′ = x′ 2 + y′ 2 + z′ 2

B′ = 0

We compute the fields when the charge passes at the origin of O:  



Example: Field generated by a moving charge

O O’
v

t

x’

x

t’

u = v

u’ = 0

 

 

Bx = B′ x

By = γ(B′ y − βE′ z /c)

Bz = γ(B′ z − βE′ y /c)

 

 

Bx = 0

By = − γvE′ z /c2

Bz = γvE′ y /c2

 

 

Ex = E′ x

Ey = γ(E′ y + vB′ z)

Ez = γ(E′ z − vB′ y)

 

 

Ex = qx′ /r′ 3 = γqx/r′ 3

Ey = γE′ y = γqy/r′ 3

Ez = γE′ z = γqz /r′ 3

E = γq(x, y, z)/r′ 3

B = v × E/c2

In O:  We need to express r’ in terms of r: 



Example: Field generated by a moving charge
xWe need to express r’ in terms of r: 

r′ 2 = γ2x2 + y2 + z2 =

= γ2r2 − (γ2 − 1)(y2 + z2) =

θ

= γ2r2[1 − (v2/c2)sin2 θ]

(y,z)

In conclusion:

E =
qr

γ2r3[1 − (v2/c2)sin2 θ]3/2 B =
v × E

c2





Geometry of spacetime - vectors
We have to define the length. This is done mathematically by defining a 
metric 

An illustration comparing the
taxicab metric to the Euclidean
metric on the plane: According to
the taxicab metric the red, yellow,
and blue paths have the same
length (12). According to the
Euclidean metric, the green path
has length , and is
the unique shortest path.

Metric (mathematics)
In mathematics, a metric or distance function is a function
that defines a distance between each pair of point elements of a
set. A set with a metric is called a metric space.[1] A metric
induces a topology on a set, but not all topologies can be
generated by a metric. A topological space whose topology can be
described by a metric is called metrizable.

One important source of metrics in differential geometry are
metric tensors, bilinear forms that may be defined from the
tangent vectors of a differentiable manifold onto a scalar. A
metric tensor allows distances along curves to be determined
through integration, and thus determines a metric.

Definition
Notes
Examples
Equivalence of metrics
Metrics on vector spaces
Metrics on multisets
Generalized metrics

Extended metrics
Pseudometrics
Quasimetrics
Metametrics
Semimetrics
Premetrics
Pseudoquasimetrics
Important cases of generalized metrics

See also
Notes
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A metric on a set X is a function (called distance function or simply distance)

Contents

Definition

,

where  is the set of non-negative real numbers and for all , the following three
axioms are satisfied:

1. identity of indiscernibles
2. symmetry
3. subadditivity or triangle inequality

These axioms also imply the non-negativity or separation condition:

 for all 

Namely, applying axioms 1, 3, and 2 in that order yields 
 which implies .

Non-negativity and axiom 1 together define what is called a positive-definite function.

A metric is called an ultrametric if it satisfies the following stronger version of the triangle
inequality where points can never fall 'between' other points:

for all 

A metric d on X is called intrinsic if any two points x and y in X can be joined by a curve with
length arbitrarily close to d(x, y).

A metric d on a group G (written multiplicatively) is said to be left-invariant (resp. right
invariant) if we have

 [resp. ]

for all x, y, and z in G.

These conditions express intuitive notions about the concept of distance. For example, that the
distance between distinct points is positive and the distance from x to y is the same as the distance
from y to x. The triangle inequality means that the distance from x to z via y is at least as great as
from x to z directly. Euclid in his work stated that the shortest distance between two points is a
line; that was the triangle inequality for his geometry.

The discrete metric: if x = y then d(x,y) = 0. Otherwise, d(x,y) = 1.
The Euclidean metric is translation and rotation invariant.
The taxicab metric is translation invariant.
More generally, any metric induced by a norm is translation invariant.
If  is a sequence of seminorms defining a (locally convex) topological vector space E,

Notes

Examples



Geometry of spacetime - vectors
Relation between metric and norm in a vector space

Given a normed vector space  we can define a metric on X by

.

The metric d is said to be induced by the norm .

Conversely if a metric d on a vector space X satisfies the properties

 (translation invariance)
 (homogeneity)

then we can define a norm on X by

Similarly, a seminorm induces a pseudometric (see below), and a homogeneous, translation
invariant pseudometric induces a seminorm.

We can generalize the notion of a metric from a distance between two elements to a distance
between two nonempty finite multisets of elements. A multiset is a generalization of the notion of a
set such that an element can occur more than once. Define  if  is the multiset consisting
of the elements of the multisets  and , that is, if  occurs once in  and once in  then it occurs
twice in . A distance function  on the set of nonempty finite multisets is a metric[2] if

1.  if all elements of  are equal and  otherwise (positive definiteness), that
is, (non-negativity plus identity of indiscernibles)

2.  is invariant under all permutations of  (symmetry)
3.  (triangle inequality)

Note that the familiar metric between two elements results if the multiset  has two elements in 1
and 2 and the multisets  have one element each in 3. For instance if  consists of two
occurrences of , then  according to 1.

A simple example is the set of all nonempty finite multisets  of integers with 
. More complex examples are information distance

in multisets;[2] and normalized compression distance (NCD) in multisets.[3]

There are numerous ways of relaxing the axioms of metrics, giving rise to various notions of
generalized metric spaces. These generalizations can also be combined. The terminology used to
describe them is not completely standardized. Most notably, in functional analysis pseudometrics
often come from seminorms on vector spaces, and so it is natural to call them "semimetrics". This
conflicts with the use of the term in topology.

Metrics on multisets

Generalized metrics

Extended metrics



Geometry of spacetime - vectors

In an Euclidean space, the norm is defined as follows:

Illustration for n=3, repeated application of the
Pythagorean theorem yields the formula

Euclidean distance
In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" straight-line distance
between two points in Euclidean space. With this distance, Euclidean space becomes a metric space. The
associated norm is called the Euclidean norm. Older literature refers to the metric as the Pythagorean
metric. A generalized term for the Euclidean norm is the L2 norm or L2 distance.
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The Euclidean distance between points p and q is the length of the line segment connecting them (denoted [1]).

In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points in Euclidean n-space, then the Euclidean distance (d) from p to q, or from
q to p, is given by the Pythagorean formula:[2][3]

  (1)

The position of a point in a Euclidean n-space is a Euclidean vector. Hence p and q may be represented as Euclidean vectors, starting from the origin of the
space (initial point) with their tips (terminal points) ending at the two points. The Euclidean norm (a.k.a, Euclidean length), or the magnitude of a
vector, measures the length of the vector:[2]

where the last expression involves the dot product.

When the vector described as a directed line segment from the origin of the Euclidean space (vector tail) to a point in that space (vector tip), its length is
actually the distance from its tail to its tip. The Euclidean norm of a vector is seen to be just the Euclidean distance between its tail and its tip.

The relationship between points p and q may involve a direction (for example, from p to q), and when it does, this relationship can itself be represented by a
vector, given by

In a two- or three-dimensional space (n = 2, 3), this can be visually represented as an arrow from p to q. In any space, it can be regarded as the position of q
relative to p. It may also be called a displacement vector, if p and q represent two positions of some moving point.

The Euclidean distance between p and q is just the Euclidean length of this displacement vector:

  (2)

which is equivalent to equation 1, and also to:

In the context of Euclidean geometry, a metric is established in one dimension by fixing two points on a line, and choosing one to be the origin. The length of
the line segment between these points defines the unit of distance, and the direction from the origin to the second point is defined as the positive direction.
This line segment may be translated along the line to build longer segments, whose lengths correspond to multiples of the unit distance. In this manner, real
numbers can be associated to points on the line (as the distance from the origin to the point), and these are the Cartesian coordinates of the points on what
may now be called the real line. An alternate way to establish the metric, instead of choosing two points on the line, is to choose one point to be the origin, a
unit of length, and a direction along the line to call positive. The second point is then uniquely determined, as the point on the line that is at a distance of one
positive unit from the origin.
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And the scalar product is defined as 

p ⋅ q = p1q1 + p2q2 + … + pnqn


