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Abstract

A ballbot is an extremely agile mobile system due to its natural instability. In order

to perform complex motions at high speeds, a sophisticated controller is needed. This

thesis first approximates the dynamics of a ballbot with three two-dimensional decoupled

systems. It analyzes the dynamic internal forces occurring when operating a ballbot.

Conversions for torques, moments of inertia and the odometry are calculated for the

implementation of a controller in the real system. The planar decomposition is the

state of the art approach for ballbot control. However, it mainly suffers from unphysical

modeling of actuators requiring artificial calculations, and neglecting the strong coupling

effects that are important for dynamic motion. To overcome these limitations, a full

three-dimensional model is proposed. This new model is verified and the advantages

are shown by comparing it to the planar model. The performance of a linear quadratic

controller is simulated in real-time with MATLAB and displayed in a three-dimensional

visualization. As a consequence of the strong nonlinearities, a controller based on gain

scheduling shows to improve the performance significantly. With the resulting controller,

the prototype is able to follow highly dynamic, complex trajectories, which is shown in

various experiments. Compared to previous solutions, this fundamentally new approach

to control a ballbot allows for a considerably higher performance regarding acceleration,

speed, motion precision and robustness.
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Introduction

1 Introduction

1.1 Motivation

Figure 1.1: General concept of a ballbot

A ballbot uses a single ball as core of its propulsion system (fig. 1.1). Tilting spontaneously

in any direction and rotating about its own axis, a ballbot performs its motion in a very

unique way. The concept is very similar to an inverted pendulum. Especially designed as

an unstable system, the fundamental part of a ballbot is a reliable control.

Other ballbots have been developed (see 1.5), but none of them is able to utilize the full

potential of agility, which is a core feature of a ballbot. The prototype Rezero has been

built with the goal of demonstrating an unprecedented level of agility and the capability

of such a propulsion system.

1.2 Context

The presented thesis is closely linked to the ETH Focus Project Ballbot 2009/10 [11]. In

this project, eight undergraduate mechanical engineers from ETH Zurich, two electrical

engineers studying at ZHAW1 and three industrial design students from ZHdK2 have

developed a ballbot named Rezero3 within nine months. The goal of this project was to

develop a fully operational prototype of a ballbot which is unique in its motion, dynamics

1Zurich University of Applied Sciences
2Zurich University of the Arts
3The name Rezero refers to the important relationship between the real part of the poles π of the

transfer function and zero: a system with Re(π) > 0 is unstable.
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1.3 Goals Introduction

and agility compared to existing ballbots – a goal which can only be achieved with a

strong focus on modeling and control.

1.3 Goals

This Bachelor thesis aims to analyze the system of the ballbot Rezero and to develop and

implement an appropriate controller for it. The controller has to be optimized to ensure a

highly dynamic and maneuverable motion of the ballbot. Additionally, a flexible realtime

simulation of the system is required for early analysis and for the purpose of laying the

foundation for other theses on the same prototype. The controller should comply with the

conceptual requirements set forth by the Focus Project Ballbot as precisely as possible:

• different input modes (position, velocity, acceleration set points),

• speed up to 2 m/s,

• tilt angles up to 20◦,

• high motion precision,

• high dynamic robustness.

Details are described in the project report
”
Rezero – dynamisch stabil auf einer Kugel“ [11].

1.4 System Overview

Battery

Microcontroller

Linux board

Motors with gearhead
Omniwheel

Ball

Power electronics

IMU

Encoder

Ball arrester

Figure 1.2: System description of Rezero

The system ballbot shown in figure 1.2 is a dynamically stable robot balancing and

driving on a single ball. It is composed of three main parts: the ball, the propulsion

2



Introduction 1.5 State of the Art

system and the body, the latter carrying all the electronics. The propulsive subsystem

consists of three omniwheels4 driven by 200 W DC brushless motors with gear heads

with a maximum torque of 5 Nm. Each motor has an encoder attached, measuring the

position and speed of the motor axis. The ball consists of a 2 mm thick aluminum hollow

sphere, coated with a 4 mm high stiction synthetic. The ball arrester pushes the ball

towards the omniwheels in order to increase the contact force.

A very important sensor is the inertial measurement unit (IMU) which measures all three

Euler angles and the angular rates of the body. On the microcontroller, an ARM5 7, the

controller is implemented running at 157.8 Hz. The set points are sent to the embedded

microcontroller by a Linux board over RS-232.

A list of parameters is given in table 2.1 and details on all components are described

in [11].

1.5 State of the Art

The first ballbot was developed in 2006 at Carnegie Mellon University (CMU) in the

USA ([10],[12]). Another ballbot was developed at Tohoku Gakuin University (TGU) in

Japan [7] and a third one as a student project 2009 at the University of Adelaide (UA)

in Australia [5]. The specifications in table 1.1 show the differences.

University CMU TGU UA

Year 2006–2010 2006–2008 2009

Weight 45 kg 11 kg 34.5 kg

Height 150 cm 50 cm 160 cm

Maximum tilt angle <1◦ <5◦ <1◦

Maximum speed <0.1 m/s <0.3 m/s <0.1 m/s

Rotation around its
own axis

(yes) yes no

Used controller LQR/PID PD LQRI

Table 1.1: Specifications of already existing ballbots

The first version of the CMU ballbot was stabilized with a LQR (linear quadratic

regulator) and an inner PI (proportional–integral) controller, the second version with a

cascaded PID (proportional–integral–derivative) controller. The TGU ballbot uses a PD

(proportional–derivative) controller. The UA ballbot is controlled with an LQR controller

that uses an additional integrating part. It is important to mention that all these projects

developed a controller based on a planar model as is described in section 2.1.

4A holonomic wheel that can assign forces into to the tangential direction and allows low-friction motion
into the lateral direction.

5Advanced RISC Machine

3



1.6 Project Schedule and Procedure Introduction

1.6 Project Schedule and Procedure

The project described in this report is structured into chronological phases which end

with the following milestones:

17.03.2010: Simulation environment is available to others

29.03.2010: Ballbot is balancing

12.04.2010: Ballbot is moving, state of the art

26.04.2010: Global system test 1

10.05.2010: Global system test 2

A detailed schedule is shown in the appendix A.

At the beginning of the project, the focus is set on the simulation, because other work

within the focus project is heavily relying on it. The first system model is based on a

planar simplification of the system. Based on the result of the simulation, the next step

is to implement the controller and get the ballbot to keeping stability. With first tests,

the controller is improved to reach the state of the art.

A new approach is taken by modeling the full three-dimensional system, allowing the

design of a much better performing controller. With a test driven optimization, the

controller is constantly improved and the results are verified in the global system tests 1

and 2.

1.7 Structure of the Report

The report is subdivided in seven major chapters. A first chapter describes the Planar

System Modeling and Control (2), followed by the Simulation and Verification of the

Planar System (3). The same structure is followed with the 3D System Modeling and

Control (4) and the Simulation and Verification of the 3D System (5), representing the

chronological order of the development of the ballbot.

The results are discussed in Performance Analysis (6) and the details of the implementation

process described in Implementation (7).

4



Planar System Modeling and Control

2 Planar System Modeling and Control

2.1 Model

2.1.1 Model Description

Figure 2.1: The three planar models, each model consists of the ball, the body and the actuating wheel

The three-dimensional system is divided into three independent planar models (fig: 2.1),

where each can be described with the following two Degrees of Freedom (DoF):

• 1 DoF for the rotation/translation of the ball

• 1 DoF for the rotation of the body

The propulsion system, which is composed of three omniwheels, is modeled as one virtual

actuating wheel in each plane which drives the ball. That particular wheel does of course

not have the same position and speed as the omniwheels in the real system. Therefore,

conversions are needed (see section 2.3).

5



2.1 Model Planar System Modeling and Control

The states of the system are the orientation angles and angle rates of the body and the

position and speed of the ball. Since all these states are measured by the IMU and the

motor encoders, the system outputs are equal to the states. The inputs are the torques

generated by the motors.

2.1.2 Assumptions

In the planar system modeling, the system is treated as three independent planar models.

Therefore no coupling effects between these three models are taken into account. Two

of them (the ones in the xz- and yz-plane) are identical and very similar to an inverted

pendulum, as shown on the left side of figure 2.2. The third one (in the xy-plane)

describes the rotation around the z-axis in the body fixed reference frame, often described

as the rotation around the ballbot’s own axis (right side of figure 2.2).

The system is assumed to consist of three rigid bodies: the ball, the actuating wheel and

the body. The three motors and omniwheels are therefore simplified as one actuating

wheel that fits in a plane.

Additionally, the following assumptions are made:

No slip The contact points between the ball and the ground and between the wheels and

the ball are assumed to be free of slippage. The system construction is optimized

in order to minimize possible slipping. Thus, the torques applied have to be limited

within the range that does not cause slippage in order to ensure the validity of the

model.

No friction Even though friction occurs in the system, it is neglected except for the

rotation of the ball on the ground around the z-axis, because this is the friction

with the biggest impact. Non-continuous friction is hard to represent analytically

and would generate equations much more complex than without friction. Also, the

precise measuring of friction is difficult.

No deformation Because of its synthetic coating, deformation appears at the contact

points of the ball. This has to be neglected in order to keep complexity at a

manageable level.

Fast motor dynamics The power electronics control the dynamics of the motors much

faster than the controller the dynamics of the stabilized system. Consequently, the

motor torques are modeled to be the inputs of the system.

Ball moves only horizontally In order to keep the prerequisite for the no slip condition,

vertical movement of the ball has to be neglected. Finally, this model is designed

to move primarily on flat surfaces without steep inclination.

6



Planar System Modeling and Control 2.1 Model

ey
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l
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ΘK

ΘW,xy
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Figure 2.2: Sketch of the planar models showing the coordinates and parameters. On the left side the
model for the two vertical planes and on the right side the xy-plane model is shown.

2.1.3 Coordinates

To describe the system, the coordinates shown in figure 2.2 are used. ϑx,y,z represent

the orientation of the body, ϕx,y,z represent the orientation of the ball and ψx,y,z are

the angles of the virtual actuating wheels. Using the following minimal coordinates, the

system can be completely described.

~qxy =

[
ϕz

ϑz

]
~qyz =

[
ϕx

ϑx

]
~qxz =

[
ϕy

ϑy

]
(2.1)

2.1.4 Binding Equations

All coordinates can be expressed as functions of the minimal coordinates, which is

necessary in order to derive the equations of motion. The positions of the ball, the wheel

and the body can be written as follows, using the rolling constraint1.

xK = ϕxrK (2.2)

xW = ϕxrK + sinϑx · (rK + rW ) (2.3)

xA = ϕxrK + sinϑx · l (2.4)

Analogous relations are valid for the y coordinates.

1Meaning, that for example the balls position is determined by its slip free rolling on the ground.
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2.1 Model Planar System Modeling and Control

The rotation of the actuating wheel expressed as a function of the minimal coordinates

yields the following equations.

ψ̇x =
rK
rW

(
ϕ̇x − ϑ̇x

)
− ϑ̇x (2.5)

ψ̇y =
rK
rW

(
ϕ̇y − ϑ̇y

)
− ϑ̇y (2.6)

ψ̇z =
rK
rW
· sinα · (ϕ̇z − ϑ̇z) (2.7)

The derivation can be found in the appendix B.1.

2.1.5 Forces

In order to get an idea of the forces taking effect in the system, a Newton/Euler approach

is used to derive analytical equation for the forces shown in figure 2.3. The detailed

equations are listed in the appendix B.3.

FK3

FK2

FK1

FA1

FW2

FW2

FW3

FW3

FA2

FA3

FA3

FA2

φx

ϑx

ψx

ey
I

ez
I

O

FW1

Tx

Tx

Figure 2.3: Free-body diagrams for the three parts of the model, showing all internal forces
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Planar System Modeling and Control 2.2 Dynamics

2.1.6 Parameters

In table 2.1, the parameters describing the system are listed. Numeric values are derived

by measuring or from the CAD model. Calculations of the moments of inertia are

presented in section 2.3.2.

Description Variable Value

Mass of the ball mK 2.29 kg
Mass of the virtual actuating wheel mW 3 kg
Mass of the body mA 9.2 kg
Radius of the ball rK 0.125 m
Radius of the omniwheels rW 0.06 m
Radius of the body (cylinder) rA 0.1 m
Height of the center of gravity l 0.339 m
Inertia of the ball ΘK 0.0239 kgm2

Inertia of the actuating wheel in the yz-/xz-plane ΘW 0.00236 kgm2

Inertia of the actuating wheel in the xy-plane ΘW,xy 0.00945 kgm2

Inertia of the body ΘA 4.76 kgm2

Inertia of the body in the xy-plane ΘA,xy 0.092 kgm2

Gravitational acceleration g 9.81 m/s2

Gear ratio iGear 26

Table 2.1: Parameters of the planar system

2.2 Dynamics

2.2.1 Approach

For the derivation of the equations of motion, the Lagrangian method was selected as

the common approach for that kind of problems. The following steps are needed:

• express kinetic (T) and potential (V) energy of all rigid bodies as a function of the

minimal coordinates,

• write non-potential forces as a function of the minimal coordinates,

• solve the Lagrange equation for the second derivative of the minimal coordinates.

The calculations are made for the yz-plane model, which is identical to the xz-plane

model, and for the xy-plane model as well.

9



2.2 Dynamics Planar System Modeling and Control

2.2.2 Energies

The kinetic energy of the ball in the yz-plane contains a translational and a rotational

part.

TK,yz =
1
2
·mK · (rK · ϕ̇x)2︸ ︷︷ ︸

Translation

+
1
2
·ΘK · ϕ̇2

x︸ ︷︷ ︸
Rotation

(2.8)

The potential energy of the ball is zero, when choosing a coordinate frame in the center

of the ball.

VK,yz = 0 (2.9)

The kinetic energy of the ball in the xy-plane consists of a rotational part only due to

the fact that it describes only the rotation around the z-axis. For the same reason, the

potential energy for the xy-plane does not need to be considered.

TK,xy =
1
2
·ΘK · ϕ̇2

z (2.10)

The kinetic energy of the actuating wheel in the yz-plane is equally composed of a

translational and a rotational part, but there is an additional coupling term. The complete

derivation of the equations of motion can be found in the appendix B.1.

TW,yz =
1
2
mW

 (rKϕ̇x)2︸ ︷︷ ︸
Translation

+ 2 · (rK + rW ) cosϑxϑ̇x(rKϕ̇x) + (rK + rW )2ϑ̇2
x︸ ︷︷ ︸

Coupling


+

1
2

ΘW

(
rK
rW

(ϕ̇x − ϑ̇x)− ϑ̇x

)2

︸ ︷︷ ︸
Rotation

(2.11)

The potential energy of the actuating wheel is a simple function of the tilt angle of the

body ϑx.

VW,yz = mW · g · (rK + rW ) cosϑx (2.12)

For the xy-plane, the kinetic energy of the motor and wheel is similar to that of the ball.

TW,xy =
1
2
·ΘW,xy · ψ̇2

z (2.13)

10
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The energies of the body are again very similar to the ones of the actuating wheel.

TA,yz =
1
2
mA

(
(rKϕ̇x)2 + 2 · l cosϑxϑ̇x(rKϕ̇x) + l2ϑ̇2

x

)
+

1
2

ΘAϑ̇
2
x (2.14)

VA,yz = mA · g · l · cosϑx (2.15)

TA,xy =
1
2
·ΘA,xy · ϑ̇2

z (2.16)

2.2.3 Non-Potential Forces

Non-potential forces fNP represent the external forces acting on a system. In this case,

the motor torque Tx i.e. the system input is a non-potential force. The motor torque

takes a direct effect on the coordinate ψx. Using equation (2.5), the effect of the motor

torque on the minimal coordinates can be expressed:

~fNP,yz1 =

[
rK
rW
· Tx

−
(

1 + rK
rW

)
Tx

]
(2.17)

The counter torque acting on the coordinate ϑx of the body is expressed as:

~fNP,yz2 =

[
0
Tx

]
(2.18)

The total non-potential force is then the sum of ~fNP,yz1 and ~fNP,yz2. A similar procedure

is applied in the xy-plane. In this model, an additional friction force Tf is acting on ϕz

as the rotation of the ball:

~fNP,xy =

[
−Tf + rK

rW
· sinα · Tz

− rK
rW
· sinα · Tz + Tz

]
(2.19)

2.2.4 Equations of Motion

Now, the equations of motion are derived by solving the Lagrange equation for ~̈q.

d
dt

(
∂T

∂~̇q

)T

−
(
∂T

∂~q

)T

+
(
∂V

∂~q

)T

− ~fNP = 0 (2.20)

T and V denote the total kinetic and potential energy respectively.

T = TK + TW + TA

V = VK + VW + VA

11



2.3 Conversions to the Real System Planar System Modeling and Control

Finally, the equations of motion for the planar inverted pendulum in the yz-plane can be

written in matrix form as follows.

Mx(~q, ~̇q)~̈q + Cx(~q, ~̇q) +Gx(~q) = fNP (2.21)

The matrices containing masses and inertias Mx, Coriolis forces Cx and gravitational

forces Gx are:

Mx =

mtotr
2
K + ΘK +

(
rK
rW

)2
ΘW − rK

r2
W
rtotΘW + γrK cosϑx

− rK

r2
W
rtotΘW + γrK cosϑx

r2
tot

r2
W

ΘW + ΘA +mAl
2 +mW r2tot

 (2.22)

Cx =

[
−rKγ sinϑxϑ̇

2
x

0

]
(2.23)

Gx =

[
0

−g sinϑxγ

]
(2.24)

The following substitutions were used in the equations above.

mtot = mK +mA +mW

rtot = rK + rW

γ = l ·mA + (rK + rW )mW

The Lagrange equation of the planar model in the xy-plane solved for ϕ̈z and ϑ̈z yield

the following equations of motion.

ϕ̈z = −
(r2W ΘA,xy + r2KΘW,xy sin2 α) · Tf + rKrW ΘA,xy sinα · Tz

r2W ΘA,xyΘK + r2K(ΘA,xy + ΘK)ΘW,xy sin2 α
(2.25)

ϑ̈z = −
rK sinα(rKΘW,xy sinα · Tf + rW ΘK · Tz)
r2W ΘA,xyΘK + r2K(ΘA,xy + ΘK)ΘW,xy sin2 α

(2.26)

To compute the friction force, it is assumed that the ball always sticks on the ground,

thus the condition for stiction ϕ̈ = 0 has to be fulfilled. With equation (2.25), Tf can be

written as follows:

Tf =
rKrW ΘA,xy sinα · Tz

r2W ΘA,xy + r2KΘW,xy sin2 α
(2.27)

2.3 Conversions to the Real System

2.3.1 Torque Conversion

The planar model uses a virtual wheel to actuate the system. The real system has an

actuating structure which differs strongly from the one assumed in the planar model.

12



Planar System Modeling and Control 2.3 Conversions to the Real System

Since a controller for the planar model is going to be implemented on the real system,

conversions have to be calculated. In order to be able to control the real system, the

torques on the virtual motors have to be converted into the torques for the real motors.

Definitions

One element of the real system (omniwheel driven by a motor) is shown on the left side

in figure 2.4. It actuates the ball by scrolling on a circle on the ball, characterized by the

motor arrangement angle α.

The right side of figure 2.4 shows a top view on the real actuating system where the

torque of each omniwheel generates a tangential force on the surface of the ball.

rK

rK

cosα

sinα

Ti

Ti

α
r K

sin
α Tx

T1

Ty

T2

T3

FW1
FW2

FW3

β

Figure 2.4: On the left side the arrangement of one real omniwheel is shown. The sketch on the right
side shows the torques and tangential forces generated by the real actuating system, the
dashed arrows mark the virtual torques.

FW,1, FW,2, FW,3 in figure 2.4 denote the tangential forces on the ball generated by

torques of the motors in the real configuration, consequently these are functions of

T1,2,3. The levers for this configuration are denoted as rKW,1, rKW,3, rKW,3. For the

virtual configuration, the notation FW,x, FW,y, FW,z is used for the tangential forces (as

functions of Tx,y,z) and rKW,x, rKW,y, rKW,z for the levers. All those are geometrical

relationships one can read out of figure 2.4. In the appendix C.1 the relationships are

written out in full.
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2.3 Conversions to the Real System Planar System Modeling and Control

Torque on the ball

Once the relationships are given, the torque on the ball from the real and the virtual

driving mechanism can be calculated. The torque is equal to the product of force and

lever. Hence the torques for the real and the virtual configuration are calculated as

follows.

TKW,i = rKW,i × FW,i for i = 1, 2, 3 (2.28)

TKW,j = rKW,j × FW,j for j = x, y, z (2.29)

Solution

Of course, the overall torque needs to be conserved:

TKW,1 + TKW,2 + TKW,3 = TKW,x + TKW,y + TKW,z (2.30)

Solving the relations for the real torques yields:

T1 =
1
3
·
(
Tz +

2
cosα

· (Tx · cosβ − Ty · sinβ)
)

(2.31)

T2 =
1
3
·
(
Tz +

1
cosα

·
(

sinβ · (−
√

3Tx + Ty)− cosβ · (Tx +
√

3Ty)
))

(2.32)

T3 =
1
3
·
(
Tz +

1
cosα

·
(

sinβ · (
√

3Tx + Ty) + cosβ · (−Tx +
√

3Ty)
))

(2.33)

Since the system of equation is linear in Tx,y,z, it is straightforward to solve for them as

well (see appendix appendix C).

2.3.2 Inertia Calculations

The aim of this section is to find a suitable approximation for the moments of inertia

of the modeled drive mechanism, which is not the same as in reality. The following

approach is made by comparing the energies stored in the real omniwheels and the virtual

actuating wheel respectively when driving at a constant velocity.

Approximations for sphere and body

The inertia of the ball is approximated by a hollow sphere, which is a good approximation:

ΘK =
2
3
·mK · r2K

The moment of inertia of the body was initially approximated by that of a cylinder. Later,

it was directly calculated in the CAD model.
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Conversion for motors and omniwheels

The real rotor inertia of a motor is given by

ΘM = 3.33 · 10−6 kgm2

and the real inertia of an omniwheel is calculated as:

ΘOW =
1
2
·mOW · r2W = 900 · 10−6 kgm2

Since the reduction of the gear box is i = 26, the rotor of the motor turns 26 times

faster. Therefore, a factor i2 is added to calculate the energy (E = 1
2 ·Θ · v

2). So both,

omniwheel and motor inertias are taken into account. The inertia of the gear rotor is

9.1 · 10−6 kgm2 and therefore negligible.

In order to obtain an approximation of the inertia of the virtual actuating wheel ΘOW,x, the

rotation speed of each real omniwheel is calculated, while turning the virtual omniwheel

at a specific speed. The rotational energy of the virtual wheel is then equated to the

sum of the energies of the real wheels. This equation can be solved for the virtual inertia.

The following results were obtained:

ΘW,x = ΘW,y =
3
2
· cos2(α)(ΘOW + i2 ·ΘM ) (2.34)

ΘW,z = 3 · (ΘOW + i2 ·ΘM ) (2.35)

Comparing the numerical values for the energies of the ball, the actuating wheel and the

body (assuming speeds of v = 3 m/s and ϑ̇x = 1 rad/s) shows that all three values have

the same order of magnitude (equations 2.36–2.38). Hence, it is appropriate to take all

these energies into account for the modeling.

EK = 6.88 J (2.36)

EA = 1.48 J (2.37)

EW = 2.95 J (2.38)

2.4 Development of a Planar Model Based Controller

2.4.1 System Analysis

Based on the model introduced above, a linear controller is designed. Therefore, the

equations have to be linearized. In order to obtain the linear equations, the equations of

motion are written in state space form (2.39).

~̇x =

[
~q

~̇q

]̇
=

[
~̇q

M−1
x (fNP − (Cx +Gx))

]
(2.39)
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Since the expected operating point values and input signals have the same order of

magnitude, no normalization is used.2

With the state vector ~x = [ϕx, ϑx, ϕ̇x, ϑ̇x], the input u = Tx and the system output

~y = ~x, meaning that the output is equal to the states, because all states are measured

with the sensors, the linearized state space description is

~̇x =A · ~x+B · ~u , ~y = C · ~x+D · ~u . (2.40)

Next, the matrices can be derived using a Taylor expansion of the equation of motion.

Substituting the variables with numerical values, one gets the following matrices for the

yz-plane/xz-plane model:

A =


0 0 1 0
0 0 0 1
0 −31.4603 0 0
0 16.3333 0 0

B =


0
0

13.4993
−2.8567

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

D =


0
0
0
0


The controllability matrix as well as the observability matrix have full rank, which means

that the system is fully controllable and fully observable and thus stabilizable. One pole

of the system with positive real part show its instability. Similar to an inverted pendulum,

a ballbot has a non-minimum phase behavior.[1]

Carrying out the linearization for the xy-plane model in an equivalent way yields:

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

B =


0
0
0

−17.2267

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

D =


0
0
0
0


2.4.2 Controller Design

For the two planar inverted pendulums a linear quadratic state feedback controller (LQR)

is designed. In the LQR problem a solution minimizing the cost criterion

J(u) =
∫ ∞

0

(
xT (t) ·Q · x(t) + uT (t) ·R · u(t)

)
dt (2.41)

is sought.[2] In order to apply LQR, full state feedback is used. In many systems it is

hard to measure all states and therefore a model based observer has to be used. If all

states are available, the solution is u(t) = −K · x(t), where K = R−1 ·B ·Φ and Φ is

the only positive definite solution of the Riccati equation:

Φ ·B ·R−1 ·BT · Φ− Φ ·A−AT · Φ−Q = 0 (2.42)

2Normalization is used for preventing numerical problems.
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Since all states are estimated by the sensors in the system discussed, the application of an

LQR controller is straightforward. The weighting matrices Q and R are experimentally

tuned (view section 2.4.3). For given Q and R matrices, the controller gains K can be

derived using the MATLAB lqr command. Since the LQR controller is designed for

a set point equal to zero, an additional factor to the set point is needed, in order to

achieve a correct tracking behavior. This gain is calculated as proposed in [3]:

N = −
(
C(A−BK)−1B

)−1
(2.43)

BN

A

K

C∫+ +

+–

xr y

P

Figure 2.5: Block schema of the LQR controller with the linear model P (shaded in grey)

Three different controllers are implemented on the system. First, a position controller

which uses all states to stabilize the system and accepts position set points. Furthermore,

a velocity controller that does not stabilize the position, thus only uses the states

x = [ϑx, ϕ̇x, ϑ̇x], is implemented. Finally, an angle controller which uses solely the states

x = [ϑx, ϑ̇x] and no information about position and speed.

For the relatively simple xy-plane model, a PD controller is experimentally developed.

With the parameters kp = −0.5 and kd = −0.3, the rotation angle ϑz can be stabilized.

Because of developing a controller for the full three dimensional system, these parameters

were not tuned any further.

2.4.3 Tuning on the Real System

The initial guess for the weighting matrices Q and R, which worked well for the simulation,

was found to be much too aggressive to be applied on the real system. The problem is,

that the noise on the gyroscope values (corresponding to the state ϑ̇) is amplified by

the controller and thus causes the system to start trembling also linked with backlash

of the gear box. Therefore, in order to lower the controller gains, the parameter R was

iteratively increased. In addition, the damping coefficients, i.e. the factors in the matrix

Q, which weights the velocities, were raised too. Finally, the following matrices are found
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to generate controller gains which stabilize the ballbot without causing trembling:

Q =


20 0 0 0
0 100 0 0
0 0 10 0
0 0 0 50

 R = 200

The controller gains calculated with these weighting matrices are:

K =
[
−0.3162 −22.8608 −0.5359 −6.5726

]
In order to improve the performance of the controller, a finite impulse response (FIR)

low-pass filter of fourth order with a cutoff frequency of approximately 15 Hz (view

section 3.4.2) is applied on the controller output. Therefore the gains can be increased,

while the system remains stable.

Finally, the controller gains are slightly modified by hand to improve the performance.

The gains used in the end are the following:

K =
[
−0.8944 −60 −1.5 −10

]
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3 Simulation and Verification of the Planar Model

3.1 Implementation in Simulink

The nonlinear equations of the planar model are implemented in Simulink (fig. 3.1) for

model verification. First, simulations without controller showed that the system behaves

as expected. The simulation is also used to develop and test the controller and any

further software that is going to be implemented on the real system. Therefore, the

simulation should fit the reality as precisely as possible. In section 3.3 the approach to

improve the simulation in that way is explained.

VR Sink

Bot.translation
Pendl_z.rotation
Pendl_x.rotation
Pendl_y.rotation
Wheel1.rotation
Wheel2.rotation
Wheel3.rotation
Sphere.rotation

Umrechnungen

states_z

states_x

states_y

position

z_rotation

x_rotation

y_rotation

ow1_rotation

ow2_rotation

ow3_rotation

ball_rotation

time

Sollwert Generator

angle_x

angle_y

angle_z

Sollwert Filter

angle_x

angle_y

angle_z

states_z

states_x

states_y

r_x

r_y

r_z

Regler

r_x

r_y

r_z

states_z

states_x

states_y

u_x

u_y

u_z

Modell Ballbot

T_x

T_y

T_z

theta_x

theta_dot_x

phi_ddot_x

theta_ddot_x

states_z

states_x

states_y

Kraefte

theta

theta_dot

phi_ddot

theta_ddot

Clock

Figure 3.1: Simulink block scheme of the complete simulation environment

For handling the simulation a simple to use graphical user interface (GUI) is programmed

in MATLAB (figure 3.2), where the control method and the input can be chosen. When

starting the simulation, the real time visualization (section 3.2) is shown. After the

simulation is stopped, the plots are generated.

3.2 Visualization

To visualize the data generated in the simulation, the 3D Animation Toolbox of MATLAB

is used, which is a relatively simple way to achieve a three-dimensional visualization of

the model in real time. Figure 3.3 shows a screenshot of the visualization.
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Figure 3.2: Screenshot of the GUI for the simulation environment

Figure 3.3: Screenshot of the virtual reality environment in Simulink
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3.3 Error Model

To get an idea of the effect of noise and delay occurring in the real system, simple

assumptions are made and simulated in Simulink.

3.3.1 Noise

The only noise that is assumed to be relevant is the sensor noise from the angle estimation

and from the gyroscopes of the IMU. The discretization error of the motor encoder is

neglected. The dynamic IMU noise is measured by rotating the IMU constantly around

each axis separately. It is assumed that the rotation contains no high frequency oscillating,

therefore, by subtracting the rotation speed from the measured data, the magnitude of

the dynamic noise can be estimated. As shown in figure 3.5, the magnitude measured in

this test is approximately ±0.05 rad/s at a sample time of 157.8 Hz. This data is then

directly added to the angle rate (signal n in figure 3.4).

BN

A

K

C∫+

++

+

+–

xr y

n
P

Figure 3.4: LQR feedback control schema with sensor noise n

3.3.2 Delay

In addition to the sensor noise, a delay of 0.01 s is added to the plant, representing the

delay occurring in the real system by signal processing (a sample rate of 160 Hz means a

maximum delay of 0.007 s).

3.4 Filtering

As already discussed in section 2.4.3, noise and other non-ideal effects are the main

reason why the controller cannot be tuned in the desired way. Particularly the noise

is limiting the magnitude of the controller gains and therefore the performance of the

controller. In order to counteract these undesired effects, different solutions are tried.
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Figure 3.5: Measured data from the IMU gyroscopes, showing the noise.

3.4.1 Offset

Because of the friction, the motors do not start turning unless they get more than a

specified amount of torque as input. The current needed to start the motors turning

is experimentally determined and amounts to approximately 80 mA, what corresponds

to a input torque of 42 mNm. An offset with that threshold was tested on the ballbot

without improvement and is therefore not used.

3.4.2 Low Pass Filter

The noticeable amount of noise on the gyroscope values (fig. 3.5) causes the output of

the controller to be very noisy too, which is shown by a trembling of the system. By

applying a low pass filter on the controller output, this effect is eliminated. The low pass

is derived using the Filter Design Toolbox fdatool of MATLAB. It is a fourth order

finite impulse response (FIR) filter with a cutoff frequency of approximately 15 Hz.

3.4.3 Kalman Filter

By applying a Kalman filter on the sensor values and estimating the gyroscope values

using the model, it is also possible to eliminate the trembling. As can be see in figure 3.7,

it has the same effect as the low pass filter, whereas it does not cause as much delay as

the low pass filter. The development of a Kalman filter is part of the bachelor thesis [4].
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Figure 3.6: Magnitude of the transfer function of the fourth order lowpass filter
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Figure 3.7: The raw signal (blue), the low pass filter signal (green) and the Kalman filter signal (red) of
the system input

3.5 Verification of the Planar Model

A velocity step applied to the real system and to the planar model is shown in figure

3.8. The velocity step in this case is generated using a positive set point for ϕ̇x, which is

equal to an actual translation in the direction of the y-axis. So actually it is a planar

problem. The agreement of the step responses is generally quite good. The small

deviations between the measured data and the simulated data are mainly due to noise

and simplifications in the model. To perform this step with the prototype, a controller
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based on the planar model was implemented. The same controller is used in the model.

Therefore, it is not a feed forward verification as usually done. However, that would

not be possible on an unstable system. Obviously, this controller is able to stabilize the

system and to achieve an acceptable performance. Therefore, the model is a reasonable

representation of the system. Further plots can be found in the appendix F.1.
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Figure 3.8: System and model response on a velocity step from 0 rad/s to 1.5 rad/s for 4 s

3.6 Drawbacks on the Planar Model

By splitting the system into three separate planar models, the coupling effects between the

models are neglected. It can be shown that when driving into the y-direction (yz-plane)

and then turning about the z-axis (xy-plane), there is no effect to the xz-plane model

(fig. 3.9). It is intuitively clear that such a behavior does not represent reality.

Another drawback of the planar system modeling is that a lot of conversions have to be

done (see chapter 2.3) to get the real system working. And for example the moments of

inertia calculations are simple approximations.
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Figure 3.9: The response of the model to a velocity step in x direction (center) and a ramp on the
rotation around the z-axis (bottom)
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4 3D System Modeling and Control

The representation of the real system of a ballbot as a planar model implies multiple

drawbacks as described in section 3.6. The interconnecting effects between the planar

models could be added separately to the dynamic equations and the results be verified

subsequently. However, the approach described in this chapter takes the real, full three-

dimensional geometry and parameters into account. With this model, all coupling effects

are considered and no artificial conversions are required.

4.1 Model

4.1.1 Model Description

Geometry

Body

Motor with gear head

Omniwheel

Ball

Figure 4.1: Geometrical representation of the 3d model

The proposed 3d model as shown in figure 4.1 consists of five solid bodies:

• 1 ball,

• 3 omniwheels,

• 1 body with 3 motors with gear head.

The ball can rotate about any axis parallel to the ground but not about the vertical axis.

It is always in contact with the ground in one arbitrary point. Three omniwheels link the

upper system to the ball in three points at any time. Each of these wheels is fixed to the
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4.1 Model 3D System Modeling and Control

body over a motor with a gear head. The omniwheels can solely rotate about the motor

axis in reference to the body coordinate system. The linkage between the wheels and

the ball is holonomic and the wheel can only apply forces to the ball in the tangential

direction of its rotation in the body reference system.

This system can be described with the following five degrees of freedom (DoF):

• 2 DoF for the position of the ball,

• 3 DoF for the rotation of the body.

All other geometrical coordinates, e.g., the rotation of the omniwheels, can be calculated

directly from the given five states. A detailed description of these binding equations is

given in section 4.1.4.

Input and Output

The inputs to the system are the three torques T1, T2, T3 which are generated by the

motors and transformed by the gear heads.

The sensors of the system are chosen in a way that all states can be measured directly.

Therefore, each output represents a state separately. Details on the output variables are

given in 4.3.2.

This system has several inputs and outputs and can be characterized as a MIMO1 system.

4.1.2 Assumptions

In addition to the geometrical simplification of the system, the same assumptions as in

the planar model are made (see 2.1.2).

Since the rotation of the ball about the vertical axis is not modeled, high rotational

stiction at the contact point between ball and ground has to be assumed or guaranteed

by limiting the torque around the z-axis by appropriate motor torque setting.

4.1.3 Coordinates

The inertial reference frame is denoted as I (see fig. 4.2). By turning about the inertial

z-axis eI
z with ϑz, the reference system denoted as L is described. The reference systems

A′ is derived from the rotation about the y-axis in the L-system eL
y with ϑy. Finally, the

body fixed reference system is denoted as A and is derived from the rotation about the

x-axis in the A′-system eA′
x with ϑx.

The representation of the coordinate systems in the Euler form is chosen because the

following calculations are well know in this form. Furthermore, the system is supposed

to operate in the range of tilt angles of maximum ±20◦, in which singularities do not

1Multiple Input, Multiple Output
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have to be considered. The sequence of the transformations as Tait-Bryan angles2 are

matched with the convention of the sensor output, making conversions unnecessary.
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À

ϑ

ϑ

z

z ϑy ϑx

ϑy

ϑx

Figure 4.2: Coordinate systems (left) and angular velocities (right)

The angular velocity vectors of the bodies are denoted as follows:

• ~ΩK : Angular velocity of the ball

Parametrization of ~ΩK in the reference system L:

L
~ΩK =

ϕ̇x

ϕ̇y

0

 (4.1)

ϕ̇x, ϕ̇y are not the variations of any orientation angles of the ball. They are the

parametrization of the angular velocity of the ball L
~ΩK and are named to match

the notation of the planar system.

• ωWi: Angular speed of an omniwheel i relative to the reference system A in

direction of the motor axis

Parametrization of ωWi:

AωW1 = ψ̇1 AωW2 = ψ̇2 AωW3 = ψ̇3 (4.2)

2specific kind of Euler angles often used in aerospace applications
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• ~ΩA: Angular velocity of the body

In order to express the angular velocity of the body with the variables ϑx, ϑy and

ϑz, the time variation of the Tait-Bryan angles ~̇ϑ needs to be converted with the

Jacobian matrix J (see [6] for further explanations).

Parametrization of ~ΩA in the reference system A:

A
~ΩA = J · ~̇ϑ =

 ϑ̇x − sinϑy · ϑ̇z

cosϑx · ϑ̇y + cosϑy · sinϑx · ϑ̇z

− sinϑx · ϑ̇y + cosϑx · cosϑy · ϑ̇z

 (4.3)

4.1.4 Binding Equations

The system described has five degrees of freedom, as discussed in 4.1.1. Geometrical

dependencies have to be formulated with the aim to express all other geometrical variables

as terms of the primary representation of the system.

The primary representation is chosen as ϑx, ϑy, ϑz, ϕx, ϕy. This choice renders in a

solution more compact than other alternatives (see 4.3.1). It is important to distinguish

that while ϑx, ϑy and ϑz are spatial orientation angles, ϕx and ϕy are simply the integral

of the parametrization of the angular velocity of the ball L
~ΩK . ϕx and ϕy do not

represent the orientation of the ball but the rolled angles in the respective direction.

Absolute rotation of the omniwheels

As a first step, the absolute rotation of the omniwheels are calculated. The vectors from

the intersection of the motor directions M to the center point of the omniwheels W1,

W2 and W3 in the body fixed reference system A are denoted as A
−−−→
MW 1, A

−−−→
MW 2 and

A
−−−→
MW 3 (fig. 4.3).

K1
d1K2

W1W2

P

B

M

Figure 4.3: Geometrical points for the binding equations
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The absolute angular speed of the omniwheels about the motor axis in the body reference

frame A can now be written as

AΩWi = AωWi + A
−−−→
MW i

||A
−−−→
MW i||

· A~ΩA for i = 1, 2, 3. (4.4)

Dependency on the rotation of the omniwheels

The vectors from the center of the ball P to the contact point with the omniwheels K1,

K2 and K3 in the reference system A are denoted as A
−−→
PK1, A

−−→
PK2 and A

−−→
PK3, the

directions of the tangential velocity of the rotation of the omniwheels as unit vectors

A
~d1, A

~d2 and A
~d3.

The angular velocity of the ball relative to the body in the reference system A can be

calculated as

A~ωK = RAL · L~ΩK − A
~ΩA (4.5)

where RAL is the transformation matrix from the reference system L to A.

Based on the no slip assumption, it follows: The speed on the surface of the ball

in omniwheel direction has to be the same speed as the tangential speed of the omni-

wheel itself. This can be formulated as a scalar equation for each omniwheel:

(A~ωK × A
−−→
PKi) · A~di = AωWi · rW for i = 1, 2, 3, (4.6)

where rW denotes the radius of the omniwheel. Solving these equations for AωW1, AωW2

and AωW3 results in explicit statements depending on ϑx, ϑy, ϑz, ϑ̇x, ϑ̇y, ϑ̇z, ϕ̇x and

ϕ̇y.

Finally, AΩW1, AΩW2 and AΩW3 can easily be calculated. The solution for AΩW2

is given as an example:

AΩW2 =
1

2
√

2 · rW
· (rK · (cosϑy + (2 cosϑx −

√
3 sinϑx) · sinϑy) · ϕ̇x

− rK · (
√

3 cosϑx + 2 sinϑx) · ϕ̇y + (rK + rW ) · (−ϑ̇x + (
√

3 cosϑx+

2 sinϑx) · ϑ̇y + (cosϑy · (−2 cosϑx +
√

3 sinϑx) + sinϑy) · ϑ̇z))

All detailed calculations and solutions are shown in E.

Based on exactly the same ideas but calculated and solved in a different order, a

solution for the odometry calculation is found. The odometry calculations and solutions

are shown in detail in D.
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4.1 Model 3D System Modeling and Control

Translation of the ball

It is important to know the translational speed of the ballbot for later calculations. Also,

integrating the translational speed generates information about the exact location of the

ballbot relative to the inertial reference system I.

Knowing the vector from the ground B to the center of the ball P , I
−−→
BP , the speed

vector I~̇rP of the center of the ball P can be calculated as

I~̇rP = IΩK × I
−−→
BP. (4.7)

4.1.5 Parameters

In the following section all parameters additional to table 2.1 are described.

Description Variable Value

Inertia of the ball ΘK 0.0239 kgm2

Inertia of the body ΘA,x 2.026 kgm2

Inertia of the body ΘA,y 2.025 kgm2

Inertia of the body ΘA,z 0.092 kgm2

Inertia of one motor and wheel ΘW 0.00315 kgm2

Angle of the omniwheel contact point α 45◦

Angles of the omniwheel directions β1, β2, β3 0◦, 120◦, 240◦

Table 4.1: Additional parameters of the 3d system

The moments of inertia for the ball and the body, ΘK and ΘA respectively, are tensors

and are given at the center of the ball. They are chosen in a reference system (see 4.1.3),

where the principal moments of inertia become zero.

IΘK = LΘK =

ΘK 0 0
0 ΘK 0
0 0 ΘK

 (4.8)

AΘA =

AΘA,x 0 0
0 AΘA,y 0
0 0 AΘA,z

 (4.9)

The moment of inertia for a motor with an attached omniwheel ΘW , is a scalar and is

given solely for the rotation about the motor axis in the body fixed coordinate system.

In order to consider the rotation of the motors and omniwheels about all axes in the

inertial reference frame, their moment of inertia is simply added to the moment of inertia

for the body. This results in a simplified description for the system energies (see 4.2.1).

However, gyroscopic effects, especially at high angular speed, are not taken into account

with this simplification.
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Of course, as described in section 2.3.2, it is necessary to take the gear ratio between

motor and omniwheel into consideration. Equation (4.10) describes the relation for the

moment of inertia of an omniwheel ΘOW and the corresponding motor ΘM .

ΘW = ΘOW + i2gear ·ΘM (4.10)

rK

rW

l

g
mA, ΘA

mW, ΘW

mK, ΘK

Figure 4.4: Geometrical parameters of the 3d systems
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Figure 4.5: Angles of the motor configuration
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4.2 Dynamics

This section describes the derivation of the dynamic equations which are needed for

analysis, simulation and the design of a suitable controller.

As with the planar system modeling, the Lagrangian method is used to derive the

equations of motion (see 2.2.1). As minimal coordinates ~q the following set of variables

is used:

~q =
[
ϑx ϑy ϑz ϕx ϕy

]T
(4.11)

4.2.1 Energies

For each body, translational, rotational and potential energies have to be considered.

The plane with zero potential energy is chosen to concur the center of the ball.

Ball

The kinetic energy of the ball consists of a translational and a rotational part.

TK =
1
2
·mK · I~̇r

T
P · I~̇rP︸ ︷︷ ︸

Translation

+
1
2
· L~ΩT

K · LΘK · L~ΩK︸ ︷︷ ︸
Rotation

(4.12)

The ball is only moving in the horizontal directions (see 2.1.2), meaning that its potential

energy VK is zero at any time.

Body

As explained in section 4.1.5, in mA and ΘA the motors and omniwheels are also

considered.

The point of reference is chosen in P , which is not the center of mass, in comparison to

the calculation of the ball. As a result, a coupling term has to be included.

TA =
1
2
·mA · I~̇r

T
P · I~̇rP︸ ︷︷ ︸

Translation

+mA · (RAI · I~̇rP ) · (A
~ΩA × A~rPSA)︸ ︷︷ ︸

Coupling

+
1
2
· A~ΩT

A · AΘA · A~ΩA︸ ︷︷ ︸
Rotation

(4.13)

A~rPSA denotes the vector from the center of the ball P to the center of gravity of the

body SA in the reference system A.

The potential energy of the body including motors and omniwheels is calculated as

VA = −mA · ~G ·RIA · A~rPSA with ~G =

 0
0
−g

 (4.14)
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Omniwheels

The additional rotation of the omniwheels and the motors around the respective motor

axis is modeled here. As a result of the simplification made in section 4.1.5, only the

rotational energies have to be considered.

TWi =
1
2
· AΘWi · AΩ2

Wi for i = 1, 2, 3 (4.15)

4.2.2 Non-Potential Forces

The non-potential forces fNP are of course the motor torques T1, T2 and T3, which are

used to stabilize the system. They act directly on AωW1, AωW2 and AωW3 respectively.

Since the parameters ψ̇1, ψ̇2 and ψ̇3 are not components of the minimal coordinates ~q, a

polynomial separation has to be done, such that

AωWi = JT i · ~̇q for i = 1, 2, 3 (4.16)

is fulfilled.

Also, it is important to consider the counter torques acting on the body ~TC,1, ~TC,2 and
~TC,3. They act on the opposite direction of T1, T2 and T3 respectively and are formulated

as shown in (4.17).

~TC,i = A
−−−→
MW i

||A
−−−→
MW i||

· (−Ti) for i = 1, 2, 3 (4.17)

The associated Jacobian matrix is derived in (4.3) and is here denoted as JTC .

Hence, the non-potential forces fNP can be written as

fNP = JT
T1 · T1 + JT

T2 · T2 + JT
T3 · T3 + JT

TC · (~TC,1 + ~TC,2 + ~TC,3). (4.18)

4.2.3 Equations of Motion

The equations of motion are now derived by solving the Lagrange equation, analogously

to the planar procedure.

d
dt

(
∂T

∂~̇q

)T

−
(
∂T

∂~q

)T

+
(
∂V

∂~q

)T

− ~fNP = 0 (4.19)

with

T = TK + TA + TW1 + TW2 + TW3

V = VA
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At this point it is important to note that these calculations could not be done directly in

a software package like Mathematica. Instead, the calculations had to be separated into

multiple, smaller computations and simplified after each step.

4.3 System Analysis

4.3.1 Nonlinear System

The equations of motion for the system described in section 4.2.3 are a set of vast,

nonlinear, ordinary differential equations. They consist of thousands of terms and cannot

be overviewed by any means.

The first 3d models also considered the rotation of the ball about the vertical axis and

used different minimal coordinates. As a consequence, the results rendered in a file size

over 40 MB when saved as a simple text file. With the model introduced in chapter

4.1.1, the file size is brought down to 0.5 MB and can be simulated in real time.

Because of the size of this complex system, its analysis is limited to a linearized version

of the system.

4.3.2 Linearized System

For the state space representation (4.20), the state vector ~x, the input vector ~u and the

output vector ~y are chosen as shown in (4.21)–(4.23). As in section 2.4.2, the process of

normalization is left out, because all states, inputs and outputs have the same order of

magnitude.

~̇x =A · ~x+B · ~u ~y = C · ~x+D · ~u (4.20)

~x =
[
ϑx ϑ̇x ϑy ϑ̇y ϑz ϑ̇z ϕx ϕ̇x ϕy ϕ̇y

]T
(4.21)

~u =

u1

u2

u3

 =

T1

T2

T3

 (4.22)

~y =~x (4.23)

Linearization at zero

As a first step, it makes sense to linearize all states at zero, because the ballbot is

controlled to keep the body upright and the position constant. Furthermore, a ballbot

can tilt and drive in any direction, so linearization around zero is a reasonable trade-off.

Additionally, it is the unstable equilibrium of a ballbot.
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Figure 4.6: Matrices A0 and B0 for the linearization at zero for all states. The subsystem for the planar
model in the yz-plane is marked blue, for the xz-plane red and for the xy-plane black.

The matrix C0 is a 10× 10 identity matrix and D0 is a 10× 3 zero matrix. The stability

and non-minimum phase behavior is similar to the planar model (see 2.4.1).

Figure 4.6 shows that the 3d system linearized at zero can be split into three independent

planar systems. The red and blue marked entries of A0 and B0 are the two identical

systems for the yz- and xz-plane (see 2.1.2) and the black marked entries represent the

system for the xy-plane. The slight numerical difference in A0 for the yz- and xz-systems

originates in the difference of their respective moment of inertia.

Also, it can be clearly seen by observing the matrix B0 that the motors exert different

influences on each system. For example, u1 (from motor 1) has the main effect on

the yz-system, while u2 and u3 (from motor 2 and 3) have a smaller and opposite

input. Likewise, u1 has no influence on the xz-system, because its omniwheel stands

perpendicular to the ball turning direction of this configuration.

Linearization at an arbitrary point

To show the influence of the choice of the linearization point, an arbitrary operation

point (4.24) is chosen as linearization point.
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The parameters ϑz, ϕx and ϕy reflect the orientation and position of the ballbot and are

therefore irrelevant for its dynamics. Hence, their linearization point has no influence on

the state space matrices.

For all other states, the following linearization point is chosen:

ϑx

ϑ̇x

ϑy

ϑ̇y

ϑ̇z

ϕ̇x

ϕ̇y


=



0.32 rad

−0.5 rad/s

0.1 rad

0.35 rad/s

−0.2 rad/s

6.3 rad/s

2.3 rad/s



u1

u2

u3

 =

 1.1 Nm

−3.3 Nm

−2.7 Nm

 (4.24)

With n denoting an arbitrary operation point, the state space matrices Cn and Dn are

the same as before, An and Bn are shown in 4.25 and 4.26 respectively. By comparing

the matrices to figure 4.6, it is obvious that An and Bn describe different systems and

exhibit strong coupling terms.

An =



0 1 0 0 0 0 0 0 0 0
12.85 −0.5234 64.1 1.164 0 2.361 0 0.09295 0 0.07759

0 0 0 1 0 0 0 0 0 0
−62.57 3.008 32.44 −5.953 0 −3.789 0 −0.1806 0 −0.4806

0 0 0 0 0 1 0 0 0 0
−38.94 −8.147 4.429 21.06 0 6.915 0 1.066 0 1.703

0 0 0 0 0 0 0 1 0 0
−13.2 −1.236 −28.15 1.551 0 −2.268 0 0.03377 0 0.1916

0 0 0 0 0 0 0 0 0 1
45.18 0.3581 −42.06 −3.098 0 3.54 0 −0.3492 0 −0.206


(4.25)

Bn =



0 0 0
2.327 −2.863 −3.038

0 0 0
3.925 6.862 1.02

0 0 0
−10.17 −7.92 −11.51

0 0 0
−11.38 6.901 6.871

0 0 0
−2.231 −13.96 8.24



(4.26)

This shows that a model based on a decoupled system is a very strong limitation and only

feasible at an operating point where all states are near zero. A fully operating ballbot

with high dynamics can solely be based on a system that considers coupling effects.
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4.4 Development of a 3D Model Based Controller

As in chapter 2.4.2 above, a model based, linear full state-feedback LQR controller is

proposed. Based on the linearized system with all operating points at zero, the following

parameters for Q and R are chosen:

Q = diag (100, 50, 100, 50, 40, 20, 20, 10, 20, 10)

R = diag (100, 100, 100)

The values for Q are chosen similarly to the parameters described in section 2.4.2. R is

chosen at a value so that during normal operation the input of the motors do not reach

their limits.

The values in Q for ϑz and ϑ̇z can be chosen without influencing the resulting gains

for the other dynamics. They are chosen in a way, where at normal operation and

disturbances, the ball does not start to slip about the vertical axis.

As an example, the resulting matrix K for the position control is given:

K =

 22.34 4.63 −0.00 −0.00 −0.36 −0.29 0.36 0.53 −0.00 −0.00
−11.17 −2.32 19.34 4.01 −0.36 −0.29 −0.18 −0.26 0.31 0.46
−11.17 −2.32 −19.34 −4.01 −0.36 −0.29 −0.18 −0.26 −0.31 −0.46


4.5 Nonlinear Controller Design for the 3D Model

Considering the strong nonlinearities of the system (see 4.3.2), the next step is to develop

an appropriate nonlinear controller.

4.5.1 Concept

A suitable approach for a nonlinear controller is gain scheduling [8], regarding the size of

the dynamic equations of the system (see 4.3.1). With that method, a linear controller

is designed at different operating points and the controller gains are interpolated for the

current states during operation, i.e. combined to a nonlinear controller.

The nonlinear controller is developed for the velocity controller, because this is the mostly

used controller by the different input generating projects. The states causing the systems

nonlinearity are ϑx, ϑ̇x, ϑy, ϑ̇y, ϑ̇z, ϕ̇x, ϕ̇y, u1, u2 and u3 while ϑx, ϑy, ϕ̇x and ϕ̇y

having the strongest influence.

In order to design a full nonlinear controller, the 24 entries of the velocity state feedback

controller matrix K have to be interpolated in these 10 dimensions. With a discretiza-

tion of only five linearization points per state, the controller look up table contains

510 · 24 ≈ 23.4 · 107 terms (curse of dimensionality).
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4.5.2 Implementation

Implementing this controller on the given processor [9] means that this number of terms

has to be decreased drastically because of memory and computational power limitations.

Therefore, as a first approach, the focus was set on the non-linearities resulting from the

velocity of the ballbot.

The primary issue with the linear controller in real tests is its incapability to control ϑz

at high speeds, meaning over ∼2 m/s. At this speed, the ballbot can start oscillating

heavily about the inertial z-axis which can lead to an instability of the whole system.

This effect can also be observed in the simulation illustrated with the plot on the

left side of figure 4.7. The set points are a steep ramp for the velocity in y-direction

from 0 to 2 m/s and a flat ramp for ϑz. Additionally, little disturbances are given for

ϕy. The right side of figure 4.7 shows that a nonlinear controller, based on linearization

points for ϕ̇x and ϕ̇y, is able to ensure system stability while following the set points.

The same nonlinear control as shown is implemented on the real system and initial tests

have proved, that the controller works as expected. However, an elaborate analysis has

yet to be done.
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Figure 4.7: Performance of the linear (left) and the nonlinear controller (right) for the same set points
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5 Simulation and Verification of the 3D Model

5.1 Implementation in Simulink

Similar to the planar model, the 3d model is also implemented in Simulink. However,

the main difference is the way of implementation. Because of the size of the equations

of motion, the model is implemented as S-function, which is optimized to make a real

time simulation possible. All other functions are, whenever possible, implemented as

MATLAB-functions. The advantage of this method is that the MATLAB-functions in

the simulation are very similar to the C-functions in the real system. Therefore changes

made in the simulation are transferred to the ballbot fast and with a low risk of migration

errors.
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Figure 5.1: Block schematic of the 3d simulation environment in Simulink

5.2 Verification of the 3D Model

Figure 5.2 shows the responses of the real system and the simulation of the model to a

step on the position. The set point step on ϕx from 4 rad to -8 rad corresponds to a

position difference of 1.5 m. The agreement of the step responses generally meet the

expectations. The small deviations between the measured data and the simulated data

are explained with the fact that the real system is not able to stand perfectly in place.

The controller used for this experiment is based on the 3d model, and is able to achieve

a very good performance. Therefore the model is a reasonable representation of the

system.
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Figure 5.2: System and model response on a position step from 4 rad to -8 rad and backwards

Contrary to the planar model, figure 5.3 shows the coupling effects occurring in the 3d

model. Driving in x direction and then turning about the z-axis does now affect the

motion in y direction, although there is no set point.

0 2 4 6 8 10 12 14 16 18 20
−4

−2

0

2

time [s]

φ x d
ot

 [r
ad

/s
]

velocity step

 

 

model
setpoint

0 2 4 6 8 10 12 14 16 18 20
−20

−10

0

10

time [s]

φ y d
ot

 [r
ad

/s
]

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

time [s]

θ z [r
ad

]

Figure 5.3: Response of the model on a velocity step in x direction (center) and a ramp on the rotation
around the z-axis (bottom).
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The setting of more complex set points, generated with a joystick, shows that the

agreement of the real system and the simulation is still good (fig. 5.4). Again, the

coupling effects are well recognizable. Further plots are shown in the appendix F.2.
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Figure 5.4: System and model response on set points generated by a joystick
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5.3 Comparison

The main difference between the planar and the 3d model that affects the dynamics of

the system are the couplings between the different axes. As already discussed in sections

3.6 and 5.2, this difference can be demonstrated easily. In figure 5.5, simulating the 3d

model with the planar controller shows that this controller is not able to manage the

couplings when driving at faster speed. Therefore the planar controller is not capable of

performing complicated sequences of motion.
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Figure 5.5: System response of the 3d model stabilized by the the planar controller

Figure 5.6 shows that the planar controller is not able to follow the complex set points

generated by a joystick. When driving at relatively high speed and then turning around

the z-axis the system starts oscillating.
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6 Performance Analysis

During various tests, the performance of the controller was analyzed. Tests were performed

on different coverings. Due to the additional damping and contact friction on carpets,

the performance is slightly better than on hard floors.

Figure 6.1 shows the motion of the ballbot while balancing on a single point. For this

test a special controller is used which contains a low pass filter on the controller output

and therefore allows stronger gains. The maximum deviation from the initial point is

1 mm, compared to 20 mm, which is what other ballbots are capable of ([12],[7]).
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Figure 6.1: Deviation of the position for standing on a single point for 20 s

Greater differences between Rezero and other ballbots are shown in the following plots.

Figure 6.2 shows the maximum speed that was reached with the prototype. This test

was performed with an angular controller which stabilizes only the angle and does not

include position or speed (view section 2.4). The plot shows the rotation speed of the

ball in rad/s. Converting to a speed in m/s by multiplying with the radius of the ball

yields a maximum speed of 3.5 m/s.

The maximum tilt angle reached so far is 17◦. The tilt angle corresponds directly to the

acceleration of the ballbot. Compared to already existing ballbots ([12],[7]), this angle

is much bigger and shows the performance capability of the system and the controller.

Figure 6.4 shows a picture of the prototype while tilting 17◦. This test was done by

generating velocity set points with a joystick.
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Figure 6.3: Maximum tilt angle (left) and corresponding motor torques (right) during system test

The described performance analysis tests were done with the linear controller derived

from the 3d model. As the nonlinear controller shows promising potential (4.5), higher

performance by using a nonlinear controller can be assumed.
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Figure 6.4: Performance demonstration, tilt angle of 17◦
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7 Implementation

7.1 Set Point Filter

To ensure that the set point jumps are feasible for the controller, the inputs generated

by any input device are filtered by a set point filter. This filter makes a ramp from every

input and limits its maximum (fig. 7.1). Consequently it has two tuning parameters: the

maximum inclination of the ramp and the maximum allowed input. The filter works the

way, that if the set point difference is higher than the maximum allowed difference, the

allowed difference is added to the last set point in the direction of the demanded set

point. This is done every time before the set points are sent to the controller.

The inclination of the ramp is chosen at a value at which the torque of the motors just

reach the their limits. The maximum velocity is limited to a value at which the linear

controller is sufficient to stabilize the system (cf. section 4.5).
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Figure 7.1: Raw set point and filtered value of the set point filter
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7.2 Programming

The controller is implemented on a microcontroller running at 157.8 Hz. This control

rate being sufficiently high, discrete control theory can be omitted and the continuous

controller designed for the simulation is directly ported. The controller and all calculations

are written in C-code.
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Figure 7.2: Structure of the implemented control system

Figure 7.2 shows an overview of the implemented control structure for the planar controller.

The states of the plant are measured by the IMU and the encoder of the motors. The

latter have to be converted with the odometry in order to match the states from the

controller. Accounting for the set point, this dataset is processed by the controller and

converted in the torque conversion to deliver the appropriate set point for the motor

controllers.

Integration for ϕx, ϕy and ϕz is realized as numerical integration in trapezoidal form.

Further details of the software and electronics are described in [11] and [9].

7.3 Safety System

In system verification and performance tests, the physical ballbot prototype must be

operated extensively. In order to avoid system damage and human injury, safety is a very

important aspect of running a ballbot.

At system tests with unknown outcome, the ballbot is secured from falling on the ground

with a specially designed, rollable safety frame. A emergency button is attached to the

safety frame, enabling the operator to turn off the system immediately at any time.

The motors are very powerful and capable of destroying the omniwheels or the ball. By

limiting the maximum torques between 1.2 to 5 Nm, according to the situation, a harm
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of equipment can be avoided. Also, to protect the gear heads, the motors are shut down

as soon as they would accidentally rotate faster than at 8000 rpm.

Since the motors are limited to 5 Nm, the ballbot cannot stabilize tilting angles bigger

than ∼20◦. Running in a situation where the tilting angle exceeds this limit, the system

is turned off at 25◦ in order to prevent further damage.
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8 Conclusion

This thesis has followed the goal of developing a controller for a highly agile and

maneuverable ballbot. By relying on a simplified planar model first, a real-time simulation

with a graphical user interface and three-dimensional visualization is developed. In order to

control the real prototype, conversions for torques, moments of inertia and the odometry

are calculated. A set of controllers for different inputs such as position, velocity and tilt

angle are implemented. Advancing the system model, a full three-dimensional model is

proposed and verified. A controller based on the 3d system is developed and shown to be

able to stabilize the system for complex trajectories. Various experiments demonstrate the

unique capabilities of the ballbot stabilized by the 3d controller. A nonlinear controller is

proposed in order to expand the performance of the ballbot prototype.

8.1 Achievements

This thesis accomplishes the given goals and meets the requirements in agreement with

other projects. At a very early stage, a working simulation has been developed and a

controller implemented, stabilizing the real system. By advancing the system model in

three dimensions and constant refining of the prototype, a unique controller has been

successfully developed. With this controller, Rezero is the first ballbot to show the full

potential of moving on a single ball. Rezero was presented in public for several times

(see figure 8.1) and drew attention of many automation and control experts.

Having taken a step further, a nonlinear controller was proposed and shown to be more

capable of stabilizing the system in high performance situations.

8.2 Prospect

The controller is able to push the system to its electrical and mechanical limitations in

many respects. However, some desirable performance goals can be solved in a future

work. For example, in a remote controlled mode, the speed limit is set to about 2 m/s

at the moment, which could be improved by implementing a nonlinear controller.

Also, the system is very sensitive to noise and gear backlash. The motion precision could

be improved by implementing a sophisticated filter like a Kalman filter and by replacing

hardware elements, such as installing harmonic drives instead of planetary gears.

Finally, very interesting problems like an adaptive control for automatic IMU calibration,

variable payloads and slopes could be solved.
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Figure 8.1: Demonstration at Automatica in Munich

8.3 Personal Statement

This work on the modeling and control of our ballbot was a very interesting and

educational journey to us. Based on a totally new and self constructed system, it is

extremely rewarding to bring a system to life and develop the performance from the first

trembling steps to a fast, flexible and robust system.

We think this thesis was a very worthy experience in many respects and we hope that

the results will help the further development of Rezero and other ballbots.
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Planar System Modeling

B Planar System Modeling

B.1 Model for the yz-/xz-Plane

Binding Equations

One planar system has two degrees of freedom. Therefore, it is possible to write any

coordinates as a function of the two minimal coordinates ϕx und ϑx.

The following equations are valid for the ball:

xK = ϕxrK

zK = 0

For the actuating wheel:

xW = xK + sinϑx · (rK + rW )

= ϕxrK + sinϑx · (rK + rW )

zW = cosϑx · (rK + rW )

And for the body:

xA = xK + sinϑx · l

= ϕxrK + sinϑx · l

zA = cosϑx · l

The binding equation for ψx is derived by equating the velocities (Starrkörper-Geschwindigkeits-

Formel) in the contact point between ball and actuating wheel.

φx

ϑx

yK

C
B

Aey
I

ez
I

O

ψx
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Figure B.1: Sketch of the planar model with coordinates and contact points
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0
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ϑ̇x

0
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(rK + rW ) cosϑx
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ẋK + ϑ̇x(rK + rW ) cosϑx + rW ψ̇x cosϑx

0
−ϑ̇x(rK + rW ) sinϑx − rW ψ̇x sinϑx


To comply the no slip condition, the equation vB = vC has to be true. It is then possible

to equate the first and third term of vB and vC . Solving these equations by ψ̇x yields:

ψ̇x =
rK
rW

(ϕ̇x − ϑ̇x)− ϑ̇x (B.1)

Approach

For the derivation of the equations of motion the Lagrangian method was selected as

the common approach for that kind of problems. The following steps are needed:

• express kinetic (T) and potential (V) energy of all rigid bodies as a function of the

minimal coordinates,

• write non-potential forces as a function of the minimal coordinates,

• solve the Lagrange equation for the second derivative of the minimal coordinates.

The calculations are made for the yz-plane model, which is identical to the xz-plane

model, and for the xy-plane model as well.

Energies

Ball:

TK =
1
2
mK(rKϕ̇x)2 +

1
2

ΘKϕ̇
2
x

VK = 0
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Actuating wheel:
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(rKϕ̇x) + l cosϑxϑ̇x

0
−l sinϑxϑ̇x


2

+
1
2

ΘAϑ̇
2
x

=
1
2
mA

(
(rKϕ̇x)2 + 2 · l cosϑxϑ̇x(rKϕ̇x) + l2ϑ̇2

x

)
+

1
2

ΘAϑ̇
2
x

VA = mA · g · l · cosϑx

Non-potential forces

The only non-potential force is the torque from the actuating wheel:

~M =

 0
−M

0

 , ~Ω =

 0
− rK

rW
(ϕ̇x − ϑ̇x) + ϑ̇x

0

 =


0 0

− rK
rW

(
rK
rW

+ 1
)

0 0


︸ ︷︷ ︸

~J

·~̇q

~fNP,1 = ~JT ~M =

[
rK
rW
M

−
(

1 + rK
rW

)
M

]
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Planar System Modeling B.1 Model for the yz-/xz-Plane

The counter torque acting on the coordinate ϑx of the body is expressed as:

~M =

 0
M

0

 , ~Ω =

 0
ϑ̇x

0

 =

0 0
0 1
0 0


︸ ︷︷ ︸

~J

·~̇q, ~fNP,2 = ~JT ~M =

[
0
M

]

The total non-potential force is the sum of those two:

~fNP = ~fNP,1 + ~fNP,2 =

[
rK
rW
M

−
(

1 + rK
rW

)
M +M

]

Equations of motion

Now the equations of motion are derived by solving the Lagrangian equation for ~̈q:

d
dt

(
∂T

∂~̇q

)T

−
(
∂T

∂~q

)T

+
(
∂V

∂~q

)T

− ~fNP = 0 (B.2)

where T and V stand for the total kinetic and potential energy respectively.

T = TK + TW + TA

V = VK + VW + VA

The solution of the Lagrange equation in matrix form is described as:

Mx(~q, ~̇q)~̈q + Cx(~q, ~̇q) +Gx(~q) = fNP (B.3)

where Mx, Cx, Gx are calculated as:

Mx =

 mtotr
2
K + ΘK +

(
rK
rW

)2
ΘW − rK

r2
W

(rK + rW )ΘW + γrK cosϑx

− rK

r2
W

(rK + rW )ΘW + γrK cosϑx
(rK+rW )2

r2
W

ΘW + ΘA +mAl
2 +mW (rK + rW )2


Cx =

[
−rKγ sinϑxϑ̇

2
x

0

]

Gx =

[
0

−g sinϑxγ

]

where

mtot = mK +mA +mW

γ = lmA + (rK + rW )mW
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B.2 Model for the xy-Plane Planar System Modeling

B.2 Model for the xy-Plane

For the xy-plane model, the same approach is used. The complete derivation is given as

follows.

r K
sin
α ex

I

ey
I

e x
A

e y
A

ϑz

φz

Tf

Tz

ψz
ΘK

ΘW,xy

ΘA,xy

Figure B.2: Planar model for the xy-plane

Minimal coordinates

The same minimal coordinates are used (see figure B.2).

~q =

[
ϕz

ϑz

]

Energies

Ball:

TK =
1
2

ΘKϕ̇
2
z

Actuating wheel (Note: ΘW,xy contains the inertias of motors and wheels around ψz).

TW =
1
2

ΘW,xyψ̇
2
z

Body (Note: ΘA,xy contains the inertias of motors and wheels around ϑz).

TA =
1
2

ΘA,xyϑ̇
2
z
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Planar System Modeling B.2 Model for the xy-Plane

Binding equation

ψ̇z =
rK
rW
· sinα · (ϕ̇z − ϑ̇z) (B.4)

Non-potential forces

From the actuators:

T1 = Tz

J1 =

[
rK
rW
· sinα

− rK
rW
· sinα

]

Counter torque:

T2 = −Tz

J2 =

[
0
1

]

Friction between ball and ground:

T3 = −Tf

J3 =

[
1
0

]

fNP :

fNP = J1 · T1 + J2 · T2 + J3 · T3 =

[
−Tf + rK

rW
· sinα · Tz

− rK
rW
· sinα · Tz + Tz

]
(B.5)

Equation of motion

Total kinetic energy:

T = TK + TW + TA

Total potential energy:

V = 0

Solving the Lagrange equation for ϕ̈ and ϑ̈ yields:

ϕ̈ = −
(r2W ΘA,xy + r2KΘW,xy sin2 α) · Tf + rKrW ΘA,xy sinα · Tz

r2W ΘA,xyΘK + r2K(ΘA,xy + ΘK)ΘW,xy sin2 α
(B.6)
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B.3 Forces Planar System Modeling

ϑ̈ = −
rK sinα(rKΘW,xy sinα · Tf + rW ΘK · Tz)
r2W ΘA,xyΘK + r2K(ΘA,xy + ΘK)ΘW,xy sin2 α

(B.7)

Friction

Condition for stiction:

ϕ̈ = 0

Equation of motion solved for Tf :

Tf =
rKrW ΘA,xy sinα · Tz

r2W ΘA,xy + r2KΘW,xy sin2 α

B.3 Forces

Free-body diagram

FK3

FK2

FK1

FA1

FW2

FW2

FW3

FW3

FA2

FA3

FA3

FA2

φx

ϑx

ψx

ey
I

ez
I

O

FW1

Tx

Tx

Figure B.3: Free-body diagram of the planar model
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Planar System Modeling B.3 Forces

Conservation of momentum

For the Ball the following equations are valid.

Conservation of momentum in x-direction:

mK ẍK = FK2 + FW2 cosϑx − FW3 sinϑx (B.8)

Conservation of momentum in z-direction:

mK z̈K = FK3 − FK1 − FW2 sinϑx − FW3 cosϑx (B.9)

Conservation of angular momentum:

ΘKϕ̈x = FW2rK − FK2rK (B.10)

For the actuating wheel the following equations are valid.

Conservation of momentum in x-direction:

mW ẍW = −FW2 cosϑx + FW3 sinϑx + FA2 cosϑx − FA3 sinϑx (B.11)

Conservation of momentum in z-direction:

mW z̈W = −FW1 + FW2 sinϑx + FW3 cosϑx − FA2 sinϑx − FA3 cosϑx (B.12)

Conservation of angular momentum:

ΘW ψ̈x = −FW2rW +Mx (B.13)

For the body the following equations are valid.

Conservation of momentum in x-direction:

mAẍA = −FA2 cosϑx + FA3 sinϑx (B.14)

Conservation of momentum in z-direction:

mAz̈A = −FA1 + FA2 sinϑx + FA3 cosϑx (B.15)

Conservation of angular momentum:

ΘAϑ̈x = FA2(l − rK − rW ) +Mx (B.16)
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B.3 Forces Planar System Modeling

Potential forces

The following potential forces act in the system:

FK1 = mK · g

FW1 = mW · g

FA1 = mA · g

Binding equations

The binding equations are derived in section B.1

Binding forces

Solving the equations (B.14) and (B.15) for the forces FA2 and FA3 yields:

FA2 = mA ·
(
g sinϑx − rKϕ̈x cosϑx − ϑ̈xl

)
FA3 = mA ·

(
g cosϑx + rKϕ̈x sinϑx − ϑ̇2

xl
)

With this results and the equations (B.11) and (B.12) the forces FW2 and FW3 can be

calculated:

FW2 = (mA +mW ) ·
(
g sinϑx − rKϕ̈x cosϑx

)
− γϑ̈x

FW3 = (mA +mW ) ·
(
g cosϑx + rKϕ̈x sinϑx

)
− γϑ̇2

x

Finally, it is possible to solve the equations (B.8) and (B.9) for FK2 and FK3:

FK2 = γ
(
ϑ̈x cosϑx − ϑ̇2

x sinϑx

)
+ rKmtotϕ̈x

FK3 = −γ
(
ϑ̈x sinϑx + ϑ̇2

x cosϑx

)
+ gmtot

Where

mtot = mK +mA +mW

γ = lmA + (rK + rW )mW
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Conversions

C Conversions

C.1 Torque Conversion

The planar model uses a virtual wheel to actuate the system. The real system has an

actuating structure which differs strongly from the one assumed in the planar model.

Since a controller for the planar model is going to be implemented on the real system,

conversions have to be calculated. In order to be able to control the real system, the

torques on the virtual motors have to be converted into the torques for the real motors.

Definitions

One element of the real system (omniwheel driven by a motor) is shown on the left side

in figure C.1. It actuates the ball by scrolling on a circle on the ball, characterized by the

motor arrangement angle α.

The right side of figure C.1 shows a top view on the real actuating system where the

torque of each omniwheel generates a tangential force on the surface of the ball.

rK

rK

cosα

sinα

Ti

Ti

α
r K

sin
α Tx

T1

Ty

T2

T3

FW1
FW2

FW3

β

Figure C.1: Torques and tangential forces generated by the real actuating system

The following relationships are read out of figure C.1.
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C.1 Torque Conversion Conversions

Tangential forces of the real configuration:

FW,1 =
T1

rW
·

− sinβ
cosβ

0

 (C.1)

FW,2 =
T2

rW
·

− sin(β + 2
3π)

cos(β + 2
3π)

0

 (C.2)

FW,3 =
T3

rW
·

− sin(β − 2
3π)

cos(β − 2
3π)

0

 (C.3)

Lever for real configuration:

rKW,1 = rK ·

cosβ sinα
sinβ sinα

cos(α

 (C.4)

rKW,2 = rK ·

cos(β + 2
3π) sin(α)

sin(β + 2
3π) sin(α)

cos(α)

 (C.5)

rKW,3 = rK ·

cos(β − 2
3π) sin(α)

sin(β − 2
3π) sin(α)

cos(α)

 (C.6)

Tangetial forces of the virtual configuration plane:

FW,x =
Tx

rW
·

0
1
0

 (actually y-direction) (C.7)

FW,y =
Ty

rW
·

1
0
0

 (actually x-direction) (C.8)

FW,z =
Tz

rW
·

− sinβ
cosβ

0

 (C.9)
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Conversions C.1 Torque Conversion

Lever for the virtual configuration plane:

rKW,x = rKW,y = rK ·

0
0
1

 (C.10)

rKW,z = rK ·

cosβ · sinα
sinβ · sinα

0

 (C.11)

Torque on the ball

With given relationships the torque on the ball from the real and the virtual driving

mechanism can be calculated.

Torques on the Ball from the real omniwheels:

TKW,1 = rKW,1 × FW,1 (C.12)

TKW,2 = rKW,2 × FW,2 (C.13)

TKW,3 = rKW,3 × FW,3 (C.14)

Torques on the Ball from the virtual omniwheels:

TKW,x = rKW,x × FW,x (C.15)

TKW,y = rKW,y × FW,y (C.16)

TKW,z = rKW,z × FW,z (C.17)

Solution

Following equation describes that the two different systems need to introduce the same

torque on the ball.

TKW,1 + TKW,2 + TKW,3 = TKW,x + TKW,y + TKW,z (C.18)

The relationship between real and virtual driving mechanism can be obtained by solving

for the unknowns.
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C.2 Inertia Calculations Conversions

Solved for real motor torques:

T1 =
1
3
·
(
Tz +

2
cosα

· (Tx · cosβ − Ty · sinβ)
)

(C.19)

T2 =
1
3
·
(
Tz +

1
cosα

·
(

sinβ · (−
√

3Tx + Ty)− cosβ · (Tx +
√

3Ty)
))

(C.20)

T3 =
1
3
·
(
Tz +

1
cosα

·
(

sinβ · (
√

3Tx + Ty) + cosβ · (−Tx +
√

3Ty)
))

(C.21)

(C.22)

Solved for virtual motor torques:

Tx =cosα ·
(
T1 · cosβ − T2 · sin(β +

π

6
) + T3 · sin(β − π

6
)
)

(C.23)

Ty =cosα ·
(
−T1 · sinβ − T2 · cos(β +

π

6
) + T3 · cos(β − π

6
)
)

(C.24)

Tz =T1 + T2 + T3 (C.25)

C.2 Inertia Calculations

The aim of this section is to find a suitable approximation for the moments of inertia

of the modeled drive mechanism, which is not the same as in reality. The following

approach is made by comparing the energies stored in the real omniwheels and the virtual

actuating wheel respectively, when driving at a constant velocity.

Approximations for ball and body

ΘK =
2
3
mKr

2
K (hollow sphere) (C.26)

ΘA =
1
4
·mA · r2A +

1
2
·mA · h2 +mA · l2 (cylinder) (C.27)

Motors and omniwheels

The real rotor inertia of a motor is given by

ΘM = 3.33 · 10−6 kgm2

and the real inertia of an omniwheel is calculated as:

ΘOW =
1
2
mOW r2W = 900 · 10−6 kgm2

Since the reduction of the gear box is i = 26, the rotor of the motor turns 26 times

faster. Therefore, a factor i2 is added to calculate the energy (E = 1/2 · Θ · v2). So
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Conversions C.2 Inertia Calculations

both, omniwheel and motor inertias are taken into account. The inertia of the gear rotor

is 9.1 · 10−6 kgm2 and therefore negligible.

ey
I

ez
I

O

ϑ

φ

x

x

ψx

Figure C.2: planar model coordinates

Assuming any velocity v in positive y direction, the rotation speed of the sphere is:

ωK,x =
v

rK
= ωW,x

rW
rK

, with ωW,x =
v

rW

From the odometry we get the rotation speed of each omniwheel. For motion in y

direction:

ωOW,1 = ωW,x cosα (C.28)

ωOW,2/3 = −1
2
ωW,x cosα (C.29)

in x direction:

ωOW,1 = 0 (C.30)

ωOW,2 = −
√

3
2
ωW,y cosα (C.31)

ωOW,3 =
√

3
2
ωW,y cosα (C.32)

rotation around z-axis:

ωOW,1/2/3 = ωW,z sinα (C.33)
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C.2 Inertia Calculations Conversions

Equations for energy equilibrium in y direction:

1
2

ΘW,xψ̇
2
x =

1
2

ΘOW (ψ̇x cosα)2 +
1
2

ΘM (i · ψ̇x cosα)2

+
1
2
· 2
(

ΘOW (−1
2
ψ̇x cosα)2 + ΘM (−1

2
i · ψ̇x cosα)2

)
ΘW,x = cos2(α)

(
ΘOW + i2ΘM +

1
2

(ΘOW + i2ΘM )
)

=
3
2

cos2(α)(ΘOW + i2ΘM )

in x direction:

1
2

ΘW,yψ̇
2
y =

1
2
· 2

(
ΘOW (

√
3

2
ψ̇y cosα)2 + ΘM (−

√
3

2
i · ψ̇x cosα)2

)
ΘW,y =

3
2

cos2(α)(ΘOW + i2ΘM )

Note: following notation was used:

ψ̇x = ωW,x

ψ̇y = ωW,y

ψ̇1 = ωOW,1

ψ̇2 = ωOW,2

ψ̇3 = ωOW,3

Numerical comparison

Moments of inertia:

ΘK =
2
3
· 2.29 kg · (0.125 m)2 = 0.0239 kgm2

ΘA =
1
4
· 12.2 kg · (0.1 m)2 +

1
2
· 12.2 kg · (0.5 m)2 + 12.2 kg · (0.339 m)2 = 2.96 kgm2

ΘW =
3
2
·

(√
2

2

)2

(900 · 10−6 kgm2 + 262 · 3.33 · 10−6 kgm2) = 2.36 · 10−3 kgm2
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Conversions C.2 Inertia Calculations

Rotation energies (v = 3 m/s and ϑ̇x = 1 rad/s):

EK =
1
2

ΘKϕ̇
2
x = 0.5 · 0.0239 kgm2 ·

(
3 m/s

0.125 m

)2

= 6.88 J

EA =
1
2

ΘAϑ̇
2
x = 0.5 · 2.29 kgm2 · (1/s)2 = 1.48 J

EW =
1
2

ΘW ψ̇2
x = 0.5 · 0.00236 kgm2 ·

(
3 m/s
0.06 m

)2

= 2.95 J

Moments of inertia for the xy-plane

ΘA,xy =
1
2
· (mA +mW ) · r2A (C.34)

ΘW,xy = 3 · (ΘOW + i2 ·ΘM ) (C.35)
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Odometry

Parameters

ü Radius of the ball 

rK;

ü Radius of the Omniwheel

rW;

ü Radius of the body

rA;

ü Distance between center of the ball an center of gravity of the body

l;

ü Angle of the motors

alpha = 45 °;
beta1 = 0 °;
beta2 = 120 °;
beta3 = 240 °;

ü Rotation speed vector of the ball in the Lisa reference frame L

L†OmegaK@tD = 8phix'@tD, phiy'@tD, phiz'@tD<;

ü Rotation speed of the omniwheel about the motor axis in the body reference frame A (scalar, encoder value)

A†omegaW1@tD = psi1'@tD;
A†omegaW2@tD = psi2'@tD;
A†omegaW3@tD = psi3'@tD;

Coordinates and rotation matrices (I´L´A)

ü Rotation matrices I´L´A

Rotations around z, y and x Axes

Rz = 88Cos@thetaz@tDD, -Sin@thetaz@tDD, 0<,
8Sin@thetaz@tDD, Cos@thetaz@tDD, 0<, 80, 0, 1<<;

Ry = 88Cos@thetay@tDD, 0, Sin@thetay@tDD<, 80, 1, 0<,
8-Sin@thetay@tDD, 0, Cos@thetay@tDD<<;

Rx = 881, 0, 0<, 80, Cos@thetax@tDD, -Sin@thetax@tDD<,
80, Sin@thetax@tDD, Cos@thetax@tDD<<;

Rotation Matrix (I to L and L to I)

RIL = Rz;
RLI = Transpose@RILD;

Rotation Matrix (L to A and A to L)

Printed by Mathematica for Students

Odometry

D Odometry
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Rotation Matrix (L to A and A to L)

RLA = Ry.Rx;
RAL = Transpose@RLAD;

Rotation Matrix (I to A and A to I)

RIA = RIL.RLA;
RAI = Transpose@RIAD;

ü Ball

Rotation of the ball in I

OmegaK@tD = RIL.L†OmegaK@tD;

ü Jacob

Jacobian Matrix

J = 881, 0, -Sin@thetay@tDD<, 80, Cos@thetax@tDD, Sin@thetax@tDD * Cos@thetay@tDD<,
80, -Sin@thetax@tDD, Cos@thetax@tDD * Cos@thetay@tDD<<;

Time variation of Tait-Bryan angles

ThetaDot@tD = 8thetax'@tD, thetay'@tD, thetaz'@tD<;

Rotation Vector of the Aufbau (in A)

A†OmegaA@tD = J.ThetaDot@tD;

Rotation of the ball

Vector from center of the ball (P) to the contact point with the omniwheels (K1, K2, K3) in A

A†rPK1 = 8rK * Sin@alphaD * Cos@beta1D, rK * Sin@alphaD * Sin@beta1D, rK * Cos@alphaD<;
A†rPK2 = 8rK * Sin@alphaD * Cos@beta2D, rK * Sin@alphaD * Sin@beta2D, rK * Cos@alphaD<;
A†rPK3 = 8rK * Sin@alphaD * Cos@beta3D, rK * Sin@alphaD * Sin@beta3D, rK * Cos@alphaD<;

Direction of the tangential speed of the rotation of the omniwheels in A

A†d1 = 8-Sin@beta1D, Cos@beta1D, 0<;
A†d2 = 8-Sin@beta2D, Cos@beta2D, 0<;
A†d3 = 8-Sin@beta3D, Cos@beta3D, 0<;

Test : Absolute value has to be 1! (ok)

Norm@A†d1D;
Norm@A†d2D;
Norm@A†d3D;

Rotation speed of the ball relative to the body in A

A†omegaK = 8A†omegaKx, A†omegaKy, A†omegaKz<;

Speed on the surface of the ball (in omniwheel direction) has to be the same speed as the tangetial speed of the omniwheel

E1 = Cross@A†omegaK, A†rPK1D.A†d1 == A†omegaW1@tD * rW;
E2 = Cross@A†omegaK, A†rPK2D.A†d2 == A†omegaW2@tD * rW;
E3 = Cross@A†omegaK, A†rPK3D.A†d3 == A†omegaW3@tD * rW;

sol = Solve@8E1, E2, E3<, 8A†omegaKx, A†omegaKy, A†omegaKz<D;

A†omegaK = 8A†omegaKx ê. sol@@1DD, A†omegaKy ê. sol@@1DD, A†omegaKz ê. sol@@1DD<;

Rotation speed of the ball in A

2   Odometry.nb
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Rotation speed of the ball in A

A†OmegaK = A†omegaK + A†OmegaA@tD;

Coordinate transformation from A to I System

L†OmegaK@tD = FullSimplify@RLA.A†OmegaKD;

Solution

phix'@tD = L†OmegaK@tD@@1DD

1

3 rK
K 6 rW Sin@thetax@tDD Sin@thetay@tDD H-psi2£@tD + psi3£@tDL +

2 rW Cos@thetax@tDD Sin@thetay@tDD Hpsi1£@tD + psi2£@tD + psi3£@tDL +

Cos@thetay@tDD K 2 rW H-2 psi1£@tD + psi2£@tD + psi3£@tDL + 3 rK thetax£@tDOO

phiy'@tD = L†OmegaK@tD@@2DD

1

3 rK
K 6 rW Cos@thetax@tDD H-psi2£@tD + psi3£@tDL -

2 rW Sin@thetax@tDD Hpsi1£@tD + psi2£@tD + psi3£@tDL + 3 rK thetay£@tDO

phiz'@tD = L†OmegaK@tD@@3DD

1

3 rK
K 2 rW HCos@thetax@tDD Cos@thetay@tDD + 2 Sin@thetay@tDDL psi1£@tD +

2 rW K 3 Cos@thetay@tDD Sin@thetax@tDD H-psi2£@tD + psi3£@tDL + Cos@thetax@tDD

Cos@thetay@tDD Hpsi2£@tD + psi3£@tDL - Sin@thetay@tDD Hpsi2£@tD + psi3£@tDLO +

3 rK H-Sin@thetay@tDD thetax£@tD + thetaz£@tDLO

Translation of the ball

 Vector from the ground to center of the ball (P)

rBP = 80, 0, rK<;

Substitution

OmegaK†given@tD = RIL.8phix†given'@tD, phiy†given'@tD, phiz†given'@tD<;

Speed vector of the center of the ball (P) in I

Lightweight solution with use of solutions above

rPdot†light = FullSimplify@Cross@OmegaK†given@tD, rBPDD

8rK HSin@thetaz@tDD phix†given£@tD + Cos@thetaz@tDD phiy†given£@tDL,
-rK Cos@thetaz@tDD phix†given£@tD + rK Sin@thetaz@tDD phiy†given£@tD, 0<

Explicit solution
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rPdot = FullSimplify@Cross@OmegaK@tD, rBPDD

:
1

3
K 2 rW Sin@thetay@tDD Sin@thetaz@tDD K 3 Sin@thetax@tDD H-psi2£@tD + psi3£@tDL +

Cos@thetax@tDD Hpsi1£@tD + psi2£@tD + psi3£@tDLO + Cos@thetay@tDD

Sin@thetaz@tDD K 2 rW H-2 psi1£@tD + psi2£@tD + psi3£@tDL + 3 rK thetax£@tDO +

Cos@thetaz@tDD K 6 rW Cos@thetax@tDD H-psi2£@tD + psi3£@tDL -

2 rW Sin@thetax@tDD Hpsi1£@tD + psi2£@tD + psi3£@tDL + 3 rK thetay£@tDOO,

1

3
K 2 rW KHCos@thetaz@tDD H2 Cos@thetay@tDD - Cos@thetax@tDD Sin@thetay@tDDL -

Sin@thetax@tDD Sin@thetaz@tDDL psi1£@tD - KCos@thetaz@tDD

KCos@thetay@tDD + KCos@thetax@tDD - 3 Sin@thetax@tDDO Sin@thetay@tDDO +

K 3 Cos@thetax@tDD + Sin@thetax@tDDO Sin@thetaz@tDDO psi2£@tD -

KCos@thetay@tDD Cos@thetaz@tDD + Cos@thetaz@tDD

KCos@thetax@tDD + 3 Sin@thetax@tDDO Sin@thetay@tDD +

K- 3 Cos@thetax@tDD + Sin@thetax@tDDO Sin@thetaz@tDDO psi3£@tDO -

3 rK Cos@thetay@tDD Cos@thetaz@tDD thetax£@tD + 3 rK Sin@thetaz@tDD thetay£@tDO, 0>
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System Modeling 3D

Parameters

ü Radius of the ball 

rK;

ü Radius of the Omniwheel

rW;

ü Radius of the body

rA;

ü Distance between center of the ball an center of gravity of the body

l;

ü Mass of body and omniwheels

mAW;

ü Mass of ball

mK;

ü Inertia of body and omniwheels in the body reference frame A

A†ThetaAW = 88A†ThetaAWx, 0, 0<, 80, A†ThetaAWy, 0<, 80, 0, A†ThetaAWz<<;

ü Inertia of ball in the intertial reference frame I or L

ThetaK = 88ThetaKi, 0, 0<, 80, ThetaKi, 0<, 80, 0, ThetaKi<<;

ü Inertia of omniwheel and motor (gear ratio!) about the motor axis

ThetaWi;

ü Angle of the motors

alpha = 45 °;
beta1 = 0 °;
beta2 = 120 °;
beta3 = 240 °;

ü Rotation speed vector of the ball in the Lisa reference frame L (no Rotation of the ball around the z-axis in L, which is same 
as the z-axis in I)

L†OmegaK@tD = 8phix'@tD, phiy'@tD, 0<;
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ü Relative rotation speed between the omniwheels and body about the motor axis in the body reference frame A (scalar, 
encoder value)

A†omegaW1@tD = psi1'@tD;
A†omegaW2@tD = psi2'@tD;
A†omegaW3@tD = psi3'@tD;

ü Gravity vector

G = 80, 0, -g<;

Minimal coordinates

Phix and phiy are not orientation angles but "Abrollwinkel" of the ball! Phiz is not a state, since it's assumed to be always 0.

q@t_D = 8thetax@tD, thetay@tD, thetaz@tD, phix@tD, phiy@tD<;

Coordinates and rotation matrices (I´L´A)

ü Rotation matrices I´L´A

Rotations around z, y and x Axes

Rz = 88Cos@thetaz@tDD, -Sin@thetaz@tDD, 0<,
8Sin@thetaz@tDD, Cos@thetaz@tDD, 0<, 80, 0, 1<<;

Ry = 88Cos@thetay@tDD, 0, Sin@thetay@tDD<, 80, 1, 0<,
8-Sin@thetay@tDD, 0, Cos@thetay@tDD<<;

Rx = 881, 0, 0<, 80, Cos@thetax@tDD, -Sin@thetax@tDD<,
80, Sin@thetax@tDD, Cos@thetax@tDD<<;

Rotation Matrix (I to L and L to I)

RIL = Rz;
RLI = Transpose@RILD;

Rotation Matrix (I to A and A to I)

RIA = RIL.Ry.Rx;
RAI = Transpose@RIAD;

ü Ball

Rotation of the ball in I

OmegaK@tD = RIL.L†OmegaK@tD;

ü Jacob

Jacobian Matrix

J = 881, 0, -Sin@thetay@tDD<, 80, Cos@thetax@tDD, Sin@thetax@tDD * Cos@thetay@tDD<,
80, -Sin@thetax@tDD, Cos@thetax@tDD * Cos@thetay@tDD<<;

Time variation of Tait-Bryan angles

ThetaDot@tD = 8thetax'@tD, thetay'@tD, thetaz'@tD<;

Rotation Vector of the Aufbau (in A)
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A†OmegaA@tD = J.ThetaDot@tD;

Binding equations

ü Absolut rotation of the omniwheels

Vector from intersection of the motor directions M to the center point of the omniwheels (W1, W2, W3) in A

A†MW1 = 8Cos@beta1D * Sin@alphaD, Sin@alphaD * Sin@beta1D, -Cos@alphaD<;
A†MW2 = 8Cos@beta2D * Sin@alphaD, Sin@alphaD * Sin@beta2D, -Cos@alphaD<;
A†MW3 = 8Cos@beta3D * Sin@alphaD, Sin@alphaD * Sin@beta3D, -Cos@alphaD<;

Absolute rotation speed of the omniwheels about the motor axis in the body reference frame A (scalar)

A†OmegaW1@tD = FullSimplify@A†omegaW1@tD + A†MW1.A†OmegaA@tDD;
A†OmegaW2@tD = FullSimplify@A†omegaW2@tD + A†MW2.A†OmegaA@tDD;
A†OmegaW3@tD = FullSimplify@A†omegaW3@tD + A†MW3.A†OmegaA@tDD;

ü Dependency on the rotation of the omniwheels

Vector from center of the ball (P) to the contact point with the omniwheels (K1, K2, K3) in A

A†rPK1 = 8rK * Sin@alphaD * Cos@beta1D, rK * Sin@alphaD * Sin@beta1D, rK * Cos@alphaD<;
A†rPK2 = 8rK * Sin@alphaD * Cos@beta2D, rK * Sin@alphaD * Sin@beta2D, rK * Cos@alphaD<;
A†rPK3 = 8rK * Sin@alphaD * Cos@beta3D, rK * Sin@alphaD * Sin@beta3D, rK * Cos@alphaD<;

Direction of the tangential speed of the rotation of the omniwheels in A

A†d1 = 8-Sin@beta1D, Cos@beta1D, 0<;
A†d2 = 8-Sin@beta2D, Cos@beta2D, 0<;
A†d3 = 8-Sin@beta3D, Cos@beta3D, 0<;

Rotation speed of the ball in A

A†OmegaK@tD = RAI.OmegaK@tD;

Rotation speed of the ball relative to the body in A

A†omegaK@tD = FullSimplify@A†OmegaK@tD - A†OmegaA@tDD;

Speed on the surface of the ball (in omniwheel direction) has to be the same speed as the tangetial speed of the omniwheel

E1 = Cross@A†omegaK@tD, A†rPK1D.A†d1 == A†omegaW1@tD * rW;
E2 = Cross@A†omegaK@tD, A†rPK2D.A†d2 == A†omegaW2@tD * rW;
E3 = Cross@A†omegaK@tD, A†rPK3D.A†d3 == A†omegaW3@tD * rW;

sol = Solve@8E1, E2, E3<, 8psi1'@tD, psi2'@tD, psi3'@tD<D;

psi1'@tD = FullSimplify@psi1'@tD ê. sol@@1DDD;
psi2'@tD = FullSimplify@psi2'@tD ê. sol@@1DDD;
psi3'@tD = FullSimplify@psi3'@tD ê. sol@@1DDD;

Simplify

A†OmegaW1@tD = FullSimplify@A†OmegaW1@tDD;
A†OmegaW2@tD = FullSimplify@A†OmegaW2@tDD;
A†OmegaW3@tD = FullSimplify@A†OmegaW3@tDD;

ü Translation of the ball

 Vector from the ground to center of the ball (P)
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rBP = 80, 0, rK<;

Speed vector of the center of the ball (P) in I

rPdot = FullSimplify@Cross@OmegaK@tD, rBPDD;

Energies

ü Ball

ü Kinetic

T†K = FullSimplify@1 ê 2 * mK * rPdot.rPdot + 1 ê 2 * L†OmegaK@tD.ThetaK.L†OmegaK@tDD;

ü Potential

V†K = 0;

ü Aufbau (und Omniwheels)

Vector from center of the ball to the center of gravity of the body in A

A†rPSA = 80, 0, l<;

ü Kinetic

T†AW =
FullSimplify@1 ê 2 * mAW * rPdot.rPdot + mAW * HRAI.rPdotL.HCross@A†OmegaA@tD, A†rPSADL +

1 ê 2 * A†OmegaA@tD.A†ThetaAW.A†OmegaA@tDD;

ü Potential

V†AW = -mAW * G.RIA.A†rPSA;

ü Rotational energy of the omniwheels

Considering only the rotation energy of the omniwheel and motors about the motor axis

T†W1 = FullSimplify@1 ê 2 * ThetaWi * A†OmegaW1@tD^2D;
T†W2 = FullSimplify@1 ê 2 * ThetaWi * A†OmegaW2@tD^2D;
T†W3 = FullSimplify@1 ê 2 * ThetaWi * A†OmegaW3@tD^2D;

Non potentional forces

ü Torque on omniwheels

8JT1, R1< = FullSimplify@PolynomialReduce@A†omegaW1@tD, q'@tD, q'@tDDD;
8JT2, R2< = FullSimplify@PolynomialReduce@A†omegaW2@tD, q'@tD, q'@tDDD;
8JT3, R3< = FullSimplify@PolynomialReduce@A†omegaW3@tD, q'@tD, q'@tDDD;

Torques

T1@tD;
T2@tD;
T3@tD;

ü Counter torques on body
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ü

Counter torques on body

JCT = 8PolynomialReduce@A†OmegaA@tD@@1DD, q'@tD, q'@tDD@@1DD,
PolynomialReduce@A†OmegaA@tD@@2DD, q'@tD, q'@tDD@@1DD,
PolynomialReduce@A†OmegaA@tD@@3DD, q'@tD, q'@tDD@@1DD<;

Counter torques

TC1@tD = A†MW1 * H-T1@tDL;
TC2@tD = A†MW2 * H-T2@tDL;
TC3@tD = A†MW3 * H-T3@tDL;

ü f_NP

fNP@t_D = FullSimplify@JT1 * T1@tD + JT2 * T2@tD + JT3 * T3@tD +
Transpose@JCTD.TC1@tD + Transpose@JCTD.TC2@tD + Transpose@JCTD.TC3@tDD;

Equation of motion

ü Total kinetic energy

T@t_D = FullSimplify@T†K + T†AW + T†W1 + T†W2 + T†W3D;

ü Total potentional energy

V@t_D = V†K + V†AW;

ü Lagrange II

L1@t_D = FullSimplify@D@D@T@tD, 8q'@tD<D, tDD;

L2@t_D = FullSimplify@D@T@tD, 8q@tD<DD;

L3@t_D = D@V@tD, 8q@tD<D;

EQ = L1@tD - L2@tD + L3@tD - fNP@tD ã 0;

EQ1 = FullSimplify@EQ@@1DD@@1DDD;
EQ2 = FullSimplify@EQ@@1DD@@2DDD;
EQ3 = FullSimplify@EQ@@1DD@@3DDD;
EQ4 = FullSimplify@EQ@@1DD@@4DDD;
EQ5 = FullSimplify@EQ@@1DD@@5DDD;

Solve for second derivative

varList = 8thetax''@tD, thetay''@tD, thetaz''@tD, phix''@tD, phiy''@tD<;

8q1, r1< = FullSimplify@PolynomialReduce@EQ1, varList, varListDD;
8q2, r2< = FullSimplify@PolynomialReduce@EQ2, varList, varListDD;
8q3, r3< = FullSimplify@PolynomialReduce@EQ3, varList, varListDD;
8q4, r4< = FullSimplify@PolynomialReduce@EQ4, varList, varListDD;
8q5, r5< = FullSimplify@PolynomialReduce@EQ5, varList, varListDD;

Solve system with substitution
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q1S = 8q11S, q12S, q13S, q14S, q15S<;
q2S = 8q21S, q22S, q23S, q24S, q25S<;
q3S = 8q31S, q32S, q33S, q34S, q35S<;
q4S = 8q41S, q42S, q43S, q44S, q45S<;
q5S = 8q51S, q52S, q53S, q54S, q55S<;

varSolS =
FullSimplify@LinearSolve@8q1S, q2S, q3S, q4S, q5S<, 8-r1S, -r2S, -r3S, -r4S, -r5S<DD;

HeavySubstitution = 8q11S -> q1@@1DD,
q12S -> q1@@2DD,
q13S -> q1@@3DD,
q14S -> q1@@4DD,
q15S -> q1@@5DD,
q21S -> q2@@1DD,
q22S -> q2@@2DD,
q23S -> q2@@3DD,
q24S -> q2@@4DD,
q25S -> q2@@5DD,
q31S -> q3@@1DD,
q32S -> q3@@2DD,
q33S -> q3@@3DD,
q34S -> q3@@4DD,
q35S -> q3@@5DD,
q41S -> q4@@1DD,
q42S -> q4@@2DD,
q43S -> q4@@3DD,
q44S -> q4@@4DD,
q45S -> q4@@5DD,
q51S -> q5@@1DD,
q52S -> q5@@2DD,
q53S -> q5@@3DD,
q54S -> q5@@4DD,
q55S -> q5@@5DD,
r1S -> r1,
r2S -> r2,
r3S -> r3,
r4S -> r4,
r5S -> r5<;

varSol = varSolS ê. HeavySubstitution;

Linearization

State variables

x = 8x1@tD, x2@tD, x3@tD, x4@tD, x5@tD, x6@tD, x7@tD, x8@tD, x9@tD, x10@tD<;

Input variables

u = 8u1@tD, u2@tD, u3@tD<;

Output values

h = 8x1@tD, x2@tD, x3@tD, x4@tD, x5@tD, x6@tD, x7@tD, x8@tD, x9@tD, x10@tD<;

State space representation

SPrep = 8
thetax@tD Ø x1@tD, thetax'@tD Ø x2@tD,
thetay@tD Ø x3@tD, thetay'@tD Ø x4@tD,
thetaz@tD Ø x5@tD, thetaz'@tD Ø x6@tD,
phix@tD Ø x7@tD, phix'@tD Ø x8@tD,
phiy@tD Ø x9@tD, phiy'@tD Ø x10@tD,
T1@tD Ø u1@tD, T2@tD Ø u2@tD, T3@tD Ø u3@tD<;

Equation of movement in state variables form
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f = 8x2@tD, varSol@@1DD, x4@tD, varSol@@2DD, x6@tD,
varSol@@3DD, x8@tD, varSol@@4DD, x10@tD, varSol@@5DD< ê. SPrep;

Point of linearization

equilibrium = 8x1@tD Ø 0, x2@tD Ø 0, x3@tD Ø 0, x4@tD Ø 0, x5@tD Ø 0, x6@tD Ø 0,
x7@tD Ø 0, x8@tD Ø 0, x9@tD Ø 0, x10@tD Ø 0, u1@tD Ø 0, u2@tD Ø 0, u3@tD Ø 0<;

arbitrary = 8x1@tD Ø LP1, x2@tD Ø LP2, x3@tD Ø LP3, x4@tD Ø LP4,
x5@tD Ø LP5, x6@tD Ø LP6, x7@tD Ø LP7, x8@tD Ø LP8, x9@tD Ø LP9,
x10@tD Ø LP10, u1@tD Ø LPu1, u2@tD Ø LPu2, u3@tD Ø LPu3<;

ü A

MatrixForm@AA0 = D@f, 8x<D ê. equilibriumD;
MatrixForm@AA = D@f, 8x<D ê. arbitraryD;

ü B

MatrixForm@BB0 = D@f, 8u<D ê. equilibriumD;
MatrixForm@BB = D@f, 8u<D ê. arbitraryD;

ü C

MatrixForm@CC0 = D@h, 8x<D ê. equilibriumD;
MatrixForm@CC = D@h, 8x<D ê. arbitraryD;

ü D

MatrixForm@DD0 = D@h, 8u<D ê. equilibriumD;
MatrixForm@DD = D@h, 8u<D ê. arbitraryD;
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Verification Plots

F Verification Plots

F.1 Planar Model
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(a) System and model responses, both with the
same controller.
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(b) Corresponding tilt angle of the system (blue)
and of the model (green).

Figure F.1: Position step of 0.2 m in y direction
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(a) Response of the system and of the model
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(b) Corresponding tilt angles

Figure F.2: Velocity step in y direction from 0 m/s to 0.19 m/s and backwards
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F.2 3D Model Verification Plots

F.2 3D Model
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(b) System and model tilt angles
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(c) System and model torques

Figure F.3: Position step of 1.5 m in y direction with the controller based on the 3d model.

86



Verification Plots F.2 3D Model
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(a) Set point for ϕ̇x and corresponding responses.
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(b) Set point for ϕ̇y and corresponding responses.
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(c) Set point for ϑz and corresponding responses.

Figure F.4: Joystick input (dashed) and response of the system and of the model.

87



F.2 3D Model Verification Plots
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(b) System and model torques

Figure F.5: Tilt angles and system input for the joystick input (figure F.4).
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