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Monte Carlo methods: introduction

Class of techniques to simulate the behaviour of a physical
or mathematical system
Stochastic methods→ use of random number sequences
Used to model random processes
Evaluation of multidimensional integrals
Solution of partial differential equations (Schrödinger
equation)
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Some useful definitions

Random number: numerical value resulting from a process
whose value cannot be predetermined by the initial
conditions (attention!)
State: allowed value of the set of properties of the system
Sample space: set of all possible states (discrete or
continuous)
Sample point: single point in sample space
Random variable: variable whose value lies within the
sample space with a certain probability distribution
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Probability density function (pdf) p:
probability associated to the occurrence x = xi (discrete
case)

N∑
i

p(xi) = 1

p(x)dx probability of an event occurring between x and
x + dx (continuous case)∫ +∞

−∞
p(x)dx = 1
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Multivariate pdf p(x1, x2, ..., xn) = p(x): probability of the
state x1 = X1, ..., xn = Xn (discrete) or
x1 ≤ X1 ≤ x1 + dx , ..., xn ≤ Xn ≤ xn + dx (continuous)

P(a1 ≤ x1 ≤ b1, ...,an ≤ xn ≤ bn) =

∫ b1

a1

...

∫ bn

an

p(x)dx

Marginal density pi : probability that the single component Xi
lies within xi ≤ Xi ≤ xi + dx , regardless of the other
components:

pi(xi) =

∫ +∞

−∞
p(x)dx1dx2...dxi−1dxi+i ...dxn
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Expected value:

〈f 〉p ≡
∫ +∞

−∞
f (x)p(x)dx

K-th moment of the distribution:

〈xk〉p ≡
∫ +∞

−∞
xkp(x)dx

K=1→ 〈x〉 (x̄ , mean value)
K-th central moment:

〈(x − x̄)k〉p ≡
∫ +∞

−∞
(x − x̄)kp(x)dx

K=2→ σ2 (variance), σ (standard deviation)

σ2 = 〈x2〉 − x̄2
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Straightforward extension to the multivariate case (x̄i , σ2
i etc)

Covariance:

Cov(xi , xj) ≡ 〈(xi − x̄i)(xj − x̄j)〉

(a) (b)
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Random walks: introduction

The drunkard’s walk: a walker takes random moves on a
two-dimensional lattice.
This walk is readily generalized to higher dimensions and to
continuous space.
The sampling method was originally introduced by
Metropolis; this algorithm has been widely applied to the
generation of multivariate probability density functions
(particularly in statistical mechanics and in Quantum Monte
Carlo simulations)
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Markov chains

Walker: mathematical entity whose attributes completely
define the state of the system
The walker moves in a given space by a combination of
deterministic and random displacements
Consider a discrete system of N available states, named S1
through SN

At every discrete point in time i, x(i) = Sj if the system is in the
state Sj at time i

The sequence of events of x(i) from time zero to the end of
the walk forms a chain
Such chain is a Markov chain if given the present state,
future states are independent of the past states
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The probability of the system changing from state Sj to Sk in
one time step is given by

Pkj ≡ P(x i+1 = Sk ← x i = Sj).

Normalization:
N∑

k=1

Pkj = 1.

p(i)
k → probability that the system is in state Sk at time i

Vector representation of p

p(i) =


p(i)

1
.
.
.

p(i)
N

 ,
N∑
k

p(i)
k = 1
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Evolution of p:

p(i+1)
k =

∑
j

Pkjp
(i)
j

p(i+1) = Pp(i)

p(1) = Pp(0)

p(2) = Pp(1) = PPp(0)

p(m) = Pmp(0)

After a sufficiently long time M, |p(M+1) − p(M)| → 0
Equilibrium probability distribution p∗

p∗ = Pp∗

p∗ is a stationary state of the transition matrix P
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Numerical example: three state Markov process with

P =

1/4 1/8 2/3
3/4 5/8 0
0 1/4 1/3


and

p0 =

1
0
0


The first three steps are1

0
0

→
1/4

3/4
0

→
 5/32

21/32
6/32


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Iteration p1 p2 p3
0 1.00000 0.00000 0.00000
1 0.25000 0.75000 0.00000
2 0.15625 0.65625 0.18750
3 0.24609 0.52734 0.22656
4 0.27848 0.51416 0.20736
5 0.27213 0.53021 0.19766
6 0.26608 0.53548 0.19844
7 0.26575 0.53424 0.20002
8 0.26656 0.53321 0.20023
9 0.26678 0.53318 0.20005
10 0.26671 0.53332 0.19998
11 0.26666 0.53335 0.19999
12 0.26666 0.53334 0.20000
13 0.26667 0.53333 0.20000
p∗ 0.26667 0.53333 0.20000

Steady solution of P

p∗1 = 1/4p∗1 + 1/8p∗2 + 2/3p∗3
p∗2 = 3/4p∗1 + 5/8p∗3
p∗3 = 1/4p∗2 + 1/3p∗3

with the constraint p∗1 + p∗2 + p∗3 = 1

The final (steady) state is given by

p∗ =

4/15
8/15
3/15


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Generalization to continuous variables
G(y,x; ∆t): probability of moving from x at time t to y at
time t + ∆t

f (x, t): probability density for a particle at x at time t (
continuous analog of p(i))

f (y, t + ∆t) =

∫
f (x, t)G(y,x; ∆t)dx

f (y, t + m∆t) =

∫
f (x, t)G(y,x; m∆t)dx

Exists an equilibrium distribution function f ∗(y), independent
of time

f ∗(y) =

∫
f ∗(x)G(y,x; ∆t)dx
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Random walks in state space

Evolution of the distribution in the state space S

What does it mean for a Markov chain to converge to an
equilibrium density?
For a single walker, its states are sampled during the walk
with probability p∗ ⇒ the averages will be time independent
Necessary condition for a random walk to reach equilibrium
is ergodicity: spatial averages in the limit of infinite system
are equal to time averages
All the possible states must have a nonzero possibility of
being visited (necessary but non sufficient!)
Given a state Sk ,

∑
j Pkj 6= 0
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A single walker visits the points X (0),X (1), ...,X (m) during the
walk

〈f 〉{t} =
1
m

m∑
i=1

f (X (i))

Consider an ensemble of walkers {X} = X1,X2, ...,XN

〈f 〉{X} =
1
N

N∑
k=1

f (Xk)

The two averages are equivalent if drawn from the
equilibrium distribution

〈f 〉p∗ =
1

mN

m∑
i=1

N∑
k=1

f (X (i)
k )
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Metropolis method
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Metropolis method

p∗ arises from a Markov process associated to the transition
matrix P
How to invert the procedure and find the appropriate P for
the desired p∗?
The answer is in the Metropolis method
Use of an acceptance/rejection step
Si : state with the max probability, i.e. pi = max(p∗)
Aki = p∗k/p

∗
i ⇒ acceptance probability of moving from Si to

Sk

Similarly for the second most probable state Sj : Akj = p∗k/p
∗
j

(k 6= i) and so on
Akj ∗ Aji = Aki
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Construction of upper (lower) triangular part of the matrix A
The diagonal elements and Aik set to unity

A(3X3) =

1 A12 A13
1 1 A23
1 1 1


This choice of A produces the equilibrium distribution
Equilibrium: the ratio of populations in two states is p∗i /p

∗
j

(p∗i > p∗j )
νi : current population in Si

νj : current population in Sj
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All the νj walkers at Sj may move to Si (since Aij = 1)
From Si to Sj the number of walkers is

νip
∗
j /p

∗
i = νiAji

The net change in population for the above transition is

δνj = νip
∗
j /p

∗
i − νj

δνj = 0→ νi/νj = p∗i /p
∗
j → equilibrium

δνj > 0→ νi/νj > p∗i /p
∗
j → population at Sj increases

δνj < 0→ νi/νj < p∗i /p
∗
j → population at Sj decreases

The two inequalities are driven towards equality and
equilibrium⇒ right choice of A

E. Coccia (UniTs) Monte Carlo methods December 18, 2022 21 / 28



For continuous variables (adding a time variable)

A(y,x; ∆t) = min

(
p∗(y, t + ∆t)

p∗(x, t)
, 1
)

A simple algorithm

1) Propose a move for each walker k Xnew
k = Xold

k + η;
2) Compute the matrix (or function) A:
3.1) the move is accepted if A(new ,old) ≥ 1;
3.2) the move is also accepted if A(new ,old) < 1 but > χ (uniform
rnd);
3.3) the move is otherwise rejected;
4) Update the walkers’ position in the given space;
5) Again the point 1) until convergence is achieved.
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Monte Carlo integration
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Monte Carlo integration

Monte Carlo integration of definite integrals

F =

∫ b

a
f (x)dx

F = lim
N→∞

FN

FN =
b − a

N

N∑
i=1

f (Xi)

{Xi} should fully cover the domain from a to b

Uniform grid methods⇒ Nd (d dimensionality of the system)
Gaussian quadrature (for d ≤ 8)
Choice of {Xi} randomly drawn from a given pdf by Monte
Carlo methods
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Uniform sampling: {Xi} sampled by an uniform pdf (not
efficient! )
Importance sampling: the majority of sample points
"clustered" in the region where the integrand is large
w(x) ' f (x), defined in [a,b]

Generation of (pseudo)random points from

p(x) =
w(x)∫ b

a w(x)dx

F =

∫ b

a
g(x)p(x)dx ' 1

M

M∑
i=1

g(Xi)

g ≡ f/p

Fluctuations in g (and in F) are greatly reduced (no
fluctuation if w = f )
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x

f(x)
Uniform sampling

x

f(x)
w(x)
Importance sampling

a ab b

For Monte Carlo methods, if M is the (total) number of sample
points, the error ∝ 1√

M

Independent on the dimensionality!

Error in grid methods ∝ ( 1
M )q/d (q order of the method)

Monte Carlo more efficient with d > 2q
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Monte Carlo evaluation of expectation values

Numerical evaluation of multidimensional integrals
(statistical and quantum mechanics)
f (x)→ equilibrium pdf

O[f ] =

∫
dxO(x)f (x)∫

dxf (x)
≡ 〈O〉f

Failure of uniform sampling: inefficient
Generation of sample points based on the integrand
Monte Carlo sample points {X} drawn from f

Monte Carlo estimate

〈O〉f = lim
M→∞

1
M

M∑
i=1

O(Xi)
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Simple Metropolis sampling

The Metropolis algorithm only requires evaluating f for the
proposed move
The unknown normalization

∫
dxf (x) is not required

Convergence to the equilibrium before computing any
expectation values
Step size to optimize the spanning of the system space
Large step→ small acceptance ratio→ actual movement is
small
Small step→ limited space exploration
The step size should be optimized empirically according to
the behaviour of the sampling algorithm
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