SOLUZIONI FOGGIO # 2

- HATRICI

1. PROPOTTO MATRICIALE

$$\begin{pmatrix}
1 & 0 \\
2 & 2
\end{pmatrix} * \begin{pmatrix}
-1 & 1 & 3 \\
0 & 2 & 2
\end{pmatrix}$$

$$\stackrel{\triangleq}{\Rightarrow} A \qquad \stackrel{\triangleq}{\Rightarrow} B$$

Per prima casa nahiama che A è une metrice 2×2, mentre B è une matrice 2x3. (# chouse di A = # righte di B)

$$A * B = C$$

$$2 \times 2 \times 3$$

$$\begin{pmatrix} -1 & 1 & 3 \\ 0 & 2 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} -1 & 1 & 3 \\ -2 & 6 & 10 \end{pmatrix}$$

$$\begin{pmatrix} \begin{pmatrix} -1 & 1 & 3 \\ 0 & 2 & 2 \end{pmatrix} \\ \begin{pmatrix} -1 & 1 & 3 \\ 0 & 2 & 2 \end{pmatrix} = 0 \quad C = \begin{pmatrix} -1 & 1 & 3 \\ -2 & 6 & 10 \end{pmatrix} \quad \epsilon \quad \mathcal{H}_{2\times 3}(\mathbb{Z})$$

2". PROPOTTO MATRICIALE

$$A = \begin{pmatrix} O & \lambda \\ \lambda & O \end{pmatrix}$$

$$P_{3} = \begin{pmatrix} \lambda \sigma \\ \sigma - \lambda \end{pmatrix}$$

 $A = \begin{pmatrix} O A \\ A O \end{pmatrix}$ $B = \begin{pmatrix} A O \\ O - A \end{pmatrix}$ Due semplic: matrice quedote 2×2.

Ved: auro che aurhe in questo con la matrice producte) il produte montriciole non è commutativo. An ai

Anti,

$$A * B = \begin{pmatrix} O \lambda \\ \lambda O \end{pmatrix} \begin{pmatrix} \lambda O \\ O - 1 \end{pmatrix} = \begin{pmatrix} O - \lambda \\ \lambda O \end{pmatrix}$$

$$\mathcal{B} * A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = -\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

In puerto cono lo A+B = -B+A.

HATRICI CHE ANTICOMMUTANO

$$\delta_{2} = \begin{pmatrix} O A \\ A O \end{pmatrix} \qquad \delta_{1} = \begin{pmatrix} O - \lambda \\ \lambda O \end{pmatrix} \qquad \delta_{3} = \begin{pmatrix} A O \\ O - 1 \end{pmatrix}$$

Calcolians i van: prodotti Abbians dia visto che :

$$G_1 \cdot G_3 = \bigcirc G_3 \cdot G_1$$

(EXTRA)

i e l'unità immedinaria. Ci basta sapere che $i = \sqrt{-1}$ e che $i^2 = (\sqrt{-1})^2 = -1$

Vediamo invece

$$\begin{aligned}
\sigma_1 \cdot \sigma_2 &= \begin{pmatrix} \sigma \mid \\ \mid \sigma \end{pmatrix} \cdot \begin{pmatrix} \sigma - i \\ \mid \sigma \end{pmatrix} &= \begin{pmatrix} \sigma + i & \sigma + \sigma \\ 0 + \sigma & -i + \sigma \end{pmatrix} &= \begin{pmatrix} i & \sigma \\ \sigma - i \end{pmatrix} \\
\sigma_2 \cdot \sigma_3 &= \begin{pmatrix} \sigma - i \\ \mid \sigma \end{pmatrix} \cdot \begin{pmatrix} \sigma \mid \\ \mid \sigma \end{pmatrix} &= \begin{pmatrix} -i & \sigma \\ \sigma & i \end{pmatrix}
\end{aligned}$$

Allore anche 61.62 = (-) 62.61

QUESTE MATRICE ANTI COMMUTANO!

NOTA
$$G_1^2 = G_1 \cdot G_1 = 4$$
 (Verificane)
$$G_2^2 = 4 \cdot G_3^2 = 4$$

Riseri viamo

il the it equivalente à survere

•
$$G_i \cdot G_j + G_j \cdot G_i = 0$$
 por $i \neq j$

Allora
$$G_i \cdot G_j + G_j \cdot G_i = \begin{cases} 21 & \text{par } i = j \\ 0 & \text{par } i \neq j \end{cases}$$

Introduciones allore une notezione unile a esprimere queste proprietà: " PARENTESI DI ANTI-COMMUTATIONE" {A, BB = A·B + B·A

Allore wremo:

$$\{ \sigma_1, \sigma_2 \} = \sigma_1 \cdot \sigma_2 + \sigma_2 \cdot \sigma_1 = 0$$

 $\{ \sigma_1, \sigma_3 \} = \sigma_1 \cdot \sigma_3 + \sigma_3 \cdot \sigma_1 = 0$
 $\{ \sigma_1, \sigma_2 \} = \sigma_1 \cdot \sigma_2 + \sigma_2 \cdot \sigma_1 = 0$

Allora

$$\begin{cases} \int \sigma_{i}, \sigma_{j} = 21 \delta_{ij} \\ 0, i \neq j \end{cases}$$
con $\delta_{ij} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$

Questo enercisio ha l'obietiw di ricorderci de in generale il prodoto tre motrici NON è commutativo. Anzi, ci dono metrici che ANTI- COMMUTANO (c'è un nepo meno ne le scambio).

QUESTE MATEICI SI CHIAMANO MATRICI DI PAUCI

2.
$$A = \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1+1 & 0+0 \\ 0+2 & 0+0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} -1+0 & 1+0 \\ -1+0 & 1+0 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}$$

A B & B.A

5. TRASMISTE

$$A = \begin{pmatrix} -1 & 1 & 3 \\ 0 & 2 & 2 \end{pmatrix} \in \mathcal{H}_{2\times 3} (\mathbb{Z})$$

Le trapporte?

$$A = \left(A_{i,i}\right)_{i=1,2,3}$$

$$A_{11} = -A$$

$$A_{12} = A$$

$$A_{13} = 3$$

$$A_{21} = 0$$

$$A_{22} = 2$$

$$A_{23} = 1$$

Notexione compotte ja le un strice A.

Per fore le transporte dobbiaux roubine pli indici i ej.

$$A^{h_{i\bar{\delta}}} = A_{\bar{\delta}};$$

=> de A i une motrice mxn, dore At sous nxm.

Aureno puende :

A =
$$\begin{pmatrix} -1 & 1 & 3 \\ 0 & 2 & 2 \end{pmatrix}$$
 $A^{\dagger} = \begin{pmatrix} -1 & 0 \\ 1 & 2 \\ 3 & 2 \end{pmatrix}$

$$A^{+} = \begin{pmatrix} -\lambda & 0 \\ 1 & 2 \\ 3 & 2 \end{pmatrix}$$

In VERDE Ci sons il: de mour con indice i = j Questo rimargono dove som directe le tresposizione

Cololiano $\mathcal{H}_{2\times l}(Z) \ni A * A^{\dagger} = \begin{pmatrix} -1 & 1 & 3 \\ 0 & 2 & 2 \end{pmatrix}^* \begin{pmatrix} 1 & 8 & 8 \\ 8 & 8 & 8 \end{pmatrix}$

$$\mathcal{L}_{3\times3}\left(\mathbb{Z}\right) \ni A^{t} * A = \begin{pmatrix} -1 & 0 \\ 0 & 2 \\ 0 & 2 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 & 3 \\ 0 & 2 & 2 \\ 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 & 3 \\ 0 & 2 & 2 \\ 1 & 3 & 2 \end{pmatrix}$$

Sono matrici SIMMETRICHE! Dimontrianolo in jenerale:

Sie A E Mmxn (K). Si ha che le motrici

 $\widetilde{A} = A + A^{\dagger} \in \mathcal{M}_{m \times m} (K)$

 $\widetilde{A} = A^{t} \cdot A \in \mathcal{M}_{n \times n} (\mathbb{K})$

sons simmetriche

Proof

Allindré une untrice M ria timmetrice, deve volere che M = ut

Voyliamo quiudi montrone dre $\left\langle \widetilde{A}^{\dagger} = \widetilde{A} \right\rangle$

Consideriano A

 $\tilde{A} = A * A^{\pi}$.

 $\tilde{A}^{\dagger} = (A * A^{\dagger})^{\dagger} = (A^{\dagger})^{\dagger} * (A)^{\dagger} = A * A^{\dagger} = \tilde{A}$ Auslo jenneure par \tilde{A} (fatelo e splicitamente!)

4. TRAMONE

 $A \in \mathcal{M}_{3\times3} (\mathbb{Z}) \qquad A = \begin{pmatrix} 0 & 1 & 2 \\ 3 & 2 & 1 \\ -1 & -1 & -2 \end{pmatrix}$

le tromporte : notians de A i susdante oblore par le transporte ci la stan sambine gli dementi de nte una sopra le diejonde con quelli de steurs sotto.

 $A^{\dagger} = \begin{pmatrix} 0 & 3 & -\Lambda \\ \Lambda & 2 & -\Lambda \\ 2 & \Lambda & 2 \end{pmatrix}$

$$A + A^{*} = \begin{pmatrix} 0 & 4 & 1 \\ 4 & 4 & 0 \\ 1 & 0 & -4 \end{pmatrix}$$

Simbonica!

Dinontratelo in yenerole.

$$5. \quad \begin{pmatrix} -1 & \lambda \\ 0 & 2 \end{pmatrix}^3 = \begin{pmatrix} -1 & 3 \\ 0 & 6 \end{pmatrix}$$

6. MATRICI NIL POTENTI

DEF Une motifice N & Mn (IK) et nilpotente se 3 K & N t de n' camente nuu a.

$$\begin{pmatrix} 0 & \mathbf{a} \\ 0 & 0 \end{pmatrix}^{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad \qquad \mathbf{k} = \mathbf{z}$$

$$\begin{pmatrix}
0 & 2 & b \\
0 & 0 & c \\
0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 2 & b \\
0 & 0 & c \\
0 & 0 & 0
\end{pmatrix} \cdot \begin{pmatrix}
0 & 0 & 2c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \qquad \text{K = 3}$$

7. DE Maxa (IK) diagonale.

D invertibile
$$d=0$$
 $\prod_{i} D_{ii} = 0$

Proof

scribo solo gli el. sulle diajonale, gli altri sono nulli e non ci interessano. (Sarebbe ridondante scriverli

dobbiamo montrone entrembe le implicationi. duppon: and Dinuntilite. Allone J D-A Ale che DD-1 = D'D = AL tore 1 = diag (1,1,...,1) motice identità. Corrispode a risolvene NOTA $Dii Xii = 1 \qquad \forall i = 1,..., n$ Xis & pop. a Sig , Vedi done Xij non gli dementi de D-1. note ille fine Dove undo essere vene ti=1,..., n d'ablianno avere che Dii 70 Vi=1,-,n. AU1 ne Das ... Dan = 17 Dis \$ 0 . "= Lupponiamo II Dii + 0 Voylians montre la J D' tole che DD' = D'D = 1, che i epui nolonte a montrere che 3 une métrice con component: Xij t.le cha $D_{ii} \times ii = 1$ $\forall i = 1,...,n$ Me essents Dii & o ju ipoten:, pono sumpre definire $Xii = 1/D_{ii}$ (*) e duyre montrore l'esistente le tole motrice. Dalla (*) repre che $D^{-1} = \lambda : = 0 \left(\gamma_{D_{11}}, \dots, \gamma_{D_{Nh}} \right)$

8. A & Maxn (|K) INVERTIBILE.

Allore par A vale la legge di concellazione:

A*B = A+C = |D B = C , B, C & Maxn (|K)

Proof

A & Maxn (|K) Invertibile.

Allora 3 une motrice A⁻¹ & Maxn (|K) tole che

A⁻¹ * A = Alpan

Jone Alaxa & Le metrice identità on non:

Maxn = diag (1, 1, ..., 1)

h volte

Note B, C & Max (1K), is harmonic by the B, C & Max (1K), is harmonic by the B = A + B = A + CHoldiplics a dx e sx for A - 1 (dito the 3 per insteas) A - 1 + (A + B) = A - 1 + (A + C) (A - 1 + A) + B = (A - 1 + A) + CAlman + B = A max + C

B = C

9. A invertibile => At invertibile. Inoltre $(A^r)^2 = (A^{-1})^{\frac{1}{2}}$ Proof Lia A & Maxa (K) invertibile: $\exists A^{-1} \ f.c. \ A \cdot A^{-1} = 4 n \cdot n = A^{-1} \cdot A$ Lia At la nue trapporta.

Lo <u>NOTA</u>: E più difficile, une se fote in questo modo avete gretis le dinostrezione del 7.

Corso di ALEG Secondo foglio di esercizi Prof. Valentina Beorchia

October 13, 2022

1. Si determini la matrice 2×3 a coefficienti reali data dal seguente prodotto righe per colonne:

$$\left(\begin{array}{cc} 1 & 0 \\ 2 & 2 \end{array}\right) \cdot \left(\begin{array}{ccc} -1 & 1 & 3 \\ 0 & 2 & 2 \end{array}\right).$$

2. Si considerino le matrici:

$$A := \left(\begin{array}{cc} -1 & 1 \\ 0 & 2 \end{array} \right), \qquad B := \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right)$$

Si calcolino $A \cdot B$ e $B \cdot A$ e si confrontino i risultati. Cosa notate?

3. Sia $A \in M_{2,3}(\mathbb{K})$ la matrice

$$A = \left(\begin{array}{ccc} -1 & 1 & 3\\ 0 & 2 & 2 \end{array}\right)$$

Si determini la matrice trasposta:

$${}^{t}A.$$

Si calcoli, inoltre:

$$A \cdot {}^{t}A \in M_2(\mathbb{K}), \quad {}^{t}A \cdot A \in M_3(\mathbb{K}).$$

Cosa notate?

4. Sia $A \in M_3(\mathbb{K})$ la matrice

$$A = \left(\begin{array}{ccc} 0 & 1 & 2\\ 3 & 2 & 1\\ -1 & -1 & -2 \end{array}\right)$$

Si determini tA e si calcoli

$$A + {}^tA$$
.

Cosa notate?

5. Si calcoli

$$\left(\begin{array}{cc} -1 & 1 \\ 0 & 2 \end{array}\right)^3.$$

6. Una matrice $N \in M_n(\mathbb{K})$ si dice nilpotente se esiste un numero naturale $k \in \mathbb{N}$ tale che

$$N^k = \left(\begin{array}{ccc} 0 & \dots & 0 \\ \vdots & \vdots & \vdots \\ 0 & \dots & 0 \end{array}\right).$$

Si dimostri che per ogni $a, b, c \in \mathbb{K}$ le matrici

$$\left(\begin{array}{cc}0&a\\0&0\end{array}\right),\quad \left(\begin{array}{ccc}0&a&b\\0&0&c\\0&0&0\end{array}\right)$$

sono nilpotenti.

7. Sia $D \in M_n(\mathbb{K})$ una matrice quadrata diagonale, cioè del tipo

$$D = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}.$$

Si dimostri che D è invertibile se e solo se

$$a_{11} \cdot a_{22} \cdot \cdots \cdot a_{nn} \neq 0$$
,

e in tal caso si ha

$$D^{-1} = \begin{pmatrix} \frac{1}{a_{11}} & 0 & \dots & 0\\ 0 & \frac{1}{a_{22}} & \dots & 0\\ \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & \dots & \frac{1}{a_{nn}} \end{pmatrix}.$$

8. Si verifichi che se $A \in M_n(\mathbb{K})$ è una matrice quadrata invertibile, allora per A vale la legge di cancellazione:

$$A \cdot B = A \cdot C \Rightarrow B = C$$

con $B, C \in M_n(\mathbb{K})$.

9. Si verifichi che se A è una matrice invertibile, allora anche la trasposta tA è invertibile e vale:

$$({}^{t}A)^{-1} = {}^{t} (A^{-1}).$$