20 2. FOUR IMPORTANT LINEAR PDE

2.2. LAPLACE’S EQUATION

Among the most important of all partial differential equations are undoubt-
edly Laplace’s equation

(1) Au=0

and Poisson’s equation

*

(2) —Au = f.

In both (1) and (2), z € U and the unknown is u : U — R, u = u(z),
where U C R" is a given open set. In (2) the function f : U — R is also

given. Remember from §A.3 that the Laplacian of u is Au = >"" | Ug,qz,-

DEFINITION. A C? function u satisfying (1) is called a harmonic func-
tion.

Physical interpretation. Laplace’s equation comes up in a wide variety
of physical contexts. In a typical interpretation u denotes the density of
some quantity (e.g. a chemical concentration) in equilibrium. Then if V is
any smooth subregion within U, the net flux of u through 0V is zero:

/ F-vdS =0,
ov

F denoting the flux density and v the unit outer normal field. In view of
the Gauss—Green Theorem (§C.2), we have

/diVFda::/ F-vdS =0,
1% ov

and so
(3) divF =0 in U,

since V' was arbitrary. In many instances it is physically reasonable to as-
sume the flux F' is proportional to the gradient Du but points in the opposite
direction (since the flow is from regions of higher to lower concentration).
Thus

(4) F=—-aDu (a>0).

*I prefer to write (2) with the minus sign, to be consistent with the notation for general
second-order elliptic operators in Chapter 6.
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Substituting into (3), we obtain Laplace’s equation
div(Du) = Au = 0.

If w denotes the i .
chemical concentration
temperature
electrostatic potential,

equation (4) is

Fick’s law of diffusion
Fourier’s law of heat conduction

Ohm’s law of electrical conduction.

See Feynman-Leighton—Sands [F-L-S, Chapter 12] for a discussion of the
ubiquity of Laplace’s equation in mathematical physics. Laplace’s equa-
tion arises as well in the study of analytic functions and the probabilistic
investigation of Brownian motion.

2.2.1. Fundamental solution.

a. Derivation of fundamental solution. One good strategy for inves-
tigating any partial differential equation is first to identify some explicit
solutions and then, provided the PDE is linear, to assemble more compli-
cated solutions out of the specific ones previously noted. Furthermore, in
looking for explicit solutions, it is often wise to restrict attention to classes
of functions with certain symmetry properties. Since Laplace’s equation is
invariant under rotations (Problem 2), it consequently seems advisable to
search first for radial solutions, that is, functions of r = |z|.

Let us therefore attempt to find a solution u of Laplace’s equation (1)
in U = R", having the form
u(z) = v(r),

where r = |z| = (22 4+ --- + 22)/2 and v is to be selected (if possible) so
that Au = 0 holds. First note for : = 1,...,n that

0 1
a—;:é(x%+---+x,%)

We thus have

29 = % (z # 0).
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fori=1,...,n, and so

Au =" (r) e ; lv’(r).
Hence Au = 0 if and only if
(5) o + ”T_lv’ _o.

If v/ # 0, we deduce

1 N ==-=-—"
og([v])’ = .

and hence v'(r) = %7 for some constant a. Consequently if > 0, we have

{blogr+c (n=2)
v(r) = !
= +c (n2>3),

where b and ¢ are constants.

These considerations motivate the following

DEFINITION. The function

—Lloglz n=32
(6) ¢<x>:={ woslel =2

n(n—2)a(n) |z|m—2

defined for x € R™, x # 0, is the fundamental solution of Laplace’s equation.

The reason for the particular choices of the constants in (6) will be
apparent in a moment. (Recall from §A.2 that a(n) denotes the volume of
the unit ball in R™.)

We will sometimes slightly abuse notation and write ®(x) = ®(|z|) to
emphasize that the fundamental solution is radial. Observe also that we
have the estimates

o

n—1"

D2(z)| < = (z#0)

© Da(z)| < o

|z
for some constant C > 0.

b. Poisson’s equation. By construction the function z — ®(z) is har-
monic for z # 0. If we shift the origin to a new point y, the PDE (1) is
unchanged; and so z +— ®(z — y) is also harmonic as a function of z, = # v.
Let us now take f : R™ — R and note that the mapping = — ®(z — y) f(y)
(x # y) is harmonic for each point y € R™, and thus so is the sum of finitely
many such expressions built for different points y.
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This reasoning might suggest that the convolution
w(@)= Jga @(z — ) f(y) dy
(8) {217r Jrzlog(lz —y)) f(y)dy (n=

f
n(n—%)a(n) fR" |$—;51|Q—2 dy (TL

will solve Laplace’s equation (1). However, this is wrong. Indeed, as inti-
mated by estimate (7), D?®(z — y) is not summable near the singularity at
y = z, and so naive differentiation through the integral sign is unjustified
(and incorrect). We must proceed more carefully in calculating Awu.

Let us for simplicity now assume f € C2(R"); that is, f is twice contin-
uously differentiable, with compact support.

THEOREM 1 (Solving Poisson’s equation). Define u by (8). Then
(i) u € C?(R™)
and
(ii) —Au=f n R™
We consequently see that (8) provides us with a formula for a solution

of Poisson’s equation (2) in R™.

Proof. 1. We have
© )= [ se-viwdy= [ e)fe-v)d

hence

u(x+he,;-) — u(z) :/n(b(y) [f(:c+hei—z) — flz—y) dy,

where h # 0 and e¢; = (0,...,1,...,0), the 1 in the ith-slot. But

f@+hei—y) - flz—y)
h

uniformly on R™ as h — 0, and thus

= fzi(z —y)

un (@)= [ @W)fule-v)dy (=1....m)

Similarly

(10) Uze; (T) = /n Q(Y) foie;(x —y)dy (4,5=1,...,n).
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As the expression on the right-hand side of (10) is continuous in the variable
z, we see u € C2(R™).

2. Since ® blows up at 0, we will need for subsequent calculations to
isolate this singularity inside a small ball. So fix € > 0. Then

du) = [ @@yt [ e dy

(11)
=:I.+ J..
Now
Ce?|loge| (n=2)
12 I.| < C||D? oon/ ) d<{
(2) 1 S OND ey [ @0y <q

An integration by parts (see §C.2) yields

J. = / 3(y) A, f(z —y) dy
R™—B(0,¢)

= —/ D®(y) - Dyf(z —y) dy
R?—B(0,e)

of
RO CEE)

=: K¢ + L,
v denoting the inward pointing unit normal along 0B(0, ). We readily check

B(y)| dS(y) < {Cslloge[ (n=2)

14 L5< D O (R™
(4) L] < ID Sl | ce (n23)

0,¢)

3. We continue by integrating by parts once again in the term K, to
discover

K. = A2(y)f(z —y)dy — / g—q)(y) f(z—y)dS(y)
R"—B(0,) dB(0,) OV
—— [ )i y)dst)
8B(0,¢)

since ® is harmonic away from the origin. Now D®(y) = na(n) Iyi (y #0)
and v = o1 = —Z on 0B(0,¢). Consequently @(y) =v-DO(y) = 1

(n)&-n 1
on 0B(0,¢). Slnce na(n)e™ ! is the surface area of the sphere 8B(O ), W
have

1
P — —y)dS
K e /a hos) fz—1y)dS(y)

=— f(y)dS(y) = —f(z) ase—0.
0B(z,€)

3

(15)
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(Remember from §A.3 that a slash through an integral denotes an average.)

4. Combining now (11)—(15) and letting £ — 0, we find —Au(z) = f(z),
as asserted. 0O

Theorem 1 is in fact valid under far less stringent smoothness require-
ments for f: see Gilbarg-Trudinger [G-T].

Interpretation of fundamental solution. We sometimes write
—Ad = (50 in Rn,

do denoting the Dirac measure on R™ giving unit mass to the point 0. Adopt-
ing this notation, we may formally compute

—Au(z) = . —Az®(z —y)f(y) dy

= /. ozf(y)dy = f(z) (z€R?),

in accordance with Theorem 1. This corrects the faulty calculation (9).

2.2.2. Mean-value formulas.

Consider now an open set U C R™ and suppose u is a harmonic function
within U. We next derive the important mean-value formulas, which declare
that u(z) equals both the average of u over the sphere 0B(z,r) and the
average of u over the entire ball B(z,r), provided B(z,r7) C U. These
implicit formulas involving u generate a remarkable number of consequences,
as we will momentarily see.

THEOREM 2 (Mean-value formulas for Laplace’s equation). Ifu € C?(U)
s harmonic, then

(16) u(z) = ][ udS = udy
OB(z,r) B(z,r)
for each ball B(x,r) C U.

Proof. 1. Set
o(r) ::][ u(y) dS(y) = ][ u(z 4+ rz) dS(2).
OB(zx,r) 8B(0,1)
Then

¢ (r) = ][ Du(z +rz) - 2dS(z),
8B(0,1)
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and consequently, using Green’s formulas from §C.2, we compute

/ o y-x
60 = Duly)- T as(w

ou
= —dS(y
][BB(:c,r) Ov )

r

_ _][ Au(y) dy = 0.

nJ B(x,r)

Hence ¢ is constant, and so

¢(r) = lim ¢(¢) = lim u(y) dS(y) = u(z).
- —YJ 8B(x,t)

2. Observe next that our employing polar coordinates, as in §C.3, gives

/ udy = / / udS | ds
B(z,r) 0 0B(z,s)

= u(z) /07‘ na(n)s" tds = a(n)r"u(z). O

THEOREM 3 (Converse to mean-value property). If u € C%(U) satisfies

u(z) = ][ udS
0B(z,r)

for each ball B(x,r) C U, then u is harmonic.

Proof. If Au # 0, there exists some ball B(z,r) C U such that, say, Au > 0
within B(z,r). But then for ¢ as above,

T

0=¢(r)=" ][B( Au(y)dy > 0,

n )
a contradiction. O

2.2.3. Properties of harmonic functions.

We now present a sequence of interesting deductions about harmonic
functions, all based upon the mean-value formulas. Assume for the following
that U C R" is open and bounded.



