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and consequently, using Green’s formulas from §C.2, we compute

/ o y-x
60 = Duly)- T as(w

ou
= —dS(y
][BB(:c,r) Ov )

r

_ _][ Au(y) dy = 0.

nJ B(x,r)

Hence ¢ is constant, and so

¢(r) = lim ¢(¢) = lim u(y) dS(y) = u(z).
- —YJ 8B(x,t)

2. Observe next that our employing polar coordinates, as in §C.3, gives

/ udy = / / udS | ds
B(z,r) 0 0B(z,s)

= u(z) /07‘ na(n)s" tds = a(n)r"u(z). O

THEOREM 3 (Converse to mean-value property). If u € C%(U) satisfies

u(z) = ][ udS
0B(z,r)

for each ball B(x,r) C U, then u is harmonic.

Proof. If Au # 0, there exists some ball B(z,r) C U such that, say, Au > 0
within B(z,r). But then for ¢ as above,

T

0=¢(r)=" ][B( Au(y)dy > 0,

n )
a contradiction. O

2.2.3. Properties of harmonic functions.

We now present a sequence of interesting deductions about harmonic
functions, all based upon the mean-value formulas. Assume for the following
that U C R" is open and bounded.
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a. Strong maximum principle, uniqueness. We begin with the asser-
tion that a harmonic function must attain its maximum on the boundary
and cannot attain its maximum in the interior of a connected region unless
it 1s constant.

THEOREM 4 (Strong maximum principle). Suppose u € C*(U) N C(U)
is harmonic within U.
(i) Then

max u = max u.
U oU

(ii) Furthermore, if U is connected and there ezists a point o € U such
that
u(zp) = max u,
U

then

u 18 constant within U.

Assertion (i) is the mazimum principle for Laplace’s equation and (ii) is
p P P q

the strong maxzimum principle. Replacing u by —u, we recover also similar

assertions with “min” replacing “max”.

Proof. Suppose there exists a point g € U with u(zg) = M := maxg u.
Then for 0 < r < dist(zg,0U), the mean-value property asserts

M:u(:co):][ udy < M.

B(zo,r)

As equality holds only if u = M within B(xzg,r), we see u(y) = M for all
y € B(zg,r). Hence the set {x € U | u(x) = M} is both open and relatively
closed in U and thus equals U if U is connected. This proves assertion (ii),
from which (i) follows. U

Positivity. The strong maximum principle asserts in particular that if U
is connected and u € C?(U) N C(U) satisfies

Au=0 inU
u=g onoU,

where g > 0, then wu is positive everywhere in U if g is positive somewhere
on OU.

An important application of the maximum principle is establishing the
uniqueness of solutions to certain boundary-value problems for Poisson’s
equation.



28 2. FOUR IMPORTANT LINEAR PDE

THEOREM 5 (Uniqueness). Letg € C(0U), f € C(U). Then there exists
at most one solution u € C*(U) N C(U) of the boundary-value problem

17 {—Auzf in U

u=g onoU.

Proof. If v and & both satisfy (17), apply Theorem 4 to the harmonic
functions w := £(u — @). O

b. Regularity. Next we prove that if u € C? is harmonic, then necessarily
u € C*. Thus harmonic functions are automatically infinitely differentiable.
This sort of assertion is called a regularity theorem. The interesting point
is that the algebraic structure of Laplace’s equation Au = > 7" Ug,z, = 0
leads to the analytic deduction that all the partial derivatives of u exist,
even those which do not appear in the PDE.

THEOREM 6 (Smoothness). If u € C(U) satisfies the mean-value prop-
erty (16) for each ball B(z,r) C U, then

u € C®(U).

Note carefully that u may not be smooth, or even continuous, up to U.

Proof. Let n be a standard mollifier, as described in §C.4, and recall that
7 is a radial function. Set u® := 7. xu in U, = {x € U | dist(z,dU) > €}.
As shown in §C.4, u® € C*(Uy).

We will prove u is smooth by demonstrating that in fact u = «® on U,.
Indeed if z € U,, then

u (z) = /U e — y)uly) dy

= ginu(x) /OEn (g) na(n)r"tdr by (16)
=u(@) [ nedy = (o)

Thus u® = u in Ug, and so u € C*®°(U;) for each € > 0. O
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c. Local estimates for harmonic functions. Now we employ the mean-
value formulas to derive careful estimates on the various partial derivatives
of a harmonic function. The precise structure of these estimates will be
needed below, when we prove analyticity.

THEOREM 7 (Estimates on derivatives). Assume u is harmonic in U.
Then

a Ck
(18) | D%u(zo)| < Tn_i_kHu”Ll(B(sco,r))

for each ball B(xo,7) C U and each multiindex o of order |a| = k.
Here

n+1 k
(19) Cy = 1 C, = (@ nk)"

oL (k=1,...).

a(n)

Proof. 1. We establish (18), (19) by induction on k, the case kK = 0 being
immediate from the mean-value formula (16). For £ = 1, we note upon

differentiating Laplace’s equation that ug, (i = 1,...,n) is harmonic. Con-
sequently
|uz, (z0)| = ‘ Uz dm‘
B(zo,r/2)
2n
(20) = ‘ — / uv; dS ‘
a(n)r 8B(xo,r/2)
2n

< 7||U||Loo(aB(:co,§))'

Now if x € 8B(zg,r/2), then B(z,r/2) C B(zo,r) C U, and so

1 2\"
lu(z)| < —— (-) 1wl L1 (B(zo,m))

a(n) \r

by (18), (19) for £ = 0. Combining the inequalities above, we deduce

ontln 1
| D%u(z0)| < ) 7,n+1\|U||L1(B(g;o,r))

if || = 1. This verifies (18), (19) for k = 1.

2. Assume now k > 2 and (18), (19) are valid for all balls in U and each
multiindex of order less than or equal to k — 1. Fix B(zg,r) C U and let o
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be a multiindex with |a| = k. Then D%u = (DPu),, for some i € {1,...,n},
3| = k — 1. By calculations similar to those in (20), we establish that

N nk
|D%u(z0)| < —= 1D ull 105 (z0,3))-

If z € 8B(zo, §), then B(z, &2r) C B(zo,r) C U. Thus (18), (19) for
k — 1 imply

2n+1n k—1 k-1
Due)) < & D) ey
k

— a(n) (Lr)n-i-k—l

Combining the two previous estimates yields the bound

(2n+lnk)k
(21) |D%u(zo)| < WHUHU(B@O,T))-

This confirms (18), (19) for |a| = k. O

d. Liouville’s Theorem. We assert now that there are no nontrivial
bounded harmonic functions on all of R”.

THEOREM 8 (Liouville’s Theorem). Suppose u : R™ — R is harmonic
and bounded. Then u 1s constant.

Proof. Fix zyp € R™, r > 0, and apply Theorem 7 on B(zg,r):

nCq
| Du(zo)| < \7{;1 HUHLl(B(:co,r))

< \/ﬁC;oz(n)

||| oo (mm) — O,
as r — 00. Thus Du = 0, and so u is constant. d

THEOREM 9 (Representation formula). Let f € C2(R"™), n > 3. Then
any bounded solution of

—Au=f inR"
has the form

for some constant C'.
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Proof. Since ®(z) — 0 as |z| — oo for n > 3, 4(z) == [p. ®(z —y)f(y)d

N

is a bounded solution of —Au = f in R™. If u is another solution, w := u—14
is constant, according to Liouville’s Theorem. O
Remark. If n = 2, ®(z) = —3= log|z| is unbounded as |z| — oo and so

may be [p. ®(z — y)f(y) dy.

e. Analyticity. We refine Theorem 6:

THEOREM 10 (Analyticity). Assume u is harmonic in U. Then u is
analytic in U.

Proof. 1. Fix any point zg € U. We must show u can be represented by a
convergent power series in some neighborhood of z.

Let r := 1 dist(xo,0U). Then M := WHUHU(B(QJO’QT)) < 00.

2. Since B(z,r) C B(zg,2r) C U for each z € B(zg,r), Theorem 7
provides the bound

on+1,\ lo]
”DaUHL‘X’(B(xo,r)) <M ( . ) |Oz||°‘|-

Now %’f < € for all positive integers k, and hence
’a|lal < el)q!
for all multiindices .. Furthermore, the Multinomial Theorem (§1.5) implies
k k |o|!
n :(1+...+1) = Z R
|a|=k
whence
la|! < nlelal.

Combining the previous inequalities yields the estimate

2n+1n2€ |
__) ol

(22) DUl ey < M (2

3. The Taylor series for u at zg is

> DQZEmO) (z — z0)%,



