and consequently, using Green's formulas from §C.2, we compute

$$\phi'(r) = \int_{\partial B(x,r)} Du(y) \cdot \frac{y-x}{r} dS(y)$$

$$= \int_{\partial B(x,r)} \frac{\partial u}{\partial \nu} dS(y)$$

$$= \frac{r}{n} \int_{B(x,r)} \Delta u(y) dy = 0.$$

Hence ϕ is constant, and so

$$\phi(r) = \lim_{t \to 0} \phi(t) = \lim_{t \to 0} \int_{\partial B(x,t)} u(y) \, dS(y) = u(x).$$

2. Observe next that our employing polar coordinates, as in §C.3, gives

$$\int_{B(x,r)} u \, dy = \int_0^r \left(\int_{\partial B(x,s)} u \, dS \right) ds$$
$$= u(x) \int_0^r n\alpha(n) s^{n-1} ds = \alpha(n) r^n u(x).$$

THEOREM 3 (Converse to mean-value property). If $u \in C^2(U)$ satisfies

$$u(x) = \int_{\partial B(x,r)} u \, dS$$

for each ball $B(x,r) \subset U$, then u is harmonic.

Proof. If $\Delta u \not\equiv 0$, there exists some ball $B(x,r) \subset U$ such that, say, $\Delta u > 0$ within B(x,r). But then for ϕ as above,

$$0 = \phi'(r) = \frac{r}{n} \int_{B(x,r)} \Delta u(y) \, dy > 0,$$

a contradiction.

2.2.3. Properties of harmonic functions.

We now present a sequence of interesting deductions about harmonic functions, all based upon the mean-value formulas. Assume for the following that $U \subset \mathbb{R}^n$ is open and bounded.

a. Strong maximum principle, uniqueness. We begin with the assertion that a harmonic function must attain its maximum on the boundary and cannot attain its maximum in the interior of a connected region unless it is constant.

THEOREM 4 (Strong maximum principle). Suppose $u \in C^2(U) \cap C(\bar{U})$ is harmonic within U.

(i) Then

$$\max_{\bar{U}} u = \max_{\partial U} u.$$

(ii) Furthermore, if U is connected and there exists a point $x_0 \in U$ such that

$$u(x_0) = \max_{\bar{U}} u,$$

then

u is constant within U.

Assertion (i) is the maximum principle for Laplace's equation and (ii) is the strong maximum principle. Replacing u by -u, we recover also similar assertions with "min" replacing "max".

Proof. Suppose there exists a point $x_0 \in U$ with $u(x_0) = M := \max_{\bar{U}} u$. Then for $0 < r < \operatorname{dist}(x_0, \partial U)$, the mean-value property asserts

$$M = u(x_0) = \int_{B(x_0,r)} u \, dy \le M.$$

As equality holds only if $u \equiv M$ within $B(x_0, r)$, we see u(y) = M for all $y \in B(x_0, r)$. Hence the set $\{x \in U \mid u(x) = M\}$ is both open and relatively closed in U and thus equals U if U is connected. This proves assertion (ii), from which (i) follows.

Positivity. The strong maximum principle asserts in particular that if U is connected and $u \in C^2(U) \cap C(\bar{U})$ satisfies

$$\begin{cases} \Delta u = 0 & \text{in } U \\ u = g & \text{on } \partial U, \end{cases}$$

where $g \geq 0$, then u is positive everywhere in U if g is positive somewhere on ∂U .

An important application of the maximum principle is establishing the uniqueness of solutions to certain boundary-value problems for Poisson's equation.

THEOREM 5 (Uniqueness). Let $g \in C(\partial U)$, $f \in C(U)$. Then there exists at most one solution $u \in C^2(U) \cap C(\bar{U})$ of the boundary-value problem

(17)
$$\begin{cases} -\Delta u = f & \text{in } U \\ u = g & \text{on } \partial U. \end{cases}$$

Proof. If u and \tilde{u} both satisfy (17), apply Theorem 4 to the harmonic functions $w := \pm (u - \tilde{u})$.

b. Regularity. Next we prove that if $u \in C^2$ is harmonic, then necessarily $u \in C^{\infty}$. Thus harmonic functions are automatically infinitely differentiable. This sort of assertion is called a regularity theorem. The interesting point is that the algebraic structure of Laplace's equation $\Delta u = \sum_{i=1}^{n} u_{x_i x_i} = 0$ leads to the analytic deduction that all the partial derivatives of u exist, even those which do not appear in the PDE.

THEOREM 6 (Smoothness). If $u \in C(U)$ satisfies the mean-value property (16) for each ball $B(x,r) \subset U$, then

$$u \in C^{\infty}(U)$$
.

Note carefully that u may not be smooth, or even continuous, up to ∂U .

Proof. Let η be a standard mollifier, as described in §C.4, and recall that η is a radial function. Set $u^{\varepsilon} := \eta_{\varepsilon} * u$ in $U_{\varepsilon} = \{x \in U \mid \operatorname{dist}(x, \partial U) > \varepsilon\}$. As shown in §C.4, $u^{\varepsilon} \in C^{\infty}(U_{\varepsilon})$.

We will prove u is smooth by demonstrating that in fact $u \equiv u^{\varepsilon}$ on U_{ε} . Indeed if $x \in U_{\varepsilon}$, then

$$u^{\varepsilon}(x) = \int_{U} \eta_{\varepsilon}(x - y)u(y) \, dy$$

$$= \frac{1}{\varepsilon^{n}} \int_{B(x,\varepsilon)} \eta\left(\frac{|x - y|}{\varepsilon}\right) u(y) \, dy$$

$$= \frac{1}{\varepsilon^{n}} \int_{0}^{\varepsilon} \eta\left(\frac{r}{\varepsilon}\right) \left(\int_{\partial B(x,r)} u \, dS\right) dr$$

$$= \frac{1}{\varepsilon^{n}} u(x) \int_{0}^{\varepsilon} \eta\left(\frac{r}{\varepsilon}\right) n\alpha(n)r^{n-1} dr \quad \text{by (16)}$$

$$= u(x) \int_{B(0,\varepsilon)} \eta_{\varepsilon} \, dy = u(x).$$

Thus $u^{\varepsilon} \equiv u$ in U_{ε} , and so $u \in C^{\infty}(U_{\varepsilon})$ for each $\varepsilon > 0$.

c. Local estimates for harmonic functions. Now we employ the meanvalue formulas to derive careful estimates on the various partial derivatives of a harmonic function. The precise structure of these estimates will be needed below, when we prove analyticity.

THEOREM 7 (Estimates on derivatives). Assume u is harmonic in U. Then

(18)
$$|D^{\alpha}u(x_0)| \le \frac{C_k}{r^{n+k}} ||u||_{L^1(B(x_0,r))}$$

for each ball $B(x_0, r) \subset U$ and each multiindex α of order $|\alpha| = k$. Here

(19)
$$C_0 = \frac{1}{\alpha(n)}, \ C_k = \frac{(2^{n+1}nk)^k}{\alpha(n)} \quad (k = 1, \dots).$$

Proof. 1. We establish (18), (19) by induction on k, the case k = 0 being immediate from the mean-value formula (16). For k = 1, we note upon differentiating Laplace's equation that u_{x_i} (i = 1, ..., n) is harmonic. Consequently

$$|u_{x_{i}}(x_{0})| = \left| \int_{B(x_{0}, r/2)} u_{x_{i}} dx \right|$$

$$= \left| \frac{2^{n}}{\alpha(n)r^{n}} \int_{\partial B(x_{0}, r/2)} u\nu_{i} dS \right|$$

$$\leq \frac{2n}{r} ||u||_{L^{\infty}(\partial B(x_{0}, \frac{r}{2}))}.$$

Now if $x \in \partial B(x_0, r/2)$, then $B(x, r/2) \subset B(x_0, r) \subset U$, and so

$$|u(x)| \le \frac{1}{\alpha(n)} \left(\frac{2}{r}\right)^n ||u||_{L^1(B(x_0,r))}$$

by (18), (19) for k = 0. Combining the inequalities above, we deduce

$$|D^{\alpha}u(x_0)| \le \frac{2^{n+1}n}{\alpha(n)} \frac{1}{r^{n+1}} ||u||_{L^1(B(x_0,r))}$$

if $|\alpha| = 1$. This verifies (18), (19) for k = 1.

2. Assume now $k \geq 2$ and (18), (19) are valid for all balls in U and each multiindex of order less than or equal to k-1. Fix $B(x_0, r) \subset U$ and let α

be a multiindex with $|\alpha| = k$. Then $D^{\alpha}u = (D^{\beta}u)_{x_i}$ for some $i \in \{1, ..., n\}$, $|\beta| = k - 1$. By calculations similar to those in (20), we establish that

$$|D^{\alpha}u(x_0)| \leq \frac{nk}{r} ||D^{\beta}u||_{L^{\infty}(\partial B(x_0, \frac{r}{k}))}.$$

If $x \in \partial B(x_0, \frac{r}{k})$, then $B(x, \frac{k-1}{k}r) \subset B(x_0, r) \subset U$. Thus (18), (19) for k-1 imply

$$|D^{\beta}u(x)| \le \frac{(2^{n+1}n(k-1))^{k-1}}{\alpha(n)\left(\frac{k-1}{k}r\right)^{n+k-1}} ||u||_{L^{1}(B(x_{0},r))}.$$

Combining the two previous estimates yields the bound

(21)
$$|D^{\alpha}u(x_0)| \leq \frac{(2^{n+1}nk)^k}{\alpha(n)r^{n+k}} ||u||_{L^1(B(x_0,r))}.$$

This confirms (18), (19) for $|\alpha| = k$.

d. Liouville's Theorem. We assert now that there are no nontrivial bounded harmonic functions on all of \mathbb{R}^n .

THEOREM 8 (Liouville's Theorem). Suppose $u : \mathbb{R}^n \to \mathbb{R}$ is harmonic and bounded. Then u is constant.

Proof. Fix $x_0 \in \mathbb{R}^n$, r > 0, and apply Theorem 7 on $B(x_0, r)$:

$$|Du(x_0)| \le \frac{\sqrt{n}C_1}{r^{n+1}} ||u||_{L^1(B(x_0,r))}$$

$$\le \frac{\sqrt{n}C_1\alpha(n)}{r} ||u||_{L^{\infty}(\mathbb{R}^n)} \to 0,$$

as $r \to \infty$. Thus $Du \equiv 0$, and so u is constant.

THEOREM 9 (Representation formula). Let $f \in C_c^2(\mathbb{R}^n)$, $n \geq 3$. Then any bounded solution of

$$-\Delta u = f \quad in \ \mathbb{R}^n$$

has the form

$$u(x) = \int_{\mathbb{R}^n} \Phi(x - y) f(y) \, dy + C \quad (x \in \mathbb{R}^n)$$

for some constant C.

Proof. Since $\Phi(x) \to 0$ as $|x| \to \infty$ for $n \ge 3$, $\tilde{u}(x) := \int_{\mathbb{R}^n} \Phi(x-y) f(y) \, dy$ is a bounded solution of $-\Delta u = f$ in \mathbb{R}^n . If u is another solution, $w := u - \tilde{u}$ is constant, according to Liouville's Theorem.

Remark. If n=2, $\Phi(x)=-\frac{1}{2\pi}\log|x|$ is unbounded as $|x|\to\infty$ and so may be $\int_{\mathbb{R}^2}\Phi(x-y)f(y)\,dy$.

e. Analyticity. We refine Theorem 6:

THEOREM 10 (Analyticity). Assume u is harmonic in U. Then u is analytic in U.

Proof. 1. Fix any point $x_0 \in U$. We must show u can be represented by a convergent power series in some neighborhood of x_0 .

Let
$$r := \frac{1}{4} \operatorname{dist}(x_0, \partial U)$$
. Then $M := \frac{1}{\alpha(n)r^n} ||u||_{L^1(B(x_0, 2r))} < \infty$.

2. Since $B(x,r) \subset B(x_0,2r) \subset U$ for each $x \in B(x_0,r)$, Theorem 7 provides the bound

$$||D^{\alpha}u||_{L^{\infty}(B(x_0,r))} \leq M \left(\frac{2^{n+1}n}{r}\right)^{|\alpha|} |\alpha|^{|\alpha|}.$$

Now $\frac{k^k}{k!} < e^k$ for all positive integers k, and hence

$$|\alpha|^{|\alpha|} \le e^{|\alpha|} |\alpha|!$$

for all multiindices α . Furthermore, the Multinomial Theorem (§1.5) implies

$$n^k = (1 + \dots + 1)^k = \sum_{|\alpha| = k} \frac{|\alpha|!}{\alpha!},$$

whence

$$|\alpha|! \le n^{|\alpha|} \alpha!.$$

Combining the previous inequalities yields the estimate

(22)
$$||D^{\alpha}u||_{L^{\infty}(B(x_0,r))} \leq CM \left(\frac{2^{n+1}n^2e}{r}\right)^{|\alpha|} \alpha!.$$

3. The Taylor series for u at x_0 is

$$\sum_{\alpha} \frac{D^{\alpha} u(x_0)}{\alpha!} (x - x_0)^{\alpha},$$