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the sum taken over all multiindices. We assert this power series converges,
provided
r

(23) |$—.’1I0| <2n—+2n—36'

To verify this, let us compute for each IV the remainder term:

N-1 lzalz — 20)
Ry(z) =u(@)— Y Y Du( O)OE! 0)

k=0 |a|=k

_ Z D%*u(zg + t{x — zp))(x — x0)*

a!
|a|=N

for some 0 <t <1, t depending on z. We establish this formula by writing
out the first V terms and the error in the Taylor expansion about 0 for the
function of one variable ¢(t) := u(zo + t(z — zp)), at t = 1. Employing (22),
(23), we can estimate
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See §4.6.2 for more on analytic functions and partial differential equa-
tions.

f. Harnack’s inequality. Recall from §A.2 that we write V CC U to
mean V C V C U and V is compact.

THEOREM 11 (Harnack’s inequality). For each connected open set V
CC U, there exists a positive constant C, depending only on V', such that

supu < Cinfu
194 \%

for all nonnegative harmonic functions u in U.

Thus in particular

Zuly) < ulz) < Cu(y)

for all points x,y € V. These inequalities assert that the values of a non-
negative harmonic function within V are all comparable: u cannot be very
small (or very large) at any point of V unless u is very small (or very large)
everywhere in V. The intuitive idea is that since V is a positive distance
away from OU, there is “room for the averaging effects of Laplace’s equation
to occur”.
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Proof. Let r:= 1dist(V,8U). Choose z,y € V, |z —y| <r. Then

u(:c):][ udzz;/ udz
B(x,2r) a(n)QnTn B(y.r)

1 1
2" J Byr) 2

Thus 2"u(y) > u(z) > smuly) fz,y €V, |z —y| <.
Since V is connected and V is compact, we can cover V by a chain of

finitely many balls {B;}¥ ;, each of which has radius % and B; N B;—; # 0}

2
fori=2,...,N. Then
1

forall z,y € V. O

2.2.4. Green’s function.

Assume now U C R" is open, bounded, and U is C'. We propose
next to obtain a general representation formula for the solution of Poisson’s
equation

—Au=f inU,
subject to the prescribed boundary condition

u=g on OoU.

a. Derivation of Green’s function. Suppose u € C%(U) is an arbitrary
function. Fix z € U, choose € > 0 so small that B(z,e) C U, and apply
Green’s formula from §C.2 on the region V. := U — B(z,¢) to u(y) and
®(y — z). We thereby compute

/ u(y)Ad(y — z) — O(y — z)Au(y) dy
(24) ‘ "
= / U(y)g—f(y —z)—®(y — x)%(y) dS(y),
Ve

v denoting the outer unit normal vector on dV.. Recall next A®(z —y) =0
for = # y. We observe also

ou

Oy —z)—(y)dS < Ce™ ! max |®| =o(1
., 205w as) s (9] = o(1)

as € — 0. Furthermore the calculations in the proof of Theorem 1 show

8P
/8 b u(y) 5 (v — 2)dS(y) = ]laB(w’e)u(y) dS(y) — u(z)
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as € — 0. Hence our sending € — 0 in (24) yields the formula

wa) = [ 2= 050 - u)5, v - 2)dS0)

(25)
—/U<I>(y — z)Au(y) dy.

This identity is valid for any point z € U and any function u € C?(U).

Now formula (25) would permit us to solve for u(z) if we knew the
values of Au within U and the values of u,du/0v along OU. However, for
our application to Poisson’s equation with prescribed boundary values for u,
the normal derivative du/0v along AU is unknown to us. We must therefore
somehow modify (25) to remove this term.

The idea is now to introduce for fixed z a corrector function ¢* = ¢*(y),
solving the boundary-value problem
Ap® =0 in U
¢ =®(y—z) on OU.
Let us apply Green’s formula once more, to compute

) B Y
- [Fwaum = | ww)5-6) - w356 i)

~ [ un) ) ~ 2y~ 2) 5 (0) dS(0).

(26)

(27)

We introduce next this
DEFINITION. Green’s function for the region U is
G(z,y) =2y —2z)—¢"@) (z,yel z+y).

Adopting this terminology and adding (27) to (25), we find

@) @) =~ [ u)% @0)dse) - [ Cansu)dy (@ev)

where 50
5(% y) = DyG(z,y) - v(y)

is the outer normal derivative of G with respect to the variable y. Observe
that the term Ou/0v does not appear in equation (28): we introduced the
corrector ¢* precisely to achieve this.

Suppose now u € C?(U) solves the boundary-value problem

—Au=f inU
(29) { u=g¢g ondU,

for given continuous functions f, g. Plugging into (28), we obtain
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THEOREM 12 (Representation formula using Green’s function). If
u € C%(U) solves problem (29), then

(30) u<x>=—/wg<y>§fxyds + [ 100y @ev).

Here we have a formula for the solution of the boundary-value problem
(29), provided we can construct Green’s function G for the given domain U.
This is in general a difficult matter and can be done only when U has simple
geometry. Subsequent subsections identify some special cases for which an
explicit calculation of G is possible.

Interpreting Green’s function. Fix £ € U. Then regarding G as a
function of y, we may symbolically write

—AG=6, inU
G=0 ondU,

0 denoting the Dirac measure giving unit mass to the point z.

Before moving on to specific examples, let us record the general assertion
that G is symmetric in the variables z and y:

THEOREM 13 (Symmetry of Green’s function). For allz,y € U, z # y,
we have

G(y,z) = G(z,y).
Proof. Fix z,y € U, z #y. Write
v(z) := Gz, 2), w(z) :=G(y,z) (z€U).
Then Av(z) = 0 (2 # z), Aw(z) = 0 (z # y) and w = v = 0 on

OU. Thus our applying Green’s identity on V := U — [B(z, ) U B(y, ¢)] for
sufficiently small € > 0 yields

(31) / @w - B_wv dS(z) = / a—wv — @w dS(z),
8B(z,

v denoting the inward pointing unit vector field on 0B(z,e)UdB(y, e). Now
w is smooth near x, whence

vdS| < Ce™' sup |v|=o0(1) ase—0.
0B(x,e) 81/ 0B(z,e)
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On the other hand, v(z) = ®(z — z) — ¢”(2), where ¢ is smooth in U. Thus

d
lim @w dS = lim a—(m — 2)w(z)dS = w(z),
e=0 JoB(z,e) OV e=0 JaB(z,e) OV

by calculations as in the proof of Theorem 1. Thus the left-hand side of (31)
converges to w(z) as € — 0. Likewise the right-hand side converges to v(y).
Consequently

G(y,z) = w(z) =v(y) = G(z,). D

b. Green’s function for a half-space. In this and the next subsection
we will build Green’s functions for two regions with simple geometry, namely
the half-space R" and the unit ball B(0,1). Everything depends upon our
explicitly solving the corrector problem (26) in these regions, and this in
turn depends upon some clever geometric reflection tricks.

First let us consider the half-space
R} ={z = (z1,...,2z,) € R" | z, > 0}.

Although this region is unbounded, and so the calculations in the previous
section do not directly apply, we will attempt nevertheless to build Green’s
function using the ideas developed earlier. Later of course we must check
directly that the corresponding representation formula is valid.

DEFINITION. Ifz = (z1,...,Zn-1,%n) € RY, its reflection in the plane
OR" is the point
T = (xla -y Tp—1, _xn)'

We will solve problem (26) for the half-space by setting

¢*(y) =y —2) =2(y1 — 21,-- -, Yn-1 — Tn-1,Yn + Zn) (z,y € RY).

The idea is that the corrector ¢ is built from ® by “reflecting the singular-
ity” from z € R% to ¢ R. We note

¢“°(y) =@(y—=z) ifyedRy,
and thus
Ap® =0 in R%
¢® = ®(y —z) on ORT,

as required.
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DEFINITION. Green’s function for the half-space R"} is

Glz,y) =0@y—z)-2y—2) (z,y R}, z#y).

Then

Gyn (I’ y) = ¢yn (y o 37) _ Qyn (y - 57)
-1 yn_xn_yn‘l'xn
na(n) [ly —z[* |y -z

Consequently if y € OR”

oG 224 1
E(I’y) = -Gyn(x’ y) =

na(n) [z —y*
Suppose now u solves the boundary-value problem

(32) {Au=0 in R}

u=g on OR%}.

Then from (30) we expect

(33) we) = 2 [ Iy pery)

na(n) Jorn |z —y|"
to be a representation formula for our solution. The function

2z,

K(z,y) = (z € RY,y € ORY)

na(n) |z -y

is Poisson’s kernel for R, and (33) is Poisson’s formula.

We must now check directly that formula (33) does indeed provide us

with a solution of the boundary-value problem (32).

THEOREM 14 (Poisson’s formula for half-space). Assume g € C(R"1)N

L®(R™ 1Y), and define u by (33). Then
() we C=(RY) N LP(RY),
(i) Au=0 inR",
and
(iii) lim u(z) = g(z°)  for each point z° € OR®.

m—»wv?
$€R+



