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Proof. 1. For each fixed z, the mapping y — G(z,y) is harmonic, except

for y =z. As G(z,y) = G(y,z), x — G(z,y) is harmonic, except for z = y.

Thus z — —B%G:(w,y) = K(z,y) is harmonic for z € R%}, y € 0R’}.

2. A direct calculation, the details of which we omit, verifies

(34) 1= [ K(z,y)dy
8R™

for each z € R7. As g is bounded, u defined by (33) is likewise bounded.
Since z — K (z,y) is smooth for = # y, we easily verify as well u € C*°(R%),
with

Au(z) = -~ A K (z,y)9(y)dy =0 (z € RY).

3. Now fix 2° € OR7%, € > 0. Choose § > 0 so small that
(35) lgy) — 9(a°)| <& if Jy—a°| <6, ye R

Then if |z — 20| < %, z € R%,

K(z,y)[g(y) — 9(z")] dy
OR™

< / K (z,9)|g(y) — 9(2°)| dy
OR™ NB(x9,4)

[u(z) — 9(2°)] =

(36)
4 / K(z,9)l9() — 9(z°)| dy
OR™ —B(20,5)
=14+ J

Now (34), (35) imply

I<e K(z,y)dy =e.
ORT

Furthermore if |z — 20| < % and |y — 2°| > 6, we have
) 1
y— a0 <ly—al+3 <ly—al + ly ~ 2}
and so |y — z| > 3|y — 2°|. Thus
7 < 2glu [ K(z,y) dy
3]R1—B(:c0,6)

2n—|—2 oL
”g”L n / |y _ x0|—n dy
na(n) OR™ —B(z0,0)

—0 asz,— 0" .

<
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Combining this calculation with estimate (36), we deduce |u(z)—g(z%)| < 2¢,

provided |z — 20| is sufficiently small. O

c. Green’s function for a ball. To construct Green’s function for the
unit ball B(0, 1), we will again employ a kind of reflection, this time through
the sphere 0B(0,1).

DEFINITION. Ifxz e R™— {0}, the point

X

R

is called the point dual to x with respect to B(0,1). The mapping © — I
is inversion through the unit sphere 0B(0,1).

We now employ inversion through the sphere to compute Green’s func-
tion for the unit ball U = B%(0,1). Fix z € B%(0,1). Remember that we
must find a corrector function ¢* = ¢*(y) solving

Ag® =0 in B°(0,1)
(37) { ¢* = ®(y —z) on 0B(0,1);

then Green’s function will be

(38) G(z,y) = 2y — z) — ¢°(y).

The idea now is to “invert the singularity” from z € B%(0,1) to Z ¢
B(0,1). Assume for the moment n > 3. Now the mapping y — ®(y — %) is
harmonic for y # Z. Thus y — |z|>""®(y — Z) is harmonic for y # %, and so

(39) ¢*(y) == @(|z|(y — 7))

is harmonic in U. Furthermore, if y € 9B(0,1) and x # 0,

2y - x 1
20, =2 _ |2 2 <Y
ol = 312 = lo? (1o - 22 + 1)

=z’ -2 -z +1=|z—y®

Thus (|z||ly — Z|)~ 2 = |z — y|~"=2). Consequently

(40) ¢*(y) =2y —=z) (y€0B(0,1)),

as required.



40 2. FOUR IMPORTANT LINEAR PDE

DEFINITION. Green’s function for the unit ball is

(41) G(z,y) =@y —z)— ®(z|(y —Z)) (z,y € B(0,1), =z #y).

The same formula is valid for n = 2 as well.

Assume now u solves the boundary-value problem

{Au =0 in B%(0,1)

(42) w=g indB(,1).

Then using (30), we see

(43) wr) == [ s, wds)

According to formula (41),

Gy (2,y) = By (y — ) — @(|z](y — Z))y,-

But
B, (y— ) = 1 zi—yi
i na(n) [z — y*’
and furthermore
N -1 yilz|* -z 1 ylz)® — =
) — L= - _
(el = = ) Tely =)~ na) Jz— o

if y € 9B(0,1). Accordingly

J,’y) Zyz yzxy

= |x—y[" Zyz - yz|x| + z;)

-1 1—|zf?
na(n) |z —y|*

Hence formula (43) yields the representation formula

() = L212F 9w
(z) = /{9 dS(y).

na(n) Jago) Iz — yl"

Suppose now instead of (42) u solves the boundary-value problem

{ Au=0 in B%(0,r)

(44) u=g ondB(0,r)
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for r > 0. Then @(z) = u(rz) solves (42), with g(z) = g(rz) replacing g.
We change variables to obtain Poisson’s formula

,,,.2_ .’E2
(45)  ufe) = — 1 / IW)_450)) (@ € B0, r)).
o

na(n)r Japos) [T —yl™
The function

r2 — |3U|2 1

na(n)r |z —y|™

K(z,y) = (z € B°(0,7), y € 9B(0,7))

is Poisson’s kernel for the ball B(0,r).

We have established (45) under the assumption that a smooth solution
of (44) exists. We next assert that this formula in fact gives a solution:

THEOREM 15 (Poisson’s formula for ball). Assume g € C(0B(0,r)) and
define u by (45). Then

(i) ue C=(B%0,r)),
(ii) Au=0 in B°%(0,r),

and
(iii) lim u(zx) = g(z®) for each point z° € 8B(0,r).
:I:ECEB—O):(EO,T)

The proof is similar to that for Theorem 14 and is left as an exercise.
2.2.5. Energy methods.

Most of our analysis of harmonic functions thus far has depended upon
fairly explicit representation formulas entailing the fundamental solution,
Green’s functions, etc. In this concluding subsection we illustrate some
“energy” methods, which is to say techniques involving the L?-norms of
various expressions. These ideas foreshadow later theoretical developments
in Parts IT and III.

a. Uniqueness. Consider first the boundary-value problem

(46) {—Auzf inU

u=g¢g onJU.

We have already employed the maximum principle in §2.2.3 to show
uniqueness, but now we set forth a simple alternative proof. Assume U is
open, bounded, and U is C!.



42 2. FOUR IMPORTANT LINEAR PDE

THEOREM 16 (Uniqueness). There exists at most one solution u €
C?(U) of (46).

Proof. Assume % is another solution and set w :=u — %. Then Aw =0 in
U, and so an integration by parts shows

0:—/wAwd1:=/ |Dw|? dz.
U U

Thus Dw = 0 in U, and, since w = 0 on 0U, we deduce w = u — % =0 in
U. d

b. Dirichlet’s principle. Next let us demonstrate that a solution of the
boundary-value problem (46) for Poisson’s equation can be characterized as
the minimizer of an appropriate functional. For this, we define the energy
functional

1
Iw] := / ~|Dw|* — wf dz,
U 2
w belonging to the admissible set

A:={we C*U)|w=gondU}.

THEOREM 17 (Dirichlet’s principle). Assume u € C2(U) solves (46).
Then

(47) Iu] = 1r11}q€12 Iw].

Conversely, if u € A satisfies (47), then u solves the boundary-value problem
(46).

In other words if u € A, the PDE —Awu = f is equivalent to the statement
that v minimizes the energy I[-].

Proof. 1. Choose w € A. Then (46) implies

0= /U(—Au — ) w)da.

An integration by parts yields

Oz/UDu~D(u-w)—f(u—w)d:c,
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and there is no boundary term since u —w = g — g =0 on JU. Hence

/ |Du|2—ufd:c=/ Du-Dw—wfdzx
U U
1 2 1 2
< [ =|Du|*dz+ | =|Dw|*—wfdx,
U 2 U 2
where we employed the estimates
1 2, 1 2
|Du - Dw| < |Du||Dw| < §|Du| + §|Dw| :

following from the Cauchy-Schwarz and Cauchy inequalities (§B.2). Rear-
ranging, we conclude

(48) Iu] < I[w] (w € A).
Since u € A, (47) follows from (48).

2. Now, conversely, suppose (47) holds. Fix any v € C°(U) and write
i(r) :=Ifu+7v] (7 €R).

Since u+ 7v € A for each 7, the scalar function (-) has a minimum at zero,

and thus p
! _— /:—
0=0 ('=%).

provided this derivative exists. But
: 1 2
i(t) = | =|Du+7Dv|* — (u+ 7v)fdx
U 2
1 2 T 2
= §|Du| —|—7Du-Dv+?|Dv| — (u+7v)f dx.
U
Consequently
0 =4'(0) =/ Du-Dv—vfdr= / (—Au — flvdz.
U U

This identity is valid for each function v € C°(U) and so —Au = f in
U. O

Dirichlet’s principle is an instance of the calculus of variations applied
to Laplace’s equation. See Chapter 8 for more.



