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2.3. HEAT EQUATION
Next we study the heat equation

(1) u—Au =0
and the nonhomogeneous heat equation
(2) Ut — Ay = fa

subject to appropriate initial and boundary conditions. Here ¢ > 0 and
z € U, where U C R™ is open. The unknown is u : U x [0,00) —» R, u =
u(z,t), and the Laplacian A is taken with respect to the spatial variables z =
(Z1,.. ., &n): Au = Agu =Y 1" | Ug,q,. In (2) the function f : Ux[0,00) — R
is given.

A guiding principle is that any assertion about harmonic functions yields
an analogous (but more complicated) statement about solutions of the heat
equation. Accordingly our development will largely parallel the correspond-
ing theory for Laplace’s equation.

Physical interpretation. The heat equation, also known as the diffusion
equation, describes in typical applications the evolution in time of the density
u of some quantity such as heat, chemical concentration, etc. If V C U is
any smooth subregion, the rate of change of the total quantity within V
equals the negative of the net flux through oV:

i/uda::—/ F-vdS,
dt Jy P%

F being the flux density. Thus
(3) ur = —div F,

as V was arbitrary. In many situations F is proportional to the gradient
of u but points in the opposite direction (since the flow is from regions of
higher to lower concentration):

F=—-aDu (a>0).
Substituting into (3), we obtain the PDE
ut = adiv(Du) = aAu,

which for a = 1 is the heat equation.

The heat equation appears as well in the study of Brownian motion.
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2.3.1. Fundamental solution.

a. Derivation of the fundamental solution. As noted in §2.2.1 an
important first step in studying any PDE is often to come up with some
specific solutions.

We observe that the heat equation involves one derivative with respect
to the time variable ¢, but two derivatives with respect to the space vari-
ables z; (1 = 1,...,n). Consequently we see that if u solves (1), then so
does u(Az, A\?t) for A € R. This scaling indicates the ratio é (r = |z|) is
important for the heat equation and suggests that we search for a solution
of (1) having the form u(z,t) = v(%) = v(@) (t >0, z € R"), for some
function v as yet undetermined.

Although this approach eventually leads to what we want (see Problem

13), it is quicker to seek a solution u having the special structure

1 sz
(4) u(z,t) = prs (t_ﬂ> (zx € R", t > 0),
where the constants «, 8 and the function v : R — R must be found. We
come to (4) if we look for a solution u of the heat equation invariant under
the dilation scaling

u(z,t) — XNu(Nx, \t).

That is, we ask that
u(z,t) = A*u(N\z, At)

for all A > 0, z € R®, ¢t > 0. Setting A\ = t=}, we derive (4) for v(y) :=
u(y, 1).
Let us insert (4) into (1) and thereafter compute

(5) at= (et y(y) + gt~y Du(y) + 7 Av(y) = 0
for y := t7Pz. In order to transform (5) into an expression involving the
variable y alone, we take § = % Then the terms with ¢ are identical, and

so (5) reduces to
1
(6) av+§y-Dv+Av=0.

We simplify further by guessing v to be radial; that is, v(y) = w(|y|) for
some w : R — R. Thereupon (6) becomes

—1
n w =0,

1 / I
aw+ -rw +w +
2 T
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forr=|y|,’ = d%. Now if we set a = 7, this simplifies to read

1
(T‘n—lw/)/ + 5(rnw)/ —0.

Thus

. 1
r" Ly + 5r"w — g

for some constant a. Assuming lim,_,,w, w' = 0, we conclude a = 0,

whence
, 1
w = ——rw.
2

But then for some constant b
(7) w=be T.
|2

Combining (4), (7) and our choices for a, 3, we conclude that #6-7
solves the heat equation (1).

This computation motivates the following

DEFINITION. The function

1 _l=? .
é(x,t);z{We @ (zeR" t>0)
0 (z€eR", t<0)

is called the fundamental solution of the heat equation.

Notice that ® is singular at the point (0,0). We will sometimes write
®(x,t) = ®(|z|,t) to emphasize that the fundamental solution is radial in
the variable z. The choice of the normalizing constant (47)~™?2 is dictated
by the following

LEMMA (Integral of fundamental solution). For each time t > 0,

/ ®(z,t)dz = 1.

Proof. We calculate

1 |z|2
bz, t)de = ——— “ae d
/n (z,t) dz (Gmt) 2 /Rne i dx
1
= 7]-n/2/ e—IZI2 dz

1 o [ _e
= — e—zi dz - 1. D
7'l"n'/2 ZI:Il/—oo ’
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A different derivation of the fundamental solution of the heat equation
appears in §4.3.1.

b. Initial-value problem. We now employ ® to fashion a solution to the
initial-value (or Cauchy) problem

8 up —Au=0 in R" x (0,00)
(8) u=g¢ onR"x{t=0}.

Let us note that the function (z,t) — ®(z,t) solves the heat equation

away from the singularity at (0,0), and thus so does (z,t) — ®(z —y,t) for
each fixed y € R™. Consequently the convolution

u(w,t) = [ 2yt dy

(9) 1 lz—y|?
B (47Tt)n/2/R e” % g(y)dy (z€R", t>0)

should also be a solution.

THEOREM 1 (Solution of initial-value problem). Assume g € C(R™) N
L>®(R"™), and define u by (9). Then
(i) ue C®(R™ x (0,00)),
(i) ue(z,t) — Au(z,t) =0 (z € R" t>0),
and
(iii) lim  u(z,t) = g(z®) for each point z° € R™.

(z,t)—(z°,0)
zeR™, t>0

|z : . : : :
Proof. 1. Since the function t—nlﬁe_T is infinitely differentiable, with uni-

formly bounded derivatives of all orders, on R™ x [4, c0) for each § > 0, we
see that u € C*®(R" x (0,00)). Furthermore

w2, ) — Au(z, 1) = / (@0 — A@)(z — 3, D)9 () dy

n

=0 (zeR"t>0),

(10)

since @ itself solves the heat equation.

2. Fix 20 € R?, ¢ > 0. Choose § > 0 such that

(11) lg(y) —g(z°)| <e if ly—2°| <4, yeR™
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Then if |z — 20| < g, we have, according to the lemma,
(@) = 9@l = | | ®a=v.0l) ~9(a") o
<[ eyl - sl dy
B(0,9)

+ / B(z — y,t)|g(y) — 9(z°)| dy
R™—B(z9,4)

=1+ J.

Iga/ O(z —y,t)dy =&,

owing to (11) and the lemma. Furthermore, if |z — z°| < g and |y — 20| > 4,
then

5 1
Iy—ﬁhﬂy—ﬂ+§§w—ﬂ+5w—ﬂW

Thus |y — z| > 3|y — z°|. Consequently

J < 2||g]l 1 / (z — y,1) dy
R"— B(z0,3)

C _lz—y?
S e e dy
t R —B(x0,0)
C _ ly—z|?

e 16t dy

T "2 Jgrn_B(z0,6)

2 2
=C e_%dz—ﬂ) ast — 0T,
R™—B(z9,6 /\/1)

Hence if |z — 2% < § and ¢ > 0 is small enough, |u(z,t) — g(z°)| < 2e. O

Interpretation of fundamental solution. In view of Theorem 1 we
sometimes write

d, —ADd =0 in R™ x (0, 00)
d =Y Oanx{tZO},

do denoting the Dirac measure on R™ giving unit mass to the point 0.

Infinite propagation speed. Notice that if ¢ is bounded, continuous,
920, g%#0, then

1 _lz=yl?
u(z,t) = W/Rne & g(y)dy
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is in fact positive for all points x € R™ and times ¢ > 0. We interpret this
observation by saying the heat equation forces infinite propagation speed
for disturbances. If the initial temperature is nonnegative and is positive
somewhere, the temperature at any later time (no matter how small) is
everywhere positive. (We will learn in §2.4.3 that the wave equation in
contrast supports finite propagation speed for disturbances.)

c. Nonhomogeneous problem. Now let us turn our attention to the
nonhomogeneous initial-value problem

{ut—Au:f in R™ x (0, 00)

(12) u=0 onR" x {t =0}

How can we produce a formula for the solution? If we recall the moti-
vation leading up to (9), we should note further that the mapping (z,t) —
®(z—y,t—s) is a solution of the heat equation (for giveny € R, 0 < s < t).
Now for fixed s, the function

u:u(az,t;s):/nq)(m—y,t—s)f(y,s)dy

solves

(12,) {ut(-; s)—Au(;s) =0 in R™ x (s,00)

y u(;8) = f(-,s)  on R™ x {t = s},
which is just an initial-value problem of the form (8), with the starting time
t = 0 replaced by ¢t = s and g replaced by f(-,s). Thus u(-;s) is certainly
not a solution of (12).

However Duhamel’s principle® asserts that we can build a solution of
(12) out of the solutions of (125), by integrating with respect to s. The idea
is to consider

t
u(z,t) = / u(z,t;8)ds (x € R*, t > 0).
0

Rewriting, we have

w(z, 1) // (z— y,t— 9)f(y, s) dyds

:/0 (47r(t—s))n/2/R &5 f(y, ) dyds,

for x € R", t > 0.

To confirm that formula (13) works, let us for simplicity assume f €
C2(R™ x [0,00)) and f has compact support.

(13)

*Duhamel’s principle has wide applicability to linear ODE and PDE and does not depend
on the specific structure of the heat equation. It yields, for example, the solution of the nonho-
mogeneous transport equation, obtained by different means in §2.1.2. We will invoke Duhamel’s
principle for the wave equation in §2.4.2.
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THEOREM 2 (Solution of nonhomogeneous problem). Define u by (13).
Then
(i) ue C2(R™ x (0,00)),

(i) ue(z,t) — Au(z,t) = f(z,t) (xz €R™, ¢ >0),

and
(iii) lim  wu(z,t) =0 for each point z° € R™.
(,t)—(2°,0)
zeR™, t>0

Proof. 1. Since ¢ has a singularity at (0,0), we cannot directly justify
differentiating under the integral sign. We instead proceed somewhat as in
the proof of Theorem 1 in §2.2.1.

First we change variables, to write

u(wt) = [ t | o)1=y, — ) dyds.

As f € C#(R™ x [0,00)) has compact support and ® = ®(y, s) is smooth
near s =t > 0, we compute

ut(z,t) = /0 /n ®(y, s)fi(z —y,t — s) dyds
+ [ e —y,00dy

and
t
U’wz‘wj(x?t) :/ / q)(%s)fxi&‘j (1}— Yt — S) dyds (27] = 1,...,71).
0 n

Thus u¢, D2u, and likewise u, D u, belong to C(R™ x (0, 00)).

2. We then calculate
(14)

wiot) — (o) = [ [ 09D~ a1yt~ o) dyis
+ /Rn o(y,t)f(z —y,0) dy
= [ [ oo 2 81—yt ) dyas
[ ] w95 - A)se -yt o) dyds

+/ O(y,t)f(z —y,0)dy.
=I.+J:+ K.
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Now
(15) |17 < (Ifellz= + | D2fl ) / / 5) dyds < C,

by the lemma. Integrating by parts, we also find

I—//n ——A o (y, )]f(a:—y,t—s)dyds
+ [ ewere-ve-ody

(16) :

—/n@(y,t)f(:zr—y,O)dy

=/n Oy, e)f(z —y,t —e)dy — K,

since ® solves the heat equation. Combining (14)—(16), we ascertain
w(z,t) - Bu(a,t) =l [ 0(y,e)f(e -yt —e)dy
E— R'n,
= f(z,t) (z€R™ t>0),

the limit as € — 0 being computed as in the proof of Theorem 1. Finally
note [[u(:,t)||Le < t[|f]lLe — 0. O

Solution of homogeneous problem with general initial data. We
can of course combine Theorems 1 and 2 to discover that

A7) u(z,?) =/ ®(z —y,t)g dy+/ / (z —y,t—s)f(y,s) dyds
is, under the hypotheses on g and f as above, a solution of

(18) {ut—Auzf in R™ x (0, 00)

u=g¢ onR"x{t=0}.

2.3.2. Mean-value formula.

First we recall some useful notation from §A.2. Assume U C R" is open
and bounded, and fix a time 7" > 0.
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 ———

N

The region Up

Rn

DEFINITIONS.
(i) We define the parabolic cylinder

Ur == U x (0,T).
(ii) The parabolic boundary of Ur is

I :=Ur — Ur.

We interpret Ur as being the parabolic interior of U x [0, T): note care-
fully that Ur includes the top U x {t = T'}. The parabolic boundary I'r
comprises the bottom and vertical sides of U x [0, 7], but not the top.

We want next to derive a kind of analogue to the mean-value property for
harmonic functions, as discussed in §2.2.2. There is no such simple formula.
However let us observe that for fixed z the spheres 0B(x,r) are level sets of
the fundamental solution ®(z—y) for Laplace’s equation. This suggests that
perhaps for fixed (z,t) the level sets of fundamental solution ®(z — y,t — s)
for the heat equation may be relevant.

DEFINITION. For fitedx € R™, t € R, r > 0, we define

1
Btir) = {(n9) e R 5 <t @ pt-5) 2 |

rrn
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(x, t)

A “heat ball”

This is a region in space-time, the boundary of which is a level set of
®(z—y,t—s). Note that the point (x,t) is at the center of the top. E(z,t;r)
is sometimes called a “heat ball”.

THEOREM 3 (A mean-value property for the heat equation). Let u €
C2(Ur) solve the heat equation. Then

1 |z — y[?
19 u(z,t =—// u(y, s dyds
(19) @0 =g [[ w9 Gy

for each E(z,t;r) C Ur.

Formula (19) is a sort of analogue for the heat equation of the mean-value
formulas for Laplace’s equation. Observe that the right-hand side involves
only u(y, s) for times s < ¢t. This is reasonable, as the value u(z,t) should
not depend upon future times.

Proof. Shift the space and time coordinates so that x = 0 and t = 0. Upon
mollifying if necessary, we may assume u is smooth. Write E(r) = E(0,0;r)
and set

(20)

We compute

oy Iyl2 !y!2
¢ (r) = Zuyz 2 + 2rus— dyds
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Also, let us introduce the useful function
’ 2

(21) Y= —g log(—4ns) + Y nlogr

and observe ¥ = 0 on E(r), since ®(y,—s) = r~™ on OE(r). We utilize
(21) to write

1 n
=5 / - dus > " yithy, dyds

=1

1 n
=~ //E(T) dnust) + 42usyiyid) dyds;

=1

there is no boundary term since ¥ = 0 on JE(r). Integrating by parts with
respect to s, we discover

1 n
B = ) //E(T)—Alnusdz +4 Zuyiyiz,bs dyds

i=1

S // —4nustp + 4 En Uy, Yi — - |y[2 dyds
rntl E(r) ° — vigt 25  4s2
1 2N
= 1 e = 5 3 v =

Consequently, since u solves the heat equation,

#(r) = A+ B

1 21
= //E( —AnAuyp — s Zuyiyi dyds
- Z Pl / / Anuy, by, — Uy,yz dyds

= 0, according to (21).

Thus ¢ is constant, and therefore

. .1 )
¢(r) = lim é(t) = u(0,0) (lim == /./E‘(t) WS—L dyds) = 4u(0,0),

1 2 2
—n// |ylazds_// 17 s = 4.
t" JJE@W S E(1) S

We omit the details of this last computation. O

as



