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RN

Strong maximum principle for the heat equation

2.3.3. Properties of solutions.

a. Strong maximum principle, uniqueness. First we employ the mean-
value property to give a quick proof of the strong maximum principle.

THEOREM 4 (§trong maximum principle for the heat equation). Assume
u € C2(Ur) NC(Ur) solves the heat equation in Ur.
(i) Then

max u = max u.
UT I1T

(ii) Furthermore, if U is connected and there exists a point (xo,ty) € Ur
such that
u(zo, to) = maxu,
Ur
then
u is constant in Uy,.

Assertion (i) is the mazimum principle for the heat equation and (ii)
is the strong mazimum principle. Similar assertions are valid with “min”
replacing “max”.

Interpretation. So if u attains its mazimum (or minimum) at an interior
point, then u is constant at all earlier times. This accords with our strong
intuitive understanding of the variable ¢ as denoting time: the solution will
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be constant on the time interval [0,tp] provided the initial and boundary
conditions are constant. However, the solution may change at times t > tg,
provided the boundary conditions alter after t9. The solution will however
not respond to changes in boundary conditions until these changes happen.

Take note that whereas all this is obvious on intuitive, physical grounds,
such insights do not constitute a proof. The task is to deduce such behavior
from the PDE.

Proof. 1. Suppose there exists a point (zg, tg) € Ur with u(zo,tg) = M :=
maxg, u. Then for all sufficiently small r > 0, E(zo,to;7) C Ur; and we
employ the mean-value property to deduce

1 12
M ZU(.’L‘(),tO) = W/L( . )U(y, )%dyds < M
zo,to; T

Jzo — yI?
dyds.
47~n //E'(:I:o to;r) tO - 8)2 Y

Equality holds only if u is identically equal to M within E(zg,tp;r). Con-
sequently

since

u(y,s) =M for all (y,s) € E(xg,to;T).

Draw any line segment L in Ur connecting (zo, tp) with some other point
(yo, s0) € Ur, with sg < tg. Consider

ro := min{s > so | u(x,t) = M for all points (z,t) € L, s <t < tp}.

Since u is continuous, the minimum is attained. Assume rg > sg. Then
u(z0,79) = M for some point (z9,79) on LNUr and so u = M on E(zq,70;7)
for all sufficiently small > 0. Since E(zg, ro;7) contains LN {rg—o <t <
ro} for some small o > 0, we have a contradiction. Thus 79 = s¢, and hence
u=M on L.

2. Now fix any point z € U and any time 0 <t < ty. There exist points
{zo,z1,...,2m = x} such that the line segments in R” connecting z;_1 to z;
liein U fori = 1,...,m. (This follows since the set of points in U which can
be so connected to zp by a polygonal path is nonempty, open and relatively
closed in U.) Select times tg > t; > -+ > t,, = t. Then the line segments in
R™*! connecting (z;_1,%;_1) to (xi,t;) (i = 1,...,m) lie in Up. According
to step 1, u = M on each such segment and so u(z,t) = M. O
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Infinite propagation speed again. The strong maximum principle im-
plies that if U is connected and u € C?(Ur) N C(Ur) satisfies

us — Au=0 in Ur
u=0 ondU x[0,T]
u=g onUXx{t=0}

where g > 0, then u is positive everywhere within Ur if g is positive some-
where on U. This is another illustration of infinite propagation speed for
disturbances.

An important application of the maximum principle is the following
uniqueness assertion.

THEOREM 5 (Uniqueness on bounded domains). Let g € C(I'r), f €
C(Ur). Then there exists at most one solution u € C2(Ur) N C(Ur) of the
initial/boundary-value problem

ur—Au=f inUr
(22) { u=g onlyr.

Proof. If v and @ are two solutions of (22), apply Theorem 4 to w :=
+(u — ). O

We next extend our uniqueness assertion to the Cauchy problem, that
is, the initial-value problem for U = R™. As we are no longer on a bounded
region, we must introduce some control on the behavior of solutions for large
|z|.

THEOREM 6 (Maximum principle for the Cauchy problem). Suppose
u € C2(R™ x (0,T]) N C(R™ x [0,T]) solves

(23) {ut—Au:O in R™ x (0,7T)

u=g onR"x{t=0}
and satisfies the growth estimate

(24) u(z,t) < Ael® (z eR™ 0<t<T)
for constants A,a > 0. Then

sup u = supg.
R x[0,T] R™
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Proof. 1. First assume

(25) 40T < 1,
in which case
(26) 4a(T +¢) <1
for some € > 0. Fix y € R", u > 0, and define
- y ey
M@®~—M%O—(T+g_owfmm 5 (z€R™ ¢t>0).

A direct calculation (cf. §2.3.1) shows
ve—Av=0 inR" x (0,7].

Fix 7 > 0 and set U := B%(y,r), Ur = B%(y,r) x (0,T]. Then according to
Theorem 4,

(27) max v = max v.
UT I'r

2. Now if z € R",
z— 2
WSL(T&)
£ n
< u(z,0) = g(z);
and if |z —y| =7, 0<t <T, then

(28) v(z,0) = u(z,0) —

2

/'1/ T
v(z,t) = u(z,t) — Tie_ 0 e ITte—D
2
< Aedlal® _ H e THe—D) by (24)
B (T + e —t)n/2
r2
< Aea(lyl-l"")z _ Lecl(’f-}_g)
B (T +e)n/2 '

Now according to (26), m = a4y for some v > 0. Thus we may continue

the calculation above to find

(20)  w(m,t) < AW’ y(a(a +4))2e@ 0 < supg,
Rn

for r selected sufficiently large. Thus (27)—-(29) imply
v(y,t) <supg
Rn
for all y € R™, 0 <t < T, provided (25) is valid. Let u — 0.

3. In the general case that (25) fails, we repeatedly apply the result
above on the time intervals [0, Th], [T, 271, ], etc., for T} = %. O
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THEOREM 7 (Uniqueness for Cauchy problem). Let g € C(R"), f €

C(R™ x [0,T]). Then there ezists at most one solution u € C?(R™ x (0,7]) N

C(R™ x [0,T]) of the initial-value problem

(30) u—Au=f inR"x (0,7T)
u=g onR"x {t=0}

satisfying the growth estimate
(31) u(z,t)] < Ae?® (zeR™, 0<t<T)

for constants A, a > 0.

Proof. If u and @ both satisfy (30), (31), we apply Theorem 6 to w :=
+(u — ). O

Nonphysical solutions. There are in fact infinitely many solutions of

(32) u=0 onR"x {t=0}

{ut—Auzo in R™ x (0,7)
see for instance John [J2, Chapter 7]. Each of these solutions besides u = 0
grows very rapidly as |z| — oo.

There is an interesting point here: although u = 0 is certainly the “physi-
cally correct” solution of (32), this initial-value problem in fact admits other,
“nonphysical”, solutions. Theorem 7 provides a criterion which excludes the
“wrong” solutions. We will encounter somewhat analogous situations in our

study of Hamilton—-Jacobi equations and conservation laws, in Chapters 3,
10 and 11.

b. Regularity. We next demonstrate that solutions of the heat equation
are automatically smooth.

THEOREM 8 (Smoothness). Suppose u € CZ(Ur) solves the heat equa-
tion in Up. Then
u e COO(UT).

This regularity assertion is valid even if u attains nonsmooth boundary
values on I'p.

Proof. 1. Recall from §A.2 that we write

C’(:c,t;r):{(y,s) ‘ ’x_y’§T7 t—T‘2§S§t}
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(x0.,to)
/-_——— 0
\/b\\/

C,I
S ——
cl
S
C
L T
~ -

to denote the closed circular cylinder of radius r, height r2, and top center
point (z,t).

Fix (zo,t9) € Ur and choose r > 0 so small that C := C(xzg, to;7) C Ur.
Define also the smaller cylinders C’ := C(zo, to; 37), C” := C(zo,to; 37),
which have the same top center point (zg, to).

Choose a smooth cutoff function ¢ = {(z,t) such that
{OSCSI, (=1on(C,
¢ = 0 near the parabolic boundary of C.
Extend ¢ =0 in (R™ x [0,%0]) — C.
2. Assume temporarily that u € C°°(Ur) and set

v(z,t) = ((z, t)u(z,t) (x€R" 0<1t<ty).

Then
v = Cut + Gu, Av = (Au+ 2D - Du + uAd.
Consequently
(33) v=0 onR"x {t =0},
and
(34) vy — Av = Gu — 2D¢ - Du — uAl =: f

in R™ x (0,p). Now set

t
iat)i= [ [ @@=yt 975 dyds.
0 n
According to Theorem 2
(35) {vt—Agzg in R™ x (0,%g)
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Since |v], |9] < A for some constant A, Theorem 7 implies v = ¥; that is,

t ~
(36) v@t) = [ [ o= ut 7o) dyds.
Now suppose (z,t) € C”. As ( =0 off the cylinder C, (34) and (36) imply
) = @ - v s\ -A ) )
wat) = [ [ =t = [(Clon5) = Ao ))ulw.)

—2D((y, 5) - Du(y, s)] dyds.

Note in this equation that the expression in the square brackets vanishes in
some region near the singularity of ®. Integrate the last term by parts:

u@t) = [[ @e=pt= 909 + Aclw, )
+ 2Dy ®(z — y,t — s) - D¢(y, s)]u(y, s) dyds.

(37)

We have proved this formula assuming u € C°. If u satisfies only the
hypotheses of the theorem, we derive (37) with u® = 7, * u replacing u, 7,
being the standard mollifier in the variables x and ¢, and let € — 0.

3. Formula (37) has the form

(38) u(z, t) = / [ K@t ulws)dyds ((@.0) € C"),

where
K(z,t,y,s) =0 for all points (y, s) € C’,

since ( = 1 on C’. Note also K is smooth on C — C’. In view of expression
(38), we see u is C* within C” = C(zg, to; 37). O

c. Local estimates for solutions of the heat equation. Let us now
record some estimates on the derivatives of solutions to the heat equa-
tion, paying attention to the differences between derivatives with respect
tox; (i=1,...,n) and with respect to t.

THEOREM 9 (Estimates on derivatives). There ezists for each pair of

integers k,1 = 0,1,... a constant Cy; such that

C
k nl kl
Cloir/2) Dz Dyl < mllu”Ll(C(w,t;r))

for all cylinders C(z,t;r/2) C C(z,t;r) C Ur and all solutions u of the heat
equation in Ur.
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Proof. 1. Fix some point in Ur. Upon shifting the coordinates, we may
as well assume the point is (0,0). Suppose first that the cylinder C(1) :=
C(0,0;1) lies in Ur. Let C(%) = C’(0,0; %) Then, as in the proof of
Theorem 8,

u(z, ) = / /C | K@t s)uly ) duds ((@,0) € OG)

DN =

for some smooth function K. Consequently

IDEDlu(e, )| < [ IDIDAK (o, t,0,5)l[u(w, o) dyds
(39) c(1)

< Crillullzrycqy)
for some constant Cy;.

2. Now suppose the cylinder C(r) := C(0,0;7) lies in Ur. Let C(r/2) =
C(0,0;7/2). We rescale by defining

v(z,t) = u(rz, r’t).
Then v — Av = 0 in the cylinder C(1). According to (39),
|DEDiv(z,t)| < Cullvlimicqy ((z,t) € C(3)).

But DfDjv(z,t) = r***DgDju(rz, r?t) and |[v|lr1cqy) = mrzllull i c)-
Therefore

DN =

C
ki kil
gnax |DeDiul < grs lullz - -

If u solves the heat equation within Up, then for each time 0 < ¢t < T,
the mapping = — u(z,t) is analytic. (See Mikhailov [M].) However the
mapping t — u(z,t) is not in general analytic.

2.3.4. Energy methods.

a. Uniqueness. We investigate again the initial/boundary-value problem

(40) {ut—Au:f in Ur

u=g¢9 on 7.
We earlier invoked the maximum principle to show uniqueness and now—
by analogy with §2.2.5—provide an alternative argument based upon inte-
gration by parts. We assume as usual that U C R™ is open and bounded
and that OU is C!. The terminal time T' > 0 is given.
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THEOREM 10 (Uniqueness). There ezists only one solution u € C#(Ur)
of the initial/boundary-value problem (40).

Proof. 1. If u is another solution, w := u — @ solves

wg— Aw =0 1in Ur
(41) { w=0 onl7.
2. Set
() :/ w(z,t)dz (0<t<T).
U
Then
d
e(t) = 2 d = —
é(t) /wat x ( dt)
:2/ wAw dzx
U
= —2/ |Dw|?dz <0,
U
and so
e(t) <e(0)=0 (0<t<T).
Consequently w =u —u =0 in Ur. O

Observe that the foregoing is a time-dependent variant of the proof of
Theorem 16 in §2.2.5.

b. Backwards uniqueness. A rather more subtle question asks about
uniqueness backwards in time for the heat equation. For this, suppose u
and @ are both smooth solutions of the heat equation in Ur, with the same
boundary conditions on OU:

ug— Au=0 in Ur

(42) { u=g ondU x[0,T],
U — Au =0 in Ur

(43) { =g ondU x|[0,T],

for some function g. Note carefully that we are not supposing v = u at time
t=0.
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THEOREM 11 (Backwards uniqueness). Suppose u,% € C?(Ur) solve
(42), (43). If

u(z,T) =u(z,T) (ze€U),
then

u=u within Up.

In other words, if two temperature distributions on U agree at some time
T > 0 and have had the same boundary values for times 0 < t < T, then
these temperatures must have been identically equal within U at all earlier
times. This is not at all obvious.

Proof. 1. Write w := u — @ and, as in the proof of Theorem 10, set

e(t) := /Uwz(ac,t) dr (0<t<T).

As before
) 9 . d

(44) é(t) =—2 | |Dw|“dz =—].

U dt
Furthermore

é(t) = —4/ Dw - Dw; dx
U

(45) = 4/ Awwy dz

U

= 2 X .
—4 /U (Aw)?dz by (41)

Now since w = 0 on 9U,

/|Dw|2dx:—/wAwdx
U U

< (/U w? dx>1/2 (/U(Aw)2dx>1/2.

Thus (44) and (45) imply
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Hence
(46) é(t)e(t) > (e(t))? (0<t<T).

2. Now if e(t) = 0 for all 0 < t < T, we are done. Otherwise there exists
an interval [t1,t2] C [0, 7], with

(47) e(t) >0 fort; <t<ty e(tz)=0.

3. Now write
(48) f(t) :=loge(t) (t1 <t<ta).

Then

.. e e(t)?
Fo) =50 - 205 20 by as),

and so f is convex on the interval (¢;,t2). Consequently if 0 < 7 < 1,
t1 <t < tg, we have

f((l — T)tl + Tt) S (1 - T)f(tl) -+ Tf(t).

Recalling (48), we deduce

e((1 — 1)ty +7t) < e(t1) Te(t)T,

and so
0 <e((1 —7)t1 +7t2) <e(t1) " Te(ts)” (0<7<1).

But in view of (47) this inequality implies e(t) = 0 for all times t; <t < tg,
a contradiction. O

2.4. WAVE EQUATION

In this section we investigate the wave equation
(1) wy — Au =0
and the nonhomogeneous wave equation

(2) uy — Au = f,

subject to appropriate initial and boundary conditions. Here ¢ > 0 and
z € U, where U C R" is open. The unknown is u : U X [0,00) — R,
u = u(x,t), and the Laplacian A is taken with respect to the spatial variables



