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Hence
(46) é(t)e(t) > (e(t))? (0<t<T).

2. Now if e(t) = 0 for all 0 < t < T, we are done. Otherwise there exists
an interval [t1,t2] C [0, 7], with

(47) e(t) >0 fort; <t<ty e(tz)=0.

3. Now write
(48) f(t) :=loge(t) (t1 <t<ta).

Then

.. e e(t)?
Fo) =50 - 205 20 by as),

and so f is convex on the interval (¢;,t2). Consequently if 0 < 7 < 1,
t1 <t < tg, we have

f((l — T)tl + Tt) S (1 - T)f(tl) -+ Tf(t).

Recalling (48), we deduce

e((1 — 1)ty +7t) < e(t1) Te(t)T,

and so
0 <e((1 —7)t1 +7t2) <e(t1) " Te(ts)” (0<7<1).

But in view of (47) this inequality implies e(t) = 0 for all times t; <t < tg,
a contradiction. O

2.4. WAVE EQUATION

In this section we investigate the wave equation
(1) wy — Au =0
and the nonhomogeneous wave equation

(2) uy — Au = f,

subject to appropriate initial and boundary conditions. Here ¢ > 0 and
z € U, where U C R" is open. The unknown is u : U X [0,00) — R,
u = u(x,t), and the Laplacian A is taken with respect to the spatial variables
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z = (z1,...,Zn). In (2) the function f : U x [0, 00) — R is given. A common
abbreviation is to write
Ou = uy — Au.

We shall discover that solutions of the wave equation behave quite differ-
ently than solutions of Laplace’s equation or the heat equation. For example,
these solutions are generally not C*°, exhibit finite speed of propagation, etc.

Physical interpretation. The wave equation is a simplified model for a
vibrating string (n = 1), membrane (n = 2), or elastic solid (n = 3). In
these physical interpretations u(z,t) represents the displacement in some
direction of the point = at time ¢ > 0.

Let V represent any smooth subregion of U. The acceleration within V'

is then
i = [ e
— | udzx = Uy AT
a2 |, s

and the net contact force is

—/ F-vdS,
ov

where F' denotes the force acting on V' through 0V and the mass density is
taken to be unity. Newton’s law asserts that the mass times the acceleration

equals the net force:
/uttdx:—/ F-vdS.
1% av

This identity obtains for each subregion V' and so
uy = —divF.
For elastic bodies, F is a function of the displacement gradient Du, whence
ugt + div F(Du) = 0.
For small Du, the linearization F(Du) =~ —aDwu is often appropriate; and so
uy — alAu = 0.

This is the wave equation if a = 1.

This physical interpretation strongly suggests it will be mathematically
appropriate to specify two initial conditions, on the displacement u and the
velocity ug, at time t = 0.
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2.4.1. Solution by spherical means.

We began §82.2.1 and 2.3.1 by searching for certain scaling invariant
solutions of Laplace’s equation and the heat equation. For the wave equation
however we will instead present the (reasonably) elegant method of solving
(1) first for n = 1 directly and then for n > 2 by the method of spherical
means.

a. Solution for n = 1, d’Alembert’s formula. We first focus our atten-

tion on the initial-value problem for the one-dimensional wave equation in
all of R:

(3) { Ut — Ugz =0 in R x (0, 00)

u=g, uy=h onR x {t =0},

where g, h are given. We desire to derive a formula for « in terms of g and

h.

Let us first note that the PDE in (3) can be “factored”, to read
0 0 0 0
(4) <8_t+%> <a—%)U—utt—um—0

(5) v(z,t) = (% - %) u(z, t).

Then (4) says
ve(z,t) +vg(z,t) =0 (z €R, t>0).

This is a transport equation with constant coefficients. Applying formula
(3) from §2.1.1 (with n =1, b = 1), we find
(6) v(z,t) = alx —t)
for a(z) := v(z,0). Combining now (4)—(6), we obtain
ut(z,t) —ug(z,t) =a(z —t) inR x (0,00).

This is a nonhomogeneous transport equation; and so formula (5) from §2.1.2
(withn=1,b= -1, f(z,t) = a(z — t)) implies for b(z) := u(x,0) that

u(z, t) =/ alz+ (t—s) —s)ds+ bz +t)
(7) "

1 T+t

=5/ ewdr+be+o.
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We lastly invoke the initial conditions in (3) to compute a and b. The
first initial condition in (3) gives

b(z) =g(z) (z€R)
whereas the second initial condition and (5) imply
a(z) = v(z,0) = us(z,0) — uz(z,0) = h(z) — ¢'(z) (z € R).

Our substituting into (7) now yields

wm=3 [ + hy) — g'(4) dy+ 9(a + ).

Hence
T+t
® uwt)=;l@rrae—t)+g [ hw)dy @ek t20)

This is d’Alembert’s formula.

We have derived formula (8) assuming w is a (sufficiently smooth) solu-
tion of (3). We need to check that this really is a solution.

THEOREM 1 (Solution of wave equation, n = 1). Assume g € C%(R),
h € CY(R), and define u by d’Alembert’s formula (8). Then

(i) u e C*R x [0,00)),

(i) ug — uge =0 in R x (0, 00),

and
lim ,t) = 0y, lim  w(z,t) = h(z°
(iii) (w,t)_)(mo)o)U(w ) = g(z”) oo t(z,t) = h(z")
>0 >0

for each point z° € R.

The proof is a straightforward calculation.

Remarks. (i) In view of (8), our solution u has the form
u(z,t) = Flz+t)+ Gz —t)

for appropriate functions F' and G. Conversely any function of this form
solves uy —uz; = 0. Hence the general solution of the one-dimensional wave
equation is a sum of the general solution of u; — u; = 0 and the general
solution of u; + u, = 0. This is a consequence of the factorization (4). See
Problem 19.
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(ii) We see from (8) that if g € C* and h € C*~L, then u € C* but is not
in general smoother. Thus the wave equation does not cause instantaneous
smoothing of the initial data, as does the heat equation.

A reflection method. To illustrate a further application of d’Alembert’s
formula, let us next consider this initial/boundary-value problem on the
half-line Ry = {z > 0}:

Ugt — Ugy = 0 in Ry x (0, 00)
9) u=g, uu=h onRy x {t=0}
u=0 on {z =0} x(0,00),

where g, h are given, with g(0) = h(0) = 0.

We convert (9) into the form (3) by extending u, g, h to all of R by odd
reflection. That is, we set

o (umy (@20,t>0)
Wz, 1) := { —u(—z,t) (<0, t>0),
3 9(z) (z = 0)
o) = { —g(~2) Ex <0),
- B (x) z > 0)
i@ ={ " 0 weo
Then (9) becomes
{ ’ZLtt = '&/:Bx in R x (0, OO)
=g, 4s=h onRx {t=0)}.

Hence d’Alembert’s formula (8) implies

T+t

o) = slala+ ) +aa -0+ [ Hw)dy

Recalling the definitions of @, §, h above, we can transform this expression
to read for x > 0, t > 0:

(z+1t)+g(z—1t)] + 3 x+th( Ydy ifz>t>0

319
219
(10) wu(z,t) =
Slg(z +1¢t) — gt — 2)] Qfx;t_t Ydy if0<z<t.

If h = 0, we can understand formula (10) as saying that an initial dis-
placement g splits into two parts, one moving to the right with speed one
and the other to the left with speed one. The latter then reflects off the
point x = 0, where the vibrating string is held fixed.

Note that our solution does not belong to C?, unless ¢”(0) = 0. O
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b. Spherical means. Now suppose n > 2, m > 2, and u € C™(R"™ x
[0, 00)) solves the initial-value problem

(11) { Ut — Au=0 in R™ x (0, OO)

u=g, uy=h onR"x {t=0}.

We intend to derive an explicit formula for w in terms of g, h. The plan
will be to study first the average of u over certain spheres. These averages,
taken as functions of the time ¢t and the radius r, turn out to solve the
Euler—Poisson—Darboux equation, a PDE which we can for odd n convert
into the ordinary one-dimensional wave equation. Applying d’Alembert’s
formula, or more precisely its variant (10), eventually leads us to a formula
for the solution.

NOTATION. (i) Let z € R, t > 0, r > 0. Define
(12) Uz, t) = ][ u(y, t) dS(y),
0B(z,r)

the average of u(-,t) over the sphere 0B(z,r).
(ii) Similarly,

Gz;r) == ]laB(x’r)g(y) dS(y)

H(z;r) = ][6 h(y) dS(y).

B(z,r)

(13)

For fixed z, we hereafter regard U as a function of r and ¢ and discover
a partial differential equation that U solves:

LEMMA 1 (Euler-Poisson-Darboux equation). Fiz z € R", and let u
satisfy (11). Then U € C™(R4 x [0,00)) and

T

14) {Utt —Upr — 21U, =0 in Ry x (0,00)
UZG, UtzH 0nR+x{t:O}.

The partial differential equation in (14) is the Fuler—Poisson—Darbouz
equation. (Note that the term U,..+ "%1Ur is the radial part of the Laplacian
A in polar coordinates.)

Proof. 1. As in the proof of Theorem 2 in §2.2.2 we compute for 7 > 0

(15) Ur(z;rt) =~ Auly,t)dy.
n B(z,r)
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From this equality we deduce lim, g+ Ur(z;r,t) = 0. We next differentiate
(15), to discover after some computations that

1
(16) Urr(z57,8) = ][ AudS + (— - 1) Au dy.
dB(z,r) n B(z,r)

Thus lim, g+ Upr(z;7,t) = £ Au(z, t). Using formula (16), we can similarly
compute Uy, etc., and so verify that U € C™ (R4 x [0, 00)).

2. Continuing the calculation above, we see from (15) that
T

Ur = —][ ug dy by (11)
n B(z,r)

1 1 / d
= —Y u .
na(n) rn—1 B(z,r) w

Thus

and so

c. Solution for n = 3,2, Kirchhoff’s and Poisson’s formulas. The
plan in the ensuing subsections will be to transform the Euler—Poisson—
Darboux equation (14) into the usual one-dimensional wave equation. As
the full procedure is rather complicated, we pause here to handle the simpler
cases n = 3, 2, in that order.

Solution for n = 3. Let us therefore hereafter take n = 3, and suppose
u € C?(R3 x [0,00)) solves the initial-value problem (11). We recall the
definitions (12), (13) of U, G, H and then set

(17) U :=rU,

(18) G:=rG, H:=rH.

We now assert that U solves
~(~]tt~_UC'r :q in R+ X (0,00)
(19) U =aG, H onR; x {t=0}
0 on {r=0}x(0,00).

/t
U
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Indeed
Uy = rUy
2 .

=r [Urr + ;UT} by (14), with n =3

= rUpp + 2U, = (U + rU,), = Uy
Notice also that G,.(0) = 0. Applying formula (10) to (19), we find for
0<r<t

5 1 - 5 1 r+t
(20) Ulz;r,t) = 5[G(T+t)—G(t—r)]+§ H(y) dy.
—r+t

Since (12) implies u(z,t) = lim,_q+ U(z;7,t), we conclude from (17), (18),
(20) that

u(z,t) = lim Ul;r,t)
r—0+ T
|G+ -Gt—r) 1 [T
N rl—lgl'* 2r Z t—r H(y) dy
=G'(t) + H(¢t).
Owing then to (13), we deduce
o}
(21) u(z,t) = — t][ gdsS | + t][ hdS.
ot 8B(z,t) 8B(z,t)
But
f owdst)=f  gle+t2)dse),
8B(z,t) 0B(0,1)
and so

o ][ gdS :][ Dg(z +tz) - 2dS(2)
0t \ J 8B(z,t) 8B(0,1)

N ][GB(a:,t)Dg(y) . (3/ ; 96) 45)

Returning to (21), we therefore conclude

(22) u(e,t) = ][33( 1) +9)+ Do) (-2 dSw) (€, £>0)

This is Kirchhoff’s formula for the solution of the initial-value problem (11)
in three dimensions.
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Solution for n = 2. No transformation like (17) works to convert the
Euler—Poisson-Darboux equation into the one-dimensional wave equation
when n = 2. Instead we will take the initial-value problem (11) for n = 2
and simply regard it as a problem for n = 3, in which the third spatial
variable 3 does not appear.

Indeed, assuming u € C?(R? x [0, 00)) solves (11) for n = 2, let us write
(23) u(x1, x2, 23, t) = u(z1, T2, ).

Then (11) implies

= = . 3
(24) {utt Az =0 inR° x (0,00)

=g, s =h onR3x {t=0]},

for

9(z1, T2, 23) == g(21,72), h(z1, 2, %3) := h(z1, T2).
If we write £ = (z1,72) € R? and 2 = (z1,22,0) € R3, then (24) and
Kirchhoff’s formula (in the form (21)) imply

u(z,t) = u(z,t)

25 _ _
(25) = g t][ gdS | + t][ hdS,
ot 8B(z,) 8B(z,1)

where B(z,t) denotes the ball in R3 with center z, radius t > 0 and where
dS denotes two-dimensional surface measure on 0B(Z,t). We simplify (25)
by observing

—~ 1
gdS =— gdS
][ aB(az-,t)g 4mt? 8B(z,t)

2
= 1+ | Dy(y)[)Y/?
oy B(xyt)g(y)( + | Dy(y)|“)* dy,

where v(y) = (82 — |y — z|?)"/2 for y € B(z,t). The factor “2” enters
since OB(Z,t) consists of two hemispheres. Observe that (1 + |Dv|?)Y/2 =
t(t? — |y — z|?)~1/2. Therefore

w1 9(y)
dsS = — d
][ ( ,tjq 21t J (o) (82 — |y — z|2)1/2 Y

_t f 9(y) dy.

2) By (82 =y — =)/
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Consequently formula (25) becomes

10 [ 9(y)
ty==-— [t d
ula,t) m( / b @ —ly— a2 Y

(26) 2
+ i hy) dy.
2 J By (2 — |y — z|?)1/2

But ) ( L )

gz +tz

t2][ dy = t][ - dz,
Bla,t) ( |y—37| )1/2 B(o,1) (1 — |2]?)1/2

and so

0 9(y)
~ |t d
ot ( ][ :ct) $|2)1/2 y)
(x + tz) ][ Dg(xz +tz) - z
dz +t dz
][B(O 1 (1—1z?) (1-|2[2)1/2 B,y (1—|z?)1/2

9(y) ][ Dg(y) - (y — )
—t dy +t dy
]lB(:c,t) (t2 — |y — z|2)1/2 B(z) (2 — |y — x|2)1/2

Hence we can rewrite (26) and obtain the relation

1 t t2h tD 1y — 5

for x € R2, ¢t > 0. This is Poisson’s formula for the solution of the initial-
value problem (11) in two dimensions.

The trick of solving the problem for n = 3 first and then dropping to
n = 2 is the method of descent.

d. Solution for odd n. In this subsection we solve the Euler—Poisson—
Darboux PDE for odd n > 3. We first record some technical facts.

LEMMA 2 (Some useful identities). Let ¢ : R — R be C*¥*1. Then for
k=1,2,...

0) (&) (G4 (9m) = (R4)* (120,

(i) (24)" (rP*1g(r)) = Sohzg Brit 22 (r),
where the constants ﬁ]’? (j=0,...,k —1) are independent of ¢.

Furthermore,
(i) BF=1-3-5---(2k —1).
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The proof by induction is left as an exercise.

Now assume
n > 3 is an odd integer

and set
n=2k+1 (k>1).

Henceforth suppose u € C*T1(R™ x [0, 00)) solves the initial-value prob-
lem (11). Then the function U defined by (12) is C**1.

NOTATION. We write

r Or
(28) G(r) := (%%)k—l (r?*=1G(z; 1)) (r>0,t>0).
H(r):= (22)7 (- 1H ;7))
Then
(29) U(r,0) = G(r), Us(r,0) = H(r)

Next we combine Lemma 1 and the identities provided by Lemma 2 to
demonstrate that the transformation (28) of U into U in effect converts the
Euler—Poisson-Darboux equation into the wave equation.

LEMMA 3 (U solves the one-dimensional wave equation). We have
Ust

— U =0 inRy x (0,00)

G, U =H onRyx{t=0)}

~

U=0 on{r=0}x(0,00).

U

Proof. If r > 0,

(r**U,) by Lemma 2(i)
(P10, + 2kr?*2U,]

k—1
—1
lrzk—l (Urr + nTUr)} (n =2k + 1)

k

o Plo 9o Plo

N——r e N S
k‘
15

~1
(r*71Uy) = Uy,

o5
ﬁ
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the next-to-last equality holding according to (14). Using Lemma 2(ii) we
conclude as well that U = 0 on {r = 0}. O

In view of Lemma 3, (29), and formula (10), we conclude for 0 < r <t
that

t+r

(30) O(rt)= 3G +0) - G- +5 [ H)dy

t—r

for all » € R, t > 0. But recall u(z,t) = lim, o U(z;7,t). Furthermore
Lemma 2(ii) asserts

0(nt)::(%g;)k_lgzhacmxn;w)

k-1
= Zﬂfrj"'l 5 U(z;r,t),
7=0
and so _
lim U(:’ b _ lim U(z;r,t) = u(z, t).
r—0 ﬂor T—0
Thus (30) implies
u(z,t) = ilim Gli+r) —Glt—r) + 1 t+r1~{( ) d
e /86“ r—0 2r 2r Ji_, S

1 = =
= '+ HE).

Finally then, since n = 2k + 1, (30) and Lemma 2(iii) yield this repre-

sentation formula:
n—3
W) o) (]
— -— t" dS
(375 to ( aB(z,t)g
3
i (fl2j[ hdS)]
8B(z,t)

. wherenis oddand v, =1-3-5---(n — 2),

4
1
u(z,t) = —
Tn

(31)

4+
N\
o~ | =
SIS
N—
3
i

for x € R, t > 0.

We note that v3 = 1, and so (31) agrees for n = 3 with (21) and thus
with Kirchhoff’s formula (22).

It remains to check that formula (31) really provides a solution of (11).



