96 3. NONLINEAR FIRST-ORDER PDE

Example 5. Let H(p) = |p|?, h = 0 in Example 3 above. Then

u'(z,t;0) =z - a — tla|?
We calculate the envelope by setting D,u’ = x — 2ta = 0. Hence a = 251
and so )
v(z,t) =z - ——t’%’ —‘ (z eR™ t>0)

solves the Hamilton—Jacobi equation v; + \Dv’ 2 =0. a

Remark. It is tempting to believe that once we can find as above a solution
of (1) depending on an arbitrary function h, we have found all the solutions
of (1). But this need not be so. Suppose our PDE has the structure

F(Du,u,z) = FA(Du,u, z)F>(Du,u,z) = 0.

If ui(z, a) is a complete integral of the PDE F;(Du,u, z) = 0 and we succeed
in finding a general integral corresponding to any function h, we will still
have missed all the solutions of the PDE Fy(Du,u,z) = 0.

3.2. CHARACTERISTICS

3.2.1. Derivation of characteristic ODE.

We return to our basic nonlinear first-order PDE
(1) F(Du,u,z) =0 in U,
subject now to the boundary condition
(2) u=g onl,

where I' C OU and g : I" — R are given. We hereafter suppose that F, g are
smooth functions.

We develop next the method of characteristics, which solves (1), (2) by
converting the PDE into an appropriate system of ODE. This is the plan.
Suppose u solves (1), (2) and fix any point z € U. We would like to calculate
u(z) by finding some curve lying within U, connecting z with a point z° € T
and along which we can compute u. Since (2) says u = g on I', we know
the value of u at the one end z°. We hope then to be able to calculate u all
along the curve, and so in particular at x.
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Finding the characteristic ODE. How can we choose a path in U so all
this will work? Let us suppose the curve is described parametrically by the
function x(s) = (z!(s),...,z"(s)), the parameter s lying in some subinterval
I CR. Assuming u is a C? solution of (1), we define also

3) 2(s) := u(x(s))-

In addition, set

(4) p(s) := Du(x(s));
that is, p(s) = (p'(s),...,p"(s)), where
(5) P(s) = tny(x(s) (i=1,...,m).

So z(-) gives the values of u along the curve and p(-) records the values of
the gradient Du. We must choose the function x(-) in such a way that we
can compute z(-) and p(-).

For this, first differentiate (5):

©) (s) = ;u o)) (= 1)

This expression is not too promising, since it involves the second derivatives
of u. On the other hand, we can also differentiate the PDE (1) with respect
to z;:

n
(7) Z Fp, (Du,u, £)Ug,z; + Fo(Du,u, 2)uz; + Fr,(Du,u,z) = 0.
j=1

We are able to employ this identity to get rid of the second derivative terms
in (6), provided we first set

(8) i (s) = Fp, (p(s), 2(5),%(s)) (G=1,...,n).

Assuming now (8) holds, we evaluate (7) at z = x(s), obtaining thereby
from (3), (4) the identity:

Z ;(P(8), 2(8), x(8)) uz,z; (%(5))

+ Fy(p(s), 2(5), x(5))p" (5) + Fa,(p(5), 2(5), x(5)) = 0.
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Substitute this expression and (8) into (6):

Finally we differentiate (3):
(10)  z(s) = Zux (x(s))37(s) = > p/(s)Fp, (p(s), 2(5), %(s)),

the second equality holding by (5) and (8).

The characteristic equations. We summarize by rewriting equations
(8)—(10) in vector notation:

(a) p(s) = =Dz F(p(s), 2(s),x(s)) — DF(p(s), 2(s), x(s))p(s)
(11) (b) 2(s) = DpF(p(s), 2(
(c) x(s) = DpF(p(s), 2(s),x(s))-

Furthermore,

(12) F(p(s), 2(s),x(s)) = 0.
These identities hold for s € I.

The important system (11) of 2n + 1 first-order ODE comprises the
characteristic equations of the nonlinear first-order PDE (1). The functions
p() = (P(),...,p"()), 2(-), x(*) = (z'(-),...,z"(*)) are called the charac-
teristics. We will sometimes refer to x(-) as the projected characteristic: it
is the projection of the full characteristics (p(-), 2(+),x(+)) C R?"*1 onto the
physical region U C R™.

We have proved:

THEOREM 1 (Structure of characteristic ODE). Let u € C?(U) solve
the nonlinear, first-order partial differential equation (1) in U. Assume x(-)
solves the ODE (11)(c), where p(-) = Du(x(")), z(-) = u(x(-)). Then p(-)
solves the ODE (11)(a) and z(-) solves the ODE (11)(b), for those s such
that x(s) € U.

We still need to discover appropriate initial conditions for the system
of ODE (11), in order that this theorem be useful. We accomplish this in
§3.2.3 below.
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Remark. The characteristic ODE are truly remarkable in that they form
an exact system of equations for x(-), z(-) = u(x(:)), and p(-) = Du(x(-)),
whenever u is a smooth solution of the general nonlinear PDE (1). The
key step in the derivation is our setting x = D,F', so that—as explained
above—the terms involving second derivatives drop out. We thereby obtain
closure and in particular are not forced to introduce ODE for the second
and higher derivatives of w.

3.2.2. Examples.

Before continuing our investigation of the characteristic equations (11),
we pause to consider some special cases for which the structure of these
equations is especially simple. We illustrate as well how we can sometimes
actually solve the characteristic ODE and thereby explicitly compute solu-
tions of certain first-order PDE, subject to appropriate boundary conditions.

a. F linear. Consider first the situation that our PDE (1) is linear and
homogeneous and thus has the form

(13) F(Du,u,z) = b(z) - Du(z) + c(z)u(z) =0 (z € U).
Then F(p,z,z) = b(z) - p + c(z)z, and so
D,F = b(z).
In this circumstance equation (11)(c) becomes
(14) %(s) = b(x(s)),

an ODE involving only the function x(-). Furthermore equation (11)(b)
becomes

(15) 2(s) = b(x(s)) - p(s).

Then equation (12) simplifies (15), yielding

(16) 2(s) = —c(x(s))2(s)-

This ODE is linear in z(-), once we know the function x(-) by solving (14).
In summary,

- (@ Ko=)

(b)  2(s) = —c(x(s))z(s)

comprise the characteristic equations for the linear, first-order PDE (13).
(We will see later that the equation for p(-) is not needed.) O
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Example 1. We demonstrate the utility of equations (17) by explicitly
solving the problem

(18)

T1Ugy, — T2Ug, =u In U
u=g¢g onl,

where U is the quadrant {z; > 0,22 > 0} and "' = {z; > 0,22 = 0} C 9U.
The PDE in (18) is of the form (12), for b = (—x2, ;) and ¢ = —1. Thus
the equations (17) read

(19)

Accordingly we have

where z0 > 0, 0 < s < Z. Fix a point (x1,22) € U. We select s > 0,
2% > 0 so that (z1,z2) = (z1(s),2%(s)) = (z°cos s,2"sin s). That is, 20 =

1
(z% + 23)'/2, s = arctan (i—f) . Therefore

u(z) = u(z(s), 2(s)) = 2(s) = g(a) ¢ = g((a? + 23) /%) " (5)

d

b. F quasilinear. The partial differential equation (1) is quasilinear should
it have the form

(20) F(Du,u,z) = b(z,u(z)) - Du(x) + c¢(z,u(x)) = 0.
In this circumstance F(p, z,z) = b(z, 2) - p + ¢(z, z), whence
D,F = b(z, 2).
Hence equation (11)(c) reads
X(S) = b(x(s)’z(s))’
and (11)(b) becomes
2(s) = b(x(s),2(s)) - p(s) = —c(x(s), 2(s)), by (12).
Consequently

o (@ o) i)l

(b)  2(s) = —c(x(s), 2(s))
are the characteristic equations for the quasilinear first-order PDE (20).
(Once again we do not require the equation for p(-).) O
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Example 2. The characteristic ODE (21) are in general difficult to solve,
and so we work out in this example the simpler case of a boundary-value
problem for a semilinear PDE:

(22)

Ug, + Uz, = u? in U
u=g¢g onl.

Now U is the half-space {z2 > 0} and ' = {zg = 0} = OU. Here b = (1,1)
and ¢ = —z2. Then (21) becomes

{;;%:1, 2 =1

5 = 22

Consequently

z(s) = 2 5 = L)

1-520 7 1-sg(z9)’

zi(s) = 20+ s, 2%(s) = s
{

where 20 € R, s > 0, provided the denominator is not zero.

Fix a point (z1,22) € U. We select s > 0 and z° € R so that (z1,z2) =
(z'(s),z%(s)) = (z° + s, 5); that is, 2° = z1 — 72, s = z2. Then

— alalls). 22(s)) = z{s} — g(mo) _ g(z1 — x2)
u(e) = (' (5),2%(s)) = 2(5) = {20y = T gy

This solution of course makes sense only if 1 — zog(z1 — z2) # 0. O

c. F fully nonlinear. In the general case, we must integrate the full
characteristic equations (11), if possible.

Example 3. Consider the fully nonlinear problem

(23) {uxluwz =u inU

u=2z% onT,
where U = {z; > 0}, I' = {z; = 0} = 0U. Here F(p, z,x) = p1p2 — 2, and

hence the characteristic ODE (11) become

pt =p', p* =p°
7 = 2pip?
=p?, &% =pl.

We integrate these equations to find
21(s) = pY(e° — 1), 2%(s)
2(s) = 27+ pip3(e* — 1)
p'(s) = pie®, p*( °

V)
~

I

3
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where z° € R, s € R, and 20 = (1:0)2.

We must determine p® = (p?,p9). Since u = 2% on T, pY = u,,(0,2°) =
220. Furthermore the PDE uz, ug, = u itself implies pdp = 20 = (2°)?, and
so pd = 2 Consequently the formulas above become

1 2 q y

zi(s) = 220(e® — 1), 2%(s) = 3’23(63 +1)
2(s) = (a9)2e*
pl(s) = Z-¢€°, p?(s) = 220",

Fix a point (z1,z2) € U. Select s and 20 so that (z1,z2) = (z1(s), 2%(s))
= (220(e® - 1), 3’23(65 + 1)). This equality implies z° = —4“’24—“, e’ = Ziffﬁfv
and so

(x1 + 43:2)2

u(z) = u(@ (s),7%(s)) = 2(s) = (a°)?e* =

3.2.3. Boundary conditions.

We return now to developing the general theory and intend in the sec-
tion following to invoke the characteristic ODE (11) actually to solve the
boundary-value problem (1), (2), at least in a small region near an appro-
priate portion I' of OU.

a. Straightening the boundary. To simplify subsequent calculations,
it is convenient first to change variables, so as to “flatten out” part of the
boundary OU. To accomplish this, we first fix any point 20 € AU. Then
utilizing the notation from §C.1, we find smooth mappings ¢, ¥ : R — R"
such that ¥ = &1 and ® straightens out U near z°. (See the illustration
in §C.1.)

Given any function u: U — R, let us write V := ®(U) and set

(24) v(y) = u(¥(y) eV).
Then
(25) u(z) =v(®(z)) (ze€l).

Now suppose that u is a C! solution of our boundary-value problem (1), (2)
in U. What PDE does v then satisfy in V7

According to (25), we see
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that is,
Du(z) = Duv(y)D®(x).

Thus (1) implies
(26)  F(Du(y)D®(¥(y)),v(y), ¥(y)) = F(Du(),u(),z) = 0.
This is an expression having the form
G(Dv(y),v(y),y) =0 in V.
In addition v = h on A, where A := ®(T") and h(y) := g(¥(y)).

In summary, our problem (1), (2) transforms to read

G(Dwv, v, y) inV
= h on A,
for G, h as above. The point is that if we change variables to straighten out

the boundary near z°, the boundary-value problem (1), (2) converts into a,
problem having the same form.

(27)

b. Compatibility conditions on boundary data. In view of the fore-
going computations, if we are given a point z° € T, we may as well assume
from the outset that T is flat near z°, lying in the plane {z, = 0}.

We intend now to utilize the characteristic ODE to construct a solution
(1), (2), at least near z°, and for this we must discover appropriate initial
conditions

(28) p(0) =", 2(0) = 2", x(0) ==".

Now clearly if the curve x(-) passes through z°, we should insist that
(29) 2 = 4(a°).

What should we require concerning p(0) = p°? Since (2) implies
u(z1, ...y 1,0) = g(z1,...,Tn_1) near z°, we may differentiate to find

Ug, (%) = g5, (z%) (G =1,...,n—1).

As we also want the PDE (1) to hold, we should therefore insist p? =
(pY,...,pY) satisfies these relations:

p?zgzi(xo) (i:1,...,n—1)
(30) 0.0 .0
F(p”,2°,2") =0.
These identities provide n equations for the n quantities p° = (p[l), e pg).

We call (29) and (30) the compatibility conditions. A triple (p, 2%, 2°) €
R27+L verifying (29), (30) is admissible. Note 2° is uniquely determined
by the boundary condition and our choice of the point z°, but a vector p°
satisfying (30) may not exist or may not be unique.
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c. Noncharacteristic boundary data. So now assume as above that
2% € T, that T near z° lies in the plane {z, = 0}, and that the triple
(p°, 20, 2°%) is admissible. We are planning to construct a solution u of (1),

(2) in U near z° by integrating the characteristic ODE (11). So far we

have ascertained x(0) = 20, z(0) = 2°, p(0) = p° are appropriate boundary

conditions for the characteristic ODE, with x(-) intersecting I" at z°. But
we will need in fact to solve these ODE for nearby initial points as well
and must consequently now ask if we can somehow appropriately perturb
(p°, 20, 2%, keeping the compatibility conditions.

In other words, given a point ¥y = (y1,...,yn—-1,0) € ', with y close to

20, we intend to solve the characteristic ODE

(a) p(s) = —DzF(p(s), z(s),x(s)) — D-F(p(s), z(s), x(s))p(s)
(31) (b) 2(s) = DpF(p(s), 2(s),x(s)) - p(s)
(c) x(s) = DpF(p(s), 2(s),x(s)),
with the initial conditions
(32) p(0) =qa(y), 2(0) = g(y), x(0) =y.
Our task then is to find a function q(-) = (¢*(),...,q"(*)), so that
(33) q(z’) = p’

and (q(y), 9(y),y) is admissible; that is, the compatibility conditions

{ qi(y):gwi(y) (i:17"'7n_1>
F(a(y),g9(y),y) =0
hold for all y € T close to z°.

(34)

LEMMA 1 (Noncharacteristic boundary conditions). There ezists a unique
solution q(-) of (33), (34) for all y € T sufficiently close to z°, provided

(35) E,.(p°, 2%, 2% # 0.

We say the admissible triple (p°, 20, z0) is noncharacteristic if (35) holds.
We henceforth assume this condition.

Proof. Our problem is to find ¢"(y) so that

F(a(y), 9(v),y) =0,

where ¢*(y) = g4, (y) fori = 1,...,n—1. Since F(p, 2%, z°) = 0, the Implicit
Function Theorem (§C.7) implies we can indeed locally and uniquely solve
for ¢"(y), provided that the noncharacteristic condition (35) is valid. O
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General noncharacteristic condition. If I' is not flat near z°, the con-
dition that I" be noncharacteristic reads

(36) D,F(p°, 2%, 2°%) - v(z°) # 0,

v(z") denoting the outward unit normal to U at z°. See Problem 7.

3.2.4. Local solution.

Remember that our aim is to use the characteristic ODE to build a
solution u of (1), (2), at least near I'. So as before we select a point 2° € T
and, as shown in §3.2.3, may as well assume that near z° the surface I is flat,
lying in the plane {z,, = 0}. Suppose further that (p°, 2%, z°) is an admissible
triple of boundary data, which is noncharacteristic. According to Lemma 1
there is a function q(-) so that p® = q(z%) and the triple (q(y), g(y),%) is
admissible, for all y sufficiently close to .

Given any such point y = (y1,...,Yn—1,0), we solve the characteristic
ODE (31), subject to initial conditions (32).

NOTATION. Let us write
p(s) =pP(Y;s) =P(¥1,---,Yn-1,5)
z(s) = 2(y,s) = z2(y1, - - -, Yn-1, 5)
x(s) = x(y,s) =x(¥1,---,Yn-1,5)

to display the dependence of the solution of (31), (32) on s and y. Also, we
will henceforth when convenient regard z° as lying in R?~!. O

LEMMA 2 (Local invertibility). Assume we have the noncharacteristic
condition Fp, (p°,2°,2%) # 0. Then there exist an open interval I C R
containing 0, a neighborhood W of z° in T C R*, and a neighborhood V
of z¥ in R™, such that for each x € V there exist unique s € I, y € W such
that

z =x(y,s).

The mappings x — s,y are C2.

Proof. We have x(z°,0) = z°. Consequently the Inverse Function Theorem
(§C.6) gives the result, provided det Dx(z°,0) # 0. Now

x(y,0) = (y,0) (y€TD);
andsoifi=1,...,n—1,

; di; (U=1,...,n—-1)
J (20 — J R
2y, (z ’0)_{ 0 (j=n).



