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In particular we can identify the parameter s with the time {. Equation
(11)(a) for the case at hand reads

{. f"g;:aﬂwi(p(s),x(s)) (i=1,...,n)
pn 1 s) = 0;

the equation (11)(b) is

2(s) = DpH(p(s),x(s)) - p(s) + p"*1(s)
= DpH(p(s),x(s)) - p(s) — H(p(s), x(s)).

In summary, the characteristic equations for the Hamilton—Jacobi equation
are

(a) p(s) = —D-H(p(s),x(

(64) (b) 2(s) = DpH (p(s), %(s)) -
(¢)  x(s) = DpH(p(s),x(s))

) - )=

for p(-) = (p(-),- -, p"()), 2(-), and x(
The first and third of these equalities,

{ x = DpH(p, x)
p - _DxH(p7X)7

are called Hamilton’s equations. We will discuss these ODE and their rela-
tionship to the Hamilton—Jacobi equation in much more detail, just below
in §3.3. Observe that the equation for z(-) is trivial, once x(-) and p(-) have
been found by solving Hamilton’s equations. O

s))
p(s) — H(p(s),%(s))

(@'(),- -5 2"())-

(65)

As for conservation laws (Example 5), the initial-value problem for the
Hamilton—-Jacobi equation does not in general have a smooth solution u
lasting for all times t > 0.

3.3. INTRODUCTION TO HAMILTON-JACOBI
EQUATIONS

In this section we study in some detail the initial-value problem for the
Hamilton—Jacobi equation:

(1) {ut-l—H(Du):O in R™ x (0, o0)

u=g onR"x {t=0}.
Here u : R™ x [0,00) — R is the unknown, v = u(z, t), and Du = Dyu =
(Ugyy---, Uz, ). We are given the Hamiltonian H : R™ — R and the initial
function g : R™ — R.
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Our goal is to find a formula for an appropriate weak or generalized
solution, existing for all times ¢ > 0, even after the method of characteristics
has failed.

3.3.1. Calculus of variations, Hamilton’s ODE.

Remember from §3.2.5 that two of the characteristic equations associated
with the Hamilton—Jacobi PDE

ut + H(Du,z) =0
are Hamilton’s ODE .
{ x = DpH(p,x)
p = —DmH(p,X),

which arise in the classical calculus of variations and in mechanics. (Note
the z-dependence in H here.) In this section we recall the derivation of
these ODE from a variational principle. We will then discover in §3.3.2 that
this discussion contains a clue as to how to build a weak solution of the
initial-value problem (1).

a. The calculus of variations. Assume that L : R™ x R®™ — R is a given
smooth function, hereafter called the Lagrangian.

NOTATION. We write
L=L(v,z)=L(v1,-..,Vn,Z1,...,%n) (v,z€R")
and
{ DyL = (Ly, ---Ly,)
DL = (Lg - Lyg,).

Thus in the formula (2) below “v” is the name of the variable for which
we substitute w(s), and “z” is the variable for which we substitute w(s).
g

Now fix two points z,y € R™ and a time t > 0. We introduce then the
action functional

@) )= [ L wonds (=),

defined for functions w(:) = (w!(-),w?(:),...,w™(-)) belonging to the ad-
missible class

A= {w(-) € C*([0,t];R™) | w(0) = y, w(t) = z}.
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wi(.)

x(-)

A problem in the calculus of variations

Thus a C? curve w(-) lies in A if it starts at the point y at time 0 and
reaches the point = at time t.

A basic problem in the calculus of variations is to find a curve x(-) € A
satisfying

© Ix()] = min Iiw()

That is, we are asking for a function x(-) which minimizes the functional
I[-] among all admissible candidates w(-) € A.

We assume next that there in fact exists a function x(-) € A satisfying
our calculus of variations problem and will deduce some of its properties.

THEOREM 1 (Euler-Lagrange equations). The function x(-) solves the
system of Euler-Lagrange equations

()~ (DuL(k(s), x())) + DoL(%(s), x(s)) =0 (0< s <)

This is a vector equation, consisting of n coupled second-order equations.

Proof. 1. Choose asmooth functiony : [0,t] — R™, y(-) = (4*(-),...,y™(-)),
satisfying

(5) y(0) =y(¢t) =0,
and define for 7 € R
(6) w() :=x()+7y().

Then w(-) € A and so
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Thus the real-valued function
io(r) = I[x() + 1y ()]

has a minimum at 7 = 0, and consequently

) ‘=0 ("=4).

provided 4’(0) exists.

2. We explicitly compute this derivative. Observe

iW:AL@@+W@J@+W@M&

and so

/(1) = / ZLU% (X + 7Y,z +7Y)Y + Lo, (X + 7y, 2 + 7Yy ds.
0 1=1

Set 7 = 0 and remember (7):

/ZLlexy + Lg, (%,x)y ds.

We recall (5) and then integrate by parts in the first term inside the integral,
to discover

0= ZZ; /Ot [—dii (Ly, (%,%)) + Lz, (%,%) | " ds.

This identity is valid for all smooth functions y(-) = (y!(-),...,y"(-)) satis-
fying the boundary conditions (5), and so for 0 < s <t

—di(Lvi(k,x))—l—in(ic,x):O (i=1,...n). 0
S

Critical points. We have just demonstrated that any minimizer x(-) € A
of I[-] solves the Euler-Lagrange system of ODE. It is of course possible
that a curve x(-) € A may solve the Euler-Lagrange equations without
necessarily being a minimizer: in this case we say x(-) is a critical point of
I[-]. So every minimizer is a critical point, but a critical point need not be
a minimizer.
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Example. If L(v,z) = 3m|v|> — ¢(z), where m > 0, the corresponding
Euler-Lagrange equation is

mX(s) = £(x(s))

for f := —D¢. This is Newton’s law for the motion of a particle of mass m
moving in the force field f generated by the potential ¢. (See Feynman-—
Leighton—Sands [F-L-S, Chapter 19].) O

b. Hamilton’s equations. We now transform the Euler-Lagrange equa-
tions, a system of n second-order ODE, into Hamilton’s equations, a system
of 2n first-order ODE. We hereafter assume the C? function x(-) is a critical
point of the action functional and thus solves the Euler-Lagrange equations

(4)-

First we set

(8) P(s) == DyL(x(s),x(s)) (0<s<1);

p(-) is called the generalized momentum corresponding to the position x(-)
and velocity x(-). We next make this important hypothesis:

Suppose for all z,p € R™ that the equation
b= DvL(U, 37)

can be uniquely solved for v as a smooth

(9)
function of p and z, v = v(p, z).

We will examine this assumption in more detail later: see §3.3.2.
DEFINITION. The Hamiltonian H associated with the Lagrangian L is
H(p,z) :=p-v(p,z) - L(v(p,z),z) (p,z € R"),

where the function v(-) is defined implicitly by (9).

Example (continued). The Hamiltonian corresponding to the Lagrangian
L(v,z) = tm|v|> — ¢(z) is

H(p,7) = 5 |pl* + 6(z).

The Hamiltonian is thus the total energy, the sum of the kinetic and potential
energies (whereas the Lagrangian is the difference between the kinetic and
potential energies). O

Next we rewrite the Euler-Lagrange equations in terms of p(-),x(-):
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THEOREM 2 (Derivation of Hamilton’s ODE). The functions x(-) and
p(-) satisfy Hamilton’s equations:

{ X(s) = DpH (p(s),x(s))

P(s) = =D H(p(s),x(s))
for 0 < s <t. Furthermore,

the mapping s — H(p(s),x(s)) is constant.

(10)

The equations (10) comprise a coupled system of 2n first-order ODE for
x(-) = (@*(),...,2"(-)) and p(-) = (p*(-),-..,p"(-)) (defined by (8)).
Proof. First note from (8) and (9) that x(s) = v(p(s),x(s)).

Let us hereafter write v(-) = (v(:),...,v"(:)). We compute for i =
1,...,n that
Hy,(p,x Zpk'vx (p,2) = Ly (v(p, 2), 2)v5, (p, ©) — Lz, (V(p, 7), 7)

= —Lmi( ,x) according to (9)

and

Hpi (p> = U + Zpkv p7 (V(pa 3?), 37)”;];1- (p,:l?)

='(p,z), again by (9).
Thus _ .
Hp,(p(s),x(s)) = v*(p(s),x(s)) = 2*(s),
and likewise
Ha (p(5), %(5)) = —La, (v(p(s), %(5)), X(5)) = — L, (%(s), x(s))
d

= (Lw, (%x(s),%(s))) according to (4)

= —#'(9).
Finally, observe

d - o f .
- H(p,x) =) Hp,(p,X)p" + Ha, (p,x)2
=1
- ZH P, X Iz(p7 )) + Hxi(p’x)Hpi(pax) = 0.

g

See Arnold [Ar1, Chapter 9] for more on Hamilton’s ODE and Hamilton—
Jacobi PDE in classical mechanics. We are employing here different notation
than is customary in mechanics: our notation is better overall for PDE the-
ory.
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3.3.2. Legendre transform, Hopf-Lax formula.

Now let us try to find a connection between the Hamilton—Jacobi PDE
and the calculus of variations problem (2)—(4). To simplify further, we also
drop the z-dependence in the Hamiltonian, so that afterwards H = H(p).
We start by reexamining the definition of the Hamiltonian in §3.3.1.

a. Legendre transform. We hereafter suppose the Lagrangian L : R™" —
R satisfies these conditions:

(11) the mapping v — L(v) is convex
and
L
(12) lim L(v) = +o00.
fol—oo [v]

The convexity implies L is continuous.

DEFINITION. The Legendre transform of L is

(13) L*(p) := qseungl{p -v—L(v)} (peR").

This is also referred to as the Fenchel transform.

Motivation for Legendre transform. Why do we make this definition?
For some insight let us note in view of (12) that the “sup” in (13) is really
a “max”; that is, there exists some v* € R" for which

L*(p)=p-v* = L(v")

and the mapping v — p-v — L(v) has a maximum at v = v*. But then p =
DL(v*), provided L is differentiable at v*. Hence the equation p = DL(v)
is solvable (although perhaps not uniquely) for v in terms of p, v* = v(p).
Therefore

L*(p) = p-v(p) — L(v(p)).

However, this is almost exactly the definition of the Hamiltonian H asso-
ciated with L in §3.3.1 (where, recall, we are now assuming the variable z
does not appear). We consequently henceforth write

(14) H=L"

Thus (13) tells us how to obtain the Hamiltonian H from the Lagrangian L.

Now we ask the converse question: given H, how do we compute L7
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THEOREM 3 (Convex duality of Hamiltonian and Lagrangian). Assume
L satisfies (11), (12) and define H by (13), (14).

(i) Then
the mapping p — H(p) is conver
and =
lim M = 400
lpl—oo ||
(ii) Furthermore
(15) L=H"

Thus H is the Legendre transform of L, and vice versa:
L=H" H=L".

We say H and L are dual convex functions. The identity (15) implies that
the three statements

p-v=L(v) + H(p)
(16) p=DL(v)
v = DH(p)
are equivalent provided H is differentiable at p and L is differentiable at v:
see Problem 11.

Proof. 1. For each fixed v, the function p — p-v — L(v) is linear; and
consequently the mapping

p— H(p)=L"(p) = Useungl{p ‘v —L(v)}

is convex. Indeed, if 0 <7 <1, p,p € R™, we have
H(rp+ (1 —7)p) =sup{(rp+ (1 —7)p) -v — L(v)}
< 7sup{p-v— L(v)}
=) sl L)
=7H(p)+ (1 —7)H(p).
2. Fix any A > 0, p # 0. Then

H(p) = vseullgl{p v — L(v)}
Py oy 2P

> Alp| — L L.
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Thus lim inf|p|_,oo % > X for all A > 0.

3. In view of (14)
H(p)+ L(v) 2 p-v

for all p,v € R™, and consequently

L(v) > :;HEL{P v —H(p)} = H*(v).

On the other hand

H*(v) = sup{p-v— sup{p-r— L(r)}}

peR™ reRn”
= sup inf {p-(v—r)+ L(r)}.
peRn TER™

Now since v — L(v) is convex, according to §B.1 there exists s € R™ such
that
L(ry> L(v)+s-(r—v) (reR").

(If L is differentiable at ¢, take s = DL(v).) Putting p = s above, we
compute
H*(v) > inf {s-(v—r)+ L(r)} = L(v). O

reRn

b. Hopf-Lax formula. Let us now return to the initial-value problem (1)
for the Hamilton—Jacobi equation and conclude from (64) in §3.2.5 that the
corresponding characteristic equations are

The first and third of these are Hamilton’s ODE, which we in §3.3.1 derived
from a minimization problem for associated Lagrangian L = H*. Remem-
bering (16), we can therefore understand the second of the characteristic
equations as asserting

= DH(p) -p— H(p) = L(X).

But at least for such short times that (1) has a smooth solution u, we have
z(t) = u(x(t), t) and consequently

u(z, t) = /0 L(x(s)) ds + g(x(0)).
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Our intention is to modify this expression, to make sense even for large
times t > 0 when (1) does not have a smooth solution. The variational
principle for the action discussed in §3.3.1 provides the clue. Given x € R™
and t > 0, we therefore propose to minimize among curves w(-) satisfying
w(t) = z the expression

/0 L(w(s))ds + g(w(0)),

which is the action augmented with the value of the initial data. We ac-
cordingly now define

07) ety { [ L) s +ow(0) | w) =2}

the infimum taken over all C! functions w(-). (Better justification for this
guess will be provided much later, in Chapter 10.)

We must investigate the sense in which the function u given by (17)
actually solves the initial-value problem for the Hamilton—Jacobi PDE:

(18) ut + H(Du) =0 in R™ x (0, 00)
u=g onR"”x{t=0}.

Recall we are assuming H is smooth,

(19) H(p)

lim =+ = 4o0.

{ H is convex and
lpl oo P

We henceforth suppose also

(20) g:R™ — R is Lipschitz continuous;

this means Lip(g) := supz yer» {Ig(Ti:Zl(y)l} < oo.
TF#Y
First we note that formula (17) can be simplified:

THEOREM 4 (Hopf-Lax formula). Ifz € R™ andt > 0, then the solution
u = u(z,t) of the minimization problem (17) is

(21) u(z,t) = min {tL <ﬂ) + g(y)}.

yERn t

DEFINITION. We call the expression on the right-hand side of (21) the
Hopf-Lax formula.
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Proof. 1. Fix any y € R™ and define w(s) := y+ 3(z —y) (0 < s < ¢).
Then the definition (17) of u implies

et < [ L) ds + o) =e2 (252 +o0)

u(z,t) < inf {tL (x - y) n g(y)} .

2. On the other hand, if w(-) is any C?! function satisfying w(t) = z, we

" L(; / w(s)ds) < ¢ / L(¥(s)) ds

by Jensen’s inequality (§B.1). Thus if we write y = w(0), we find

and so

o (S7Y) +aw < | " L(w(s)) ds + o)

t

and consequently

e {12 (257 a0} < o).

3. We have so far shown

u(z,t) = inf {tL (x - y) T g(y)} ,

and leave it as an exercise to prove that the infimum above is really a
minimum. d

We now commence a study of various properties of the function u defined
by the Hopf-Lax formula (21). Our ultimate goal is showing this formula
provides a reasonable weak solution of the initial-value problem (18) for the
Hamilton—Jacobi equation.

First, we record some preliminary observations.

LEMMA 1 (A functional identity). For each x € R™ and 0 < s < t, we
have

(22) w(z,t) = min {(t —$)L (”; - y) +u(y,s)}.

yeR™ — S8

In other words, to compute u(-,t), we can calculate u at time s and then
use u(+, s) as the initial condition on the remaining time interval [s, t].



