Proof. 1. Fix $y \in \mathbb{R}^n$, 0 < s < t and choose $z \in \mathbb{R}^n$ so that

(23)
$$u(y,s) = sL\left(\frac{y-z}{s}\right) + g(z).$$

Now since L is convex and $\frac{x-z}{t} = \left(1 - \frac{s}{t}\right) \frac{x-y}{t-s} + \frac{s}{t} \frac{y-z}{s}$, we have

$$L\left(\frac{x-z}{t}\right) \le \left(1 - \frac{s}{t}\right)L\left(\frac{x-y}{t-s}\right) + \frac{s}{t}L\left(\frac{y-z}{s}\right).$$

Thus

$$u(x,t) \le tL\left(\frac{x-z}{t}\right) + g(z) \le (t-s)L\left(\frac{x-y}{t-s}\right) + sL\left(\frac{y-z}{s}\right) + g(z)$$
$$= (t-s)L\left(\frac{x-y}{t-s}\right) + u(y,s),$$

by (23). This inequality is true for each $y \in \mathbb{R}^n$. Therefore, since $y \mapsto u(y, s)$ is continuous (according to the first part of the proof Lemma 2 below), we have

(24)
$$u(x,t) \le \min_{y \in \mathbb{R}^n} \left\{ (t-s)L\left(\frac{x-y}{t-s}\right) + u(y,s) \right\}.$$

2. Now choose w such that

(25)
$$u(x,t) = tL\left(\frac{x-w}{t}\right) + g(w),$$

and set $y := \frac{s}{t}x + \left(1 - \frac{s}{t}\right)w$. Then $\frac{x-y}{t-s} = \frac{x-w}{t} = \frac{y-w}{s}$. Consequently

$$\begin{split} (t-s)L\left(\frac{x-y}{t-s}\right) + u(y,s) \\ & \leq (t-s)L\left(\frac{x-w}{t}\right) + sL\left(\frac{y-w}{s}\right) + g(w) \\ & = tL\left(\frac{x-w}{t}\right) + g(w) = u(x,t), \end{split}$$

by (25). Hence

(26)
$$\min_{y \in \mathbb{R}^n} \left\{ (t-s)L\left(\frac{x-y}{t-s}\right) + u(y,s) \right\} \le u(x,t).$$

LEMMA 2 (Lipschitz continuity). The function u is Lipschitz continuous in $\mathbb{R}^n \times [0, \infty)$, and

$$u = g$$
 on $\mathbb{R}^n \times \{t = 0\}.$

Proof. 1. Fix t > 0, $x, \hat{x} \in \mathbb{R}^n$. Choose $y \in \mathbb{R}^n$ such that

(27)
$$tL\left(\frac{x-y}{t}\right) + g(y) = u(x,t).$$

Then

$$u(\hat{x},t) - u(x,t) = \min_{z} \left\{ tL\left(\frac{\hat{x}-z}{t}\right) + g(z) \right\} - tL\left(\frac{x-y}{t}\right) - g(y)$$

$$\leq g(\hat{x}-x+y) - g(y) \leq \text{Lip}(g)|\hat{x}-x|.$$

Hence

$$u(\hat{x},t) - u(x,t) \le \text{Lip}(g)|\hat{x} - x|;$$

and, interchanging the roles of \hat{x} and x, we find

$$|u(x,t) - u(\hat{x},t)| \le \operatorname{Lip}(g)|x - \hat{x}|.$$

2. Now select $x \in \mathbb{R}^n$, t > 0. Choosing y = x in (21), we discover

$$(29) u(x,t) \le tL(0) + g(x).$$

Furthermore,

$$\begin{split} u(x,t) &= \min_{y \in \mathbb{R}^n} \left\{ tL\left(\frac{x-y}{t}\right) + g(y) \right\} \\ &\geq g(x) + \min_{y \in \mathbb{R}^n} \left\{ -\operatorname{Lip}(g)|x-y| + tL\left(\frac{x-y}{t}\right) \right\} \\ &= g(x) - t \max_{z \in \mathbb{R}^n} \{\operatorname{Lip}(g)|z| - L(z)\} \quad \left(z = \frac{x-y}{t}\right) \\ &= g(x) - t \max_{w \in B(0,\operatorname{Lip}(g))} \max_{z \in \mathbb{R}^n} \{w \cdot z - L(z)\} \\ &= g(x) - t \max_{B(0,\operatorname{Lip}(g))} H. \end{split}$$

This inequality and (29) imply

$$|u(x,t) - g(x)| \le Ct$$

for

(30)
$$C := \max(|L(0)|, \max_{B(0, \text{Lip}(g))} |H|).$$

3. Finally select $x \in \mathbb{R}^n$, $0 < \hat{t} < t$. Then $\operatorname{Lip}(u(\cdot,t)) \leq \operatorname{Lip}(g)$ by (28) above. Consequently Lemma 1 and calculations like those employed in step 2 above imply

$$|u(x,t) - u(x,\hat{t})| \le C|t - \hat{t}|$$

for the constant C defined by (30).

Now Rademacher's Theorem (which we will prove later, in §5.8.3) asserts that a Lipschitz function is differentiable almost everywhere. Consequently in view of Lemma 2 our function u defined by the Hopf–Lax formula (21) is differentiable for a.e. $(x,t) \in \mathbb{R}^n \times (0,\infty)$. The next theorem asserts u in fact solves the Hamilton–Jacobi PDE wherever u is differentiable.

THEOREM 5 (Solving the Hamilton–Jacobi equation). Suppose $x \in \mathbb{R}^n$, t > 0, and u defined by the Hopf–Lax formula (21) is differentiable at a point $(x,t) \in \mathbb{R}^n \times (0,\infty)$. Then

$$u_t(x,t) + H(Du(x,t)) = 0.$$

Proof. 1. Fix $v \in \mathbb{R}^n$, h > 0. Owing to Lemma 1,

$$u(x + hv, t + h) = \min_{y \in \mathbb{R}^n} \left\{ hL\left(\frac{x + hv - y}{h}\right) + u(y, t) \right\}$$

$$< hL(v) + u(x, t).$$

Hence

$$\frac{u(x+hv,t+h)-u(x,t)}{h} \le L(v).$$

Let $h \to 0^+$, to compute

$$v \cdot Du(x,t) + u_t(x,t) \le L(v).$$

This inequality is valid for all $v \in \mathbb{R}^n$, and so

(31)
$$u_t(x,t) + H(Du(x,t)) = u_t(x,t) + \max_{v \in \mathbb{R}^n} \{v \cdot Du(x,t) - L(v)\} \le 0.$$

The first equality holds since $H = L^*$.

2. Now choose z such that $u(x,t)=tL\left(\frac{x-z}{t}\right)+g(z)$. Fix h>0 and set $s=t-h,\,y=\frac{s}{t}x+\left(1-\frac{s}{t}\right)z$. Then $\frac{x-z}{t}=\frac{y-z}{s}$, and thus

$$u(x,t) - u(y,s) \ge tL\left(\frac{x-z}{t}\right) + g(z) - \left[sL\left(\frac{y-z}{s}\right) + g(z)\right]$$
$$= (t-s)L\left(\frac{x-z}{t}\right).$$

That is,

$$\frac{u(x,t) - u(\left(1 - \frac{h}{t}\right)x + \frac{h}{t}z, t - h)}{h} \ge L\left(\frac{x - z}{t}\right).$$

Let $h \to 0^+$, to see that

$$\frac{x-z}{t} \cdot Du(x,t) + u_t(x,t) \ge L\left(\frac{x-z}{t}\right).$$

Consequently

$$u_t(x,t) + H(Du(x,t)) = u_t(x,t) + \max_{v \in \mathbb{R}^n} \{v \cdot Du(x,t) - L(v)\}$$

$$\geq u_t(x,t) + \frac{x-z}{t} \cdot Du(x,t) - L\left(\frac{x-z}{t}\right)$$

$$\geq 0.$$

This inequality and (31) complete the proof.

We summarize:

THEOREM 6 (Hopf-Lax formula as solution). The function u defined by the Hopf-Lax formula (21) is Lipschitz continuous, is differentiable a.e. in $\mathbb{R}^n \times (0, \infty)$, and solves the initial-value problem

(32)
$$\begin{cases} u_t + H(Du) = 0 & a.e. \ in \ \mathbb{R}^n \times (0, \infty) \\ u = g & on \ \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

3.3.3. Weak solutions, uniqueness.

a. Semiconcavity. In view of Theorem 6 above it may seem reasonable to define a weak solution of the initial-value problem (18) to be a Lipschitz function which agrees with g on $\mathbb{R}^n \times \{t=0\}$ and solves the PDE a.e. on $\mathbb{R}^n \times (0,\infty)$. However this turns out to be an inadequate definition, as such weak solutions would not in general be unique.

Example. Consider the initial-value problem

(33)
$$\begin{cases} u_t + |u_x|^2 = 0 & \text{in } \mathbb{R} \times (0, \infty) \\ u = 0 & \text{on } \mathbb{R} \times \{t = 0\}. \end{cases}$$

One obvious solution is

$$u_1(x,t)\equiv 0.$$

However the function

$$u_2(x,t) := \left\{ egin{array}{ll} 0 & ext{if} & |x| \geq t \ x-t & ext{if} & 0 \leq x \leq t \ -x-t & ext{if} & -t \leq x \leq 0 \end{array}
ight.$$

is Lipschitz continuous and also solves the PDE a.e. (everywhere, in fact, except on the lines $x=0,\pm t$). It is easy to see that actually there are infinitely many Lipschitz functions satisfying (33).

This example shows we must presumably require more of a weak solution than merely that it satisfy the PDE a.e. We will look to the Hopf–Lax formula (21) for a further clue as to what is needed to ensure uniqueness. The following lemma demonstrates that u inherits a kind of "one-sided" second-derivative estimate from the initial function g.

LEMMA 3 (Semiconcavity). Suppose there exists a constant C such that

(34)
$$g(x+z) - 2g(x) + g(x-z) \le C|z|^2$$

for all $x, z \in \mathbb{R}^n$. Define u by the Hopf-Lax formula (21). Then

$$u(x+z,t) - 2u(x,t) + u(x-z,t) \le C|z|^2$$

for all $x, z \in \mathbb{R}^n$, t > 0.

We say g is semiconcave provided (34) holds. It is easy to check that (34) is valid if g is C^2 and $\sup_{\mathbb{R}^n} |D^2g| < \infty$. Note that g is semiconcave if and only if the mapping $x \mapsto g(x) - \frac{C}{2}|x|^2$ is concave for some constant C.

Proof. Choose $y \in \mathbb{R}^n$ so that $u(x,t) = tL\left(\frac{x-y}{t}\right) + g(y)$. Then, putting y+z and y-z in the Hopf-Lax formulas for u(x+z,t) and u(x-z,t), we find

$$\begin{split} u(x+z,t) - 2u(x,t) + u(x-z,t) \\ & \leq \left[tL\left(\frac{x-y}{t}\right) + g(y+z) \right] - 2\left[tL\left(\frac{x-y}{t}\right) + g(y) \right] \\ & + \left[tL\left(\frac{x-y}{t}\right) + g(y-z) \right] \\ & = g(y+z) - 2g(y) + g(y-z) \\ & \leq C|z|^2, \quad \text{by (34)}. \end{split}$$

As a semiconcavity condition for u will turn out to be important, we pause to identify some other circumstances under which it is valid. We will no longer assume g to be semiconcave but will suppose the Hamiltonian H to be uniformly convex.

DEFINITION. A C^2 convex function $H: \mathbb{R}^n \to \mathbb{R}$ is called uniformly convex (with constant $\theta > 0$) if

(35)
$$\sum_{i,j=1}^{n} H_{p_i p_j}(p) \xi_i \xi_j \ge \theta |\xi|^2 \quad \text{for all } p, \xi \in \mathbb{R}^n.$$

We now prove that even if g is not semiconcave, the uniform convexity of H forces u to become semiconcave for times t > 0: this is a kind of mild regularizing effect for the Hopf-Lax solution of the initial-value problem (18).

LEMMA 4 (Semiconcavity again). Suppose that H is uniformly convex (with constant θ) and u is defined by the Hopf-Lax formula (21). Then

$$u(x+z,t) - 2u(x,t) + u(x-z,t) \le \frac{1}{\theta t}|z|^2$$

for all $x, z \in \mathbb{R}^n$, t > 0.

Proof. 1. We note first using Taylor's formula that (35) implies

(36)
$$H\left(\frac{p_1+p_2}{2}\right) \le \frac{1}{2}H(p_1) + \frac{1}{2}H(p_2) - \frac{\theta}{8}|p_1-p_2|^2.$$

Next we claim that for the Lagrangian L we have the estimate

(37)
$$\frac{1}{2}L(v_1) + \frac{1}{2}L(v_2) \le L\left(\frac{v_1 + v_2}{2}\right) + \frac{1}{8\theta}|v_1 - v_2|^2$$

for all $v_1, v_2 \in \mathbb{R}^n$. Verification is left as an exercise.

2. Now choose y so that $u(x,t) = tL\left(\frac{x-y}{t}\right) + g(y)$. Then using the same value of y in the Hopf–Lax formulas for u(x+z,t) and u(x-z,t), we calculate

$$\begin{split} u(x+z,t) - 2u(x,t) + u(x-z,t) \\ & \leq \left[tL\left(\frac{x+z-y}{t}\right) + g(y) \right] - 2\left[tL\left(\frac{x-y}{t}\right) + g(y) \right] \\ & + \left[tL\left(\frac{x-z-y}{t}\right) + g(y) \right] \\ & = 2t\left[\frac{1}{2}L\left(\frac{x+z-y}{t}\right) + \frac{1}{2}L\left(\frac{x-z-y}{t}\right) - L\left(\frac{x-y}{t}\right) \right] \\ & \leq 2t\frac{1}{8\theta} \left| \frac{2z}{t} \right|^2 \leq \frac{1}{\theta t} |z|^2, \end{split}$$

the next-to-last inequality following from (37).

b. Weak solutions, uniqueness. In this section we show that semi-concavity conditions of the sorts discovered for the Hopf-Lax solution u in Lemmas 3 and 4 can be utilized as uniqueness criteria.

DEFINITION. We say that a Lipschitz continuous function $u : \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$ is a weak solution of the initial-value problem:

(38)
$$\begin{cases} u_t + H(Du) = 0 & in \ \mathbb{R}^n \times (0, \infty) \\ u = g & on \ \mathbb{R}^n \times \{t = 0\} \end{cases}$$

provided

(a)
$$u(x,0) = g(x) \quad (x \in \mathbb{R}^n),$$

(b)
$$u_t(x,t) + H(Du(x,t)) = 0$$
 for a.e. $(x,t) \in \mathbb{R}^n \times (0,\infty)$,

and

(c)
$$u(x+z,t) - 2u(x,t) + u(x-z,t) \le C(1+\frac{1}{t})|z|^2$$

for some constant $C \geq 0$ and all $x, z \in \mathbb{R}^n$, t > 0.

Next we prove that a weak solution of (38) is unique, the key point being that this uniqueness assertion follows from the *inequality* condition (c).

THEOREM 7 (Uniqueness of weak solutions). Assume H is C^2 and satisfies (19) and g satisfies (20). Then there exists at most one weak solution of the initial-value problem (38).

Proof*. 1. Suppose that u and \tilde{u} are two weak solutions of (38) and write $w := u - \tilde{u}$.

Observe now that at any point (y, s) where both u and \tilde{u} are differentiable and solve our PDE, we have

$$w_{t}(y,s) = u_{t}(y,s) - \tilde{u}_{t}(y,s)$$

$$= -H(Du(y,s)) + H(D\tilde{u}(y,s))$$

$$= -\int_{0}^{1} \frac{d}{dr}H(rDu(y,s) + (1-r)D\tilde{u}(y,s)) dr$$

$$= -\int_{0}^{1} DH(rDu(y,s) + (1-r)D\tilde{u}(y,s)) dr \cdot (Du(y,s) - D\tilde{u}(y,s))$$

$$=: -\mathbf{b}(y,s) \cdot Dw(y,s).$$

Consequently

$$(39) w_t + \mathbf{b} \cdot Dw = 0 \text{a.e.}$$

^{*}Omit on first reading.

2. Write $v := \phi(w) \ge 0$, where $\phi : \mathbb{R} \to [0, \infty)$ is a smooth function to be selected later. We multiply (39) by $\phi'(w)$ to discover

$$(40) v_t + \mathbf{b} \cdot Dv = 0 \text{a.e.}$$

3. Now choose $\varepsilon > 0$ and define $u^{\varepsilon} := \eta_{\varepsilon} * u$, $\tilde{u}^{\varepsilon} := \eta_{\varepsilon} * \tilde{u}$, where η_{ε} is the standard mollifier in the x and t variables. Then according to $\S{C}.4$

$$|Du^{\varepsilon}| \le \operatorname{Lip}(u), \ |D\tilde{u}^{\varepsilon}| \le \operatorname{Lip}(\tilde{u}),$$

and

(42)
$$Du^{\varepsilon} \to Du, \ D\tilde{u}^{\varepsilon} \to D\tilde{u} \quad \text{a.e., as } \epsilon \to 0.$$

Furthermore inequality (c) in the definition of weak solution implies

(43)
$$D^2 u^{\varepsilon}, D^2 \tilde{u}^{\varepsilon} \le C \left(1 + \frac{1}{s} \right) I$$

for an appropriate constant C and all $\varepsilon > 0$, $y \in \mathbb{R}^n$, $s > 2\varepsilon$. Verification is left as an exercise.

4. Write

(44)
$$\mathbf{b}_{\varepsilon}(y,s) := \int_{0}^{1} DH(rDu^{\varepsilon}(y,s) + (1-r)D\tilde{u}^{\varepsilon}(y,s)) dr.$$

Then (40) becomes

$$v_t + \mathbf{b}_{\varepsilon} \cdot Dv = (\mathbf{b}_{\varepsilon} - \mathbf{b}) \cdot Dv$$
 a.e.;

hence

(45)
$$v_t + \operatorname{div}(v\mathbf{b}_{\varepsilon}) = (\operatorname{div}\mathbf{b}_{\varepsilon})v + (\mathbf{b}_{\varepsilon} - \mathbf{b}) \cdot Dv \quad \text{a.e.}$$

5. Now

$$\operatorname{div} \mathbf{b}_{\varepsilon} = \int_{0}^{1} \sum_{k,l=1}^{n} H_{p_{k}p_{l}}(rDu^{\varepsilon} + (1-r)D\tilde{u}^{\varepsilon})(ru_{x_{l}x_{k}}^{\varepsilon} + (1-r)\tilde{u}_{x_{l}x_{k}}^{\varepsilon}) dr$$

$$(46) \qquad \leq C\left(1 + \frac{1}{s}\right)$$

for some constant C, in view of (41), (43). Here we note that H convex implies $D^2H \geq 0$.

6. Fix $x_0 \in \mathbb{R}^n$, $t_0 > 0$, and set

(47)
$$R := \max\{|DH(p)| \mid |p| \le \max(\operatorname{Lip}(u), \operatorname{Lip}(\tilde{u}))\}.$$

Define also the cone

$$C := \{(x,t) \mid 0 \le t \le t_0, |x - x_0| \le R(t_0 - t)\}.$$

Next write

$$e(t) = \int_{B(x_0, R(t_0 - t))} v(x, t) dx$$

and compute for a.e. t > 0:

$$\dot{e}(t) = \int_{B(x_0, R(t_0 - t))} v_t \, dx - R \int_{\partial B(x_0, R(t_0 - t))} v \, dS
= \int_{B(x_0, R(t_0 - t))} - \operatorname{div}(v \mathbf{b}_{\varepsilon}) + (\operatorname{div} \mathbf{b}_{\varepsilon}) v + (\mathbf{b}_{\varepsilon} - \mathbf{b}) \cdot Dv \, dx
- R \int_{\partial B(x_0, R(t_0 - t))} v \, dS \quad \text{by (45)}
= - \int_{\partial B(x_0, R(t_0 - t))} v(\mathbf{b}_{\varepsilon} \cdot \nu + R) \, dS
+ \int_{B(x_0, R(t_0 - t))} (\operatorname{div} \mathbf{b}_{\varepsilon}) v + (\mathbf{b}_{\varepsilon} - \mathbf{b}) \cdot Dv \, dx
\leq \int_{B(x_0, R(t_0 - t))} (\operatorname{div} \mathbf{b}_{\varepsilon}) v + (\mathbf{b}_{\varepsilon} - \mathbf{b}) \cdot Dv \, dx \quad \text{by (41), (44)}
\leq C \left(1 + \frac{1}{t}\right) e(t) + \int_{B(x_0, R(t_0 - t))} (\mathbf{b}_{\varepsilon} - \mathbf{b}) \cdot Dv \, dx$$

by (46). The last term on the right-hand side goes to zero as $\varepsilon \to 0$, for a.e. t > 0, according to (41), (42) and the Dominated Convergence Theorem. Thus

(48)
$$\dot{e}(t) \le C \left(1 + \frac{1}{t}\right) e(t)$$
 for a.e. $0 < t < t_0$.

7. Fix $0 < \varepsilon < r < t_0$ and choose the function $\phi(z)$ to equal zero if

$$|z| \le \varepsilon [\operatorname{Lip}(u) + \operatorname{Lip}(\tilde{u})]$$

and to be positive otherwise. Since $u \equiv \tilde{u}$ on $\mathbb{R}^n \times \{t = 0\}$,

$$v = \phi(w) = \phi(u - \tilde{u}) = 0$$
 at $\{t = \varepsilon\}$.

Thus $e(\varepsilon) = 0$. Consequently Gronwall's inequality (§B.2) and (48) imply

$$e(r) \le e(\varepsilon)e^{\int_{\varepsilon}^{r} C\left(1+\frac{1}{s}\right)ds} = 0.$$

Hence

$$|u - \tilde{u}| \le \varepsilon [\operatorname{Lip}(u) + \operatorname{Lip}(\tilde{u})]$$
 on $B(x_0, R(t_0 - r))$.

This inequality is valid for all $\varepsilon > 0$, and so $u \equiv \tilde{u}$ in $B(x_0, R(t_0 - r))$. Therefore, in particular, $u(x_0, t_0) = \tilde{u}(x_0, t_0)$.

In light of Lemmas 3, 4 and Theorem 7, we have

THEOREM 8 (Hopf-Lax formula as weak solution). Suppose H is C^2 and satisfies (19) and g satisfies (20). If either g is semiconcave or H is uniformly convex, then

$$u(x,t) = \min_{y \in \mathbb{R}^n} \left\{ tL\left(\frac{x-y}{t}\right) + g(y) \right\}$$

is the unique weak solution of the initial-value problem (38) for the Hamilton-Jacobi equation.

Examples. (i) Consider the initial-value problem:

(49)
$$\begin{cases} u_t + \frac{1}{2}|Du|^2 = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = |x| & \text{on } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

Here $H(p) = \frac{1}{2}|p|^2$ and so $L(v) = \frac{1}{2}|v|^2$. The Hopf-Lax formula for the unique, weak solution of (49) is

(50)
$$u(x,t) = \min_{y \in \mathbb{R}^n} \left\{ \frac{|x-y|^2}{2t} + |y| \right\}.$$

Assume |x| > t. Then

$$D_y\left(\frac{|x-y|^2}{2t} + |y|\right) = \frac{y-x}{t} + \frac{y}{|y|} \quad (y \neq 0);$$

and this expression equals zero if $x=y+\frac{y}{|y|}t,\ y=(|x|-t)\frac{x}{|x|}\neq 0$. Thus $u(x,t)=|x|-\frac{t}{2}$ if |x|>t. If $|x|\leq t$, the minimum in (50) is attained at y=0. Consequently

$$u(x,t) = \begin{cases} |x| - t/2 & \text{if } |x| \ge t \\ \frac{|x|^2}{2t} & \text{if } |x| \le t. \end{cases}$$

Observe that the solution becomes semiconcave at times t > 0, even though the initial function g(x) = |x| is not semiconcave. This accords with Lemma 4.

(ii) We next examine the problem with reversed initial conditions:

(51)
$$\begin{cases} u_t + \frac{1}{2}|Du|^2 = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = -|x| & \text{on } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

Then

$$u(x,t) = \min_{y \in \mathbb{R}^n} \left\{ \frac{|x-y|^2}{2t} - |y| \right\}.$$

Now

$$D_y\left(\frac{|x-y|^2}{2t} - |y|\right) = \frac{y-x}{t} - \frac{y}{|y|} \quad (y \neq 0),$$

and this equals zero if $x = y - \frac{y}{|y|}t$, $y = (|x| + t)\frac{x}{|x|}$. Thus

$$u(x,t) = -|x| - \frac{t}{2} \quad (x \in \mathbb{R}^n, \ t \ge 0).$$

The initial function g(x) = -|x| is semiconcave, and the solution remains so for times t > 0.

In Chapter 10 we will again study Hamilton–Jacobi PDE and discover another and better notion of weak solution, applicable even if H is not convex.

3.4. INTRODUCTION TO CONSERVATION LAWS

In this section we investigate the initial-value problem for scalar conservation laws in one space dimension:

(1)
$$\begin{cases} u_t + F(u)_x = 0 & \text{in } \mathbb{R} \times (0, \infty) \\ u = g & \text{on } \mathbb{R} \times \{t = 0\}. \end{cases}$$

Here $F: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are given and $u: \mathbb{R} \times [0, \infty) \to \mathbb{R}$ is the unknown, u = u(x, t). As noted in §3.2, the method of characteristics demonstrates that there does not in general exist a smooth solution of (1), existing for all times t > 0. By analogy with the developments in §3.3.3, we therefore look for some sort of weak or generalized solution.