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Proof. 1. Fix y € R", 0 < s < t and choose z € R” so that
(23) o) =L (155 +9(0)

Now since L is convex and 222 = (1 — $) =¥ 4 $¥=% we have

r—z S T—Y S y—z
L <(1—-)L — .
() < (-9 (Y 2 (55)
Thus

w(z,t) < tL ("E;z> Y g(2) < (t—s)L (f_y> +sL (y_z) +9(2)

— S8 S

= (t—s)L (u) +u(y, s),

t—s

by (23). This inequality is true for each y € R™. Therefore, since y — u(y, s)
is continuous (according to the first part of the proof Lemma 2 below), we
have

) T —vy
< — R .
(24) u(z,t) < min {(t s)L (t — s) + u(y, s)}
2. Now choose w such that
(25) wwt) =2 (250) + gtw),

and set y := Sz + (1 — ¥) w. Then =¥ = Z5% = =¥ Consequently

=L (F=2) +ulns

by (25). Hence

(26) min {(t — 9L (“/’ - y) + u(y,s)} < u(z, t).

yeR”
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LEMMA 2 (Lipschitz continuity). The function u is Lipschitz continuous
in R™ x [0,00), and
u=g onR"x {t=0}.

Proof. 1. Fixt > 0, z,z € R™. Choose y € R™ such that

(27) tL (z ; y) + g(y) = u(z, ).

Then

u(z, t) — u(z,t) = min {u; (“’ - z) + g(z)} ¢ (%) o)

z t
<g(z—z+y)—g(y) <Lip(g)|z — z|.

Hence
u(‘%’t) - ’U,(.’L",t) < Lip(g)Ii’ - 37|5

and, interchanging the roles of Z and z, we find
(28) u(z,t) — w(2,t)| < Lip(g)|z — 2.

2. Now select z € R™, t > 0. Choosing y = z in (21), we discover
(29) u(z,t) <tL(0) + g(z).

Furthermore,

u(z,t) = min {tL (g) + g(y)}

> g(x) + min {—Lip(g)lx — Y| +tL (u)}

yeRn t

= g(x) — tmax{Lip(g)|z| - L(2)} (2= - ; ‘)

— —t z—1L
g9(z) weBr(ggp(g))gé%{w z — L(z)}

=g(xz)—t max H.
9(@) B(0,Lip(g))

This inequality and (29) imply

u(z,t) — g(z)| < Ct

30 C = max(|L(0)|, max |H|).
(30) (L), , max  |H])
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3. Finally select z € R, 0 < # < t. Then Lip(u(-,t)) < Lip(g) by (28)
above. Consequently Lemma 1 and calculations like those employed in step
2 above imply

lu(z,t) — u(z,t)| < CJt — ¢

for the constant C defined by (30). O

Now Rademacher’s Theorem (which we will prove later, in §5.8.3) asserts
that a Lipschitz function is differentiable almost everywhere. Consequently
in view of Lemma 2 our function u defined by the Hopf-Lax formula (21)
is differentiable for a.e. (z,t) € R™ x (0,00). The next theorem asserts u in
fact solves the Hamilton—Jacobi PDE wherever u is differentiable.

THEOREM 5 (Solving the Hamilton—-Jacobi equation). Suppose z € R™,
t > 0, and u defined by the Hopf-Lazx formula (21) is differentiable at a point
(z,t) € R™ x (0,00). Then

ut(z,t) + H(Du(z,t)) = 0.

Proof. 1. Fix v € R", h > 0. Owing to Lemma 1,

u(z + hv,t + h) = min {hL (th——y) + u(y, t)}
yER™ h

< hL(v) + u(z,t).

Hence

u(x + hv,t+ h) — u(z,t) <

" < L(v).

Let h — 0T, to compute
v- Du(z,t) + u(z,t) < L(v).
This inequality is valid for all v € R", and so

(31)  w(z,t) + H(Du(z,t)) = ue(z, t) + 11)161%35{1) - Du(z,t) — L(v)} < 0.

The first equality holds since H = L*.

2. Now choose z such that u(z,t) = tL (£2) + g(2). Fix h > 0 and set

s:t—h,y:§x+(l—%)z. Then “"tzzy;z,andthus

)~ ) 2 o2 (22) +a0) - s (1) +400)

:(t—s)L(x;z).
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That is,

u(x,t)—u((l—h%):c+%z,t—h) ZL(:I;—z)_

Let h — 0%, to see that

T2 Du(z,t) +u(z,t) > L (‘r - z) .
Consequently
ug(z,t) + H(Du(z,t)) = we(z, t) + m%x{’l} - Du(z,t) — L(v)}
veR™
> ug(z,t) + I;Z - Du(z,t) — L (x;z)
>0
This inequality and (31) complete the proof. O

We summarize:

THEOREM 6 (Hopf-Lax formula as solution). The function u defined by
the Hopf-Lax formula (21) is Lipschitz continuous, is differentiable a.e. in
R™ x (0,00), and solves the initial-value problem

(32) ur+ H(Du) =0 a.e. in R™ x (0, 00)
u=g9 onR"x{t=0}.

3.3.3. Weak solutions, uniqueness.

a. Semiconcavity. In view of Theorem 6 above it may seem reasonable
to define a weak solution of the initial-value problem (18) to be a Lipschitz
function which agrees with g on R™ x {t = 0} and solves the PDE a.e. on
R™ x (0, 00). However this turns out to be an inadequate definition, as such
weak solutions would not in general be unique.

Example. Consider the initial-value problem

{ut+|ux|2:0 in R x (0, c0)

(33) u=0 onR x {t=0}.

One obvious solution is

ui(z,t) = 0.
However the function
0 if |z| >t
ug(z,t) :== z—t if 0<z<t

—x—t if —t<x<0
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is Lipschitz continuous and also solves the PDE a.e. (everywhere, in fact,
except on the lines z = 0,+t). It is easy to see that actually there are
infinitely many Lipschitz functions satisfying (33). O

This example shows we must presumably require more of a weak solution
than merely that it satisfy the PDE a.e. We will look to the Hopf-Lax
formula (21) for a further clue as to what is needed to ensure uniqueness.
The following lemma demonstrates that u inherits a kind of “one-sided”
second-derivative estimate from the initial function g.

LEMMA 3 (Semiconcavity). Suppose there ezists a constant C' such that
(34) g(z + 2) = 29(z) + g(z — 2) < Cl2|*
for all z,z € R™. Define u by the Hopf-Lax formula (21). Then

u(z + z,t) — 2u(z,t) + u(z — 2,t) < C|z|?

for all x,z € R™, t > 0.

We say g is semiconcave provided (34) holds. It is easy to check that
(34) is valid if g is C? and supg~ |D?g| < co. Note that g is semiconcave if
and only if the mapping z — g(z) — $|z|? is concave for some constant C.

Proof. Choose y € R" so that u(z,t) = tL (%) + g(y). Then, putting
y+ z and y — z in the Hopf-Lax formulas for u(z + z,t) and u(z — z,t), we
find

u(z + z,t) — 2u(z,t) + u(z — 2, t)

= [tL (x;y) +9(y+Z)] —2 [tL (m;y) +g(y)}

+ [tL <¥) + 9(y — z)]

=g(y+2) —29(y) + g(y — 2)
< C|z|?, by (34).

O

As a semiconcavity condition for w will turn out to be important, we
pause to identify some other circumstances under which it is valid. We will
no longer assume g to be semiconcave but will suppose the Hamiltonian H
to be uniformly convex.
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DEFINITION. A C? convex function H : R® — R is called uniformly
convex (with constant 6 > 0) if

n

(35) > Hyp, (p)&&5 > 0IE]  for all p,& € R™.

1,7=1

We now prove that even if g is not semiconcave, the uniform convexity
of H forces u to become semiconcave for times ¢t > 0: this is a kind of mild

regularizing effect for the Hopf-Lax solution of the initial-value problem
(18).

LEMMA 4 (Semiconcavity again). Suppose that H is uniformly convez
(with constant 6) and u is defined by the Hopf-Lax formula (21). Then

1
u(z + z,t) — 2u(z,t) + u(z — 2,t) < 0—t|z|2
forallz,z € R", t > 0.

Proof. 1. We note first using Taylor’s formula that (35) implies

+ 1 1 6
(36) H (B2 ) < SHp) + 5 H(po) — Slpy — paf®
2 2 2 8
Next we claim that for the Lagrangian L we have the estimate
1 1 U1 + V2 1 9
=L —L <L — v, —
87 320+ 300) < £ (252 ) 4 oo -

for all vy, vy € R™. Verification is left as an exercise.

2. Now choose y so that u(z,t) = tL (“7%) + g(y). Then using the
same value of y in the Hopf-Lax formulas for u(z + z,t) and u(z — z,t), we
calculate

u(z + z,t) — 2u(z,t) + u(z — 2,t)

SPL(ii%:g>+g@ﬂ—2PL<£%£)+9@4
+&L(£:%:£>+g@ﬂ

“for () e () o ()
1 ]2z 1

<2%— |22 < —|z]?
<27 Seldl

the next-to-last inequality following from (37). O
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b. Weak solutions, uniqueness. In this section we show that semi-
concavity conditions of the sorts discovered for the Hopf-Lax solution w in
Lemmas 3 and 4 can be utilized as uniqueness criteria.

DEFINITION. We say that a Lipschitz continuous function u : R™ X
[0,00) — R is a weak solution of the initial-value problem:

ut+ H(Du) =0 in R™ x (0, 00)
(38) { u=g onR"x {t=0}
provided
(a) u(z,0) =g(z) (zeR"),
(b) u¢(z,t) + H(Du(z,t)) =0 for a.e. (z,t) € R™ x (0, 00),

and
(c) u(z + 2,t) — 2u(z,t) + u(z — 2,t) < C (1 + 1) |2|?

for some constant C > 0 and all x,z € R", t > 0.

Next we prove that a weak solution of (38) is unique, the key point being
that this uniqueness assertion follows from the inequality condition (c).

THEOREM 7 (Uniqueness of weak solutions). Assume H is C? and sat-
isfies (19) and g satisfies (20). Then there ezists at most one weak solution
of the initial-value problem (38).

Proof*. 1. Suppose that u and % are two weak solutions of (38) and write
wi=u— U.

Observe now that at any point (y,s) where both u and @ are differen-
tiable and solve our PDE, we have

we(y, s) = ut(y, s) — W (y, s)
= —H(Du(y, s)) + H(Du(y, s))

1

- diH(rDu(y, s) + (1 —r)Di(y,s))dr
0 T

— —/0 DH(rDu(y,s) + (1 —r)Du(y,s)) dr - (Du(y, s) — Du(y, s))
=: —b(y, s) - Dw(y, s).
Consequently

(39) we+b-Dw=0 a.e.

*Omit on first reading.
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2. Write v := ¢(w) > 0, where ¢ : R — [0, 00) is a smooth function to
be selected later. We multiply (39) by ¢'(w) to discover

(40) v+b-Dv=0 ae.

3. Now choose € > 0 and define u® := 7. *u, u° := 1, * u, where 7, is the
standard mollifier in the z and ¢ variables. Then according to §C.4

(41) |Du®| < Lip(u), |D@’| < Lip(a),
and
(42) Du® — Du, Du* — Du a.e., as € — 0.

Furthermore inequality (c) in the definition of weak solution implies
2, € 2~¢ 1
(43) D*u®, D*u SC’(I—{——)I
s

for an appropriate constant C' and all € > 0, y € R", s > 2¢. Verification is
left as an exercise.

4. Write
1
@) bu(s,s)i= [ DHD(y,s) + (1= 1)DE(y,s)dr
0
Then (40) becomes
ve+be-Dv=(b:—b)-Dv ae;
hence
(45) vt + div(vbe) = (divbe)v + (b — b) - Dv  a.e.

5. Now

1 n
dwt%:ié S Hppp (rDu + (1 = 1)DE)(ru, + (1 — 1), ) dr
k,l=1

(46) gc<1+§)

for some constant C, in view of (41), (43). Here we note that H convex
implies D2H > 0.
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6. Fix 2o € R™, tg > 0, and set
(47) R = max{|DH(p)| | |p| < max(Lip(w), Lip())}.
Define also the cone
C:={(z,t) |0 <t <ty |z —xzo| < R(to — 1)}

Next write

e(t) = / v(z,t) dx
B(wo,R(to—t))

and compute for a.e. t > O:

é(t):/ vpdr — R vdS
B(zo,R(to—1)) 8B(z0,R(to—1))

= / —div(vbe) 4 (divbe)v + (b — b) - Dvdz
B(zo,R(to—t))

-R vdS by (45)
8B(z0,R(to—t))

:_/ v(b. - v + R)dS
OB (.’L‘o ,R(to —t))

+ / (divbg)v + (be —b) - Dvdx
B(zo,R(to—t))

< / (divbe)v + (be — b) - Dvdz by (41), (44)
B(zo,R(to—t))

§C<1+l>e(t)+/ (be —b) - Dvdx
t B(zo,R(to—t))

by (46). The last term on the right-hand side goes to zero as € — 0, for a.e.
t > 0, according to (41), (42) and the Dominated Convergence Theorem.
Thus

(48) e(t) < C (1 + —1—) e(t) fora.e. 0<t<tp.

7. Fix 0 < e < 7 < tg and choose the function ¢(z) to equal zero if
|2 < e[Lip(u) + Lip(a)]
and to be positive otherwise. Since u = @ on R™ x {t = 0},

v=¢(w)=¢(u—u)=0 at {t=c¢}.
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Thus e(e) = 0. Consequently Gronwall’s inequality (§B.2) and (48) imply
e(r) < e(e)efer O(1+3)ds — g,

Hence
|u — 4| < g[Lip(u) + Lip(@)] on B(zg, R(to —T))-

This inequality is valid for all € > 0, and so v = @ in B(zg, R(to — r)).
Therefore, in particular, u(zo, to) = (o, to). O

In light of Lemmas 3, 4 and Theorem 7, we have

THEOREM 8 (Hopf-Lax formula as weak solution). Suppose H is C?
and satisfies (19) and g satisfies (20). If either g is semiconcave or H is
uniformly conver, then

u(z,t) = min {tL <xt;y) +g(y)}

is the unique weak solution of the initial-value problem (38) for the Hamilton—
Jacobi equation.

Examples. (i) Consider the initial-value problem:

(49) u+ 2|Dul? =0  in R" x (0, co)
u=|z| on R"™x {t=0}.

Here H(p) = i|p|? and so L(v) = 3|v|%. The Hopf-Lax formula for the
unique, weak solution of (49) is

(50) u(z,t) = min {"” —u Iy\}.

y€ERn 2t

Assume |z| > t. Then

|z — y/? y—z
Dy( 57 + |yl =T+m (y # 0);

and this expression equals zero if x = y + lz—lt, y = (|z| — t)lz_l # 0. Thus

u(z,t) = |z| — & if |z] > ¢. If |z] < ¢, the minimum in (50) is attained at
y = 0. Consequently

21 i | < ¢

—t/2 if >t
ay - { I il
2t
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Observe that the solution becomes semiconcave at times ¢ > 0, even though
the initial function g(z) = |z| is not semiconcave. This accords with Lemma
4.

(ii) We next examine the problem with reversed initial conditions:

(51) ut + 3|Dul? = 0 in R™ x (0, c0)
u = —|z|] onR"™x {t=0}.
Then
u(z,t) = min M—| |
’ yeR™ 2t Y '
Now

b (12—l y—z

and this equals zero if x =y — %t, y = (|lz] +¢)- Thus

t
u(z,t) = —|z| — 5 (z e R", t > 0).

The initial function g(xz) = —|z| is semiconcave, and the solution remains so
for times t > 0. U

In Chapter 10 we will again study Hamilton—Jacobi PDE and discover
another and better notion of weak solution, applicable even if H is not
convex.

3.4. INTRODUCTION TO CONSERVATION LAWS

In this section we investigate the initial-value problem for scalar conservation

laws in one space dimension:

1) ut + F(u); =0 in R x (0,00)
u=g onR x {t=0}.

Here F : R - Rand g : R — R are given and v : R x [0,00) — R is
the unknown, u = u(z,t). As noted in §3.2, the method of characteristics
demonstrates that there does not in general exist a smooth solution of (1),
existing for all times £ > 0. By analogy with the developments in §3.3.3, we
therefore look for some sort of weak or generalized solution.



