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Choose 0 < €, A < 1 and set
@(J;, Y, t, 5) ZZU,(Z, t) - a(ya 5) - )‘(t + S)
1
5) — (e =y + (6= 9)%) — (2P + yP),

for z,y € R™, t,s > 0. Then there exists a point (zg, yo, to, so) € R?"x [0, T]?
such that

6 ®(xo, Yo, to, S0) = ax P(x,y,t,s).
(6) (z0, Yo, to, So) R2’{r><l[O,T]2 (z,y,t,s)

2. We may fix 0 < ¢, A < 1 so small that (4) implies

(7) ®(z0,v0,t0,50) > sup D(z,z,t,t) > f.
R” x[0,T] 2

In addition, ®(xg, yo, to, so) > ®(0,0,0,0); and therefore

1
A(to + s0) + 6—2(|$0 — yol* + (to — %0)%) + €(|zo|* + |yo|?)
< u(xo, to) — fb(yo, 80) — U(O, 0) + fL(O, 0).

(8)

Since u and 4 are bounded, we deduce
(9) |0 — wol, |[to — so| = O(e) as e — 0.
Furthermore (8) implies €(|zo|2 + |yo|?) = O(1), and consequently

e(|zo| + Jyol) = €*/4€¥/4(|zo| + |yol)
< el/? 4 063/2(|1:0|2 + |y0|2)
< Cel/?,

Thus
(10) e(|zo| + [yo]) = O(e'?).
3. Since ®(zo, yo, to, S0) = ®(x0, xo, to, to), we also have
w(zo, to) — ©(yo, s0) — A(to + s0) — 612(|370 —y0l* + (to — 50)°)
— €(|zo|® + |y0|?) > u(zo, to) — @(xo, to) — 2Atg — 2¢|zo|%.
Hence

1 - -
6—2(|$0 —yol® + (to — 50)?) < @(zo, to) — @(yo, s0) + A(to — so)

+ €(zo + %o) - (o — o).
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In view of (9), (10) and the uniform continuity of @, we deduce
(11) |Zo — yol, [to — so| = o(e).
4. Now write w(-) to denote the modulus of continuity of u; that is,
|u(z, t) —u(y, s)| < w(lz -yl +[t —s])

forall z,y e R", 0 <t,s <T, and w(r) — 0 as r — 0. Similarly, @(-) will
denote the modulus of continuity of 4.

Then (7) implies

< u(zo, to) — U(yo, s0) = u(xo, to) — u(wo, 0) + u(zo, 0) — %(xo, 0)

+ ﬂ(mo, 0) — a(zo,to) + fl,(ico, to) - ﬂ(yo, 80)
< w(to) + w(to) + w(o(e)),

g
2

by (9),(11) and the initial condition. We can now take ¢ > 0 to be so
small that the foregoing implies § < w(to) + @(fo); and this in turn implies
to > p > 0 for some constant p > 0. Similarly we have so > u > 0.

5. Now observe in light of (6) that the mapping (z,t) — ®(z, yo,t, s0)
has a maximum at the point (zg, tp). In view of (5) then,

u — v has a maximum at (zo, to)

for
- 1
v(®, £) = @(yo, 50) + Al + s0) + (12 = vol* + (¢ = 50)) + e(lzI” + o).

Since u is a viscosity solution of (1), we conclude, using the lemma if neces-
sary, that
ve(zo, to) + H(Dgv(zo,to),z0) < 0.

Therefore

2(t0 — 80)

2
(12) A+ 2 + H (6—2(370 — yo) + 2ex, :L‘o) <0.

We further observe that since the mapping (y, s) — —®(zo, y, to, s) has
a minimum at the point (yo, so),

@ — ¥ has a minimum at (yo, So)
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for

~ e -\ . i .12 a2y 2 2
0(y, s) = u(0, o) = Alto + ) — 5 (Jwo —y|" + (to = 5)°) — e(lzo|” + [y[).
As @ is a viscosity solution of (1), we know then that

s (Y0, S0) + H(Dyv(yo, 50),%0) > 0.
Consequently

2(to — so)

2
(13) At ——5— +H (6—2(1’0 — Y0) — 2€yo, yo) > 0.

6. Next, subtract (13) from (12):

2 2
(14) 22<H <€—2(170 — o) — 2€y07y0) - H <€—2(ﬂ70 — ) + 26900,1190> -

In view of hypothesis (3) therefore,
o —
(15) A < Ce(lzol + |yol) + Clzo — yo (1 + |06—2y0| + €(|zo| + |y0|)) :

We employ estimates (10), (11) in (15) and then let € — 0, to discover
0 < A <0. This contradiction completes the proof. a

10.3. CONTROL THEORY, DYNAMIC
PROGRAMMING

It remains for us to establish the existence of a viscosity solution to our
initial-value problem for the Hamilton—Jacobi partial differential equation.
One method would be now to prove the existence of a smooth solution u¢ of
the regularized equation (2) in §10.1 and then to make good enough uniform
estimates. This technique in fact works but requires knowledge of certain
bounds for the heat equation beyond the scope of this book.

In this section we provide an alternative approach of independent inter-
est, which is suitable for Hamiltonians which are convex in p.

We will first of all introduce some of the basic issues concerning control
theory for ordinary differential equations and the connection with Hamilton—
Jacobi PDE afforded by the method of dynamic programming. This discus-
sion will make clearer the connections of the theory developed above in
§810.1-10.2 with that set forth earlier in §3.3.1. The remarkable fact is
that the defining viscosity solution inequalities (16), (17) in §10.1.1 are a
consequence of the optimality conditions of control theory.
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(x{(T).,T)

(x(s).,s)

(x, t)

x(s)=Ff(x(s),0(s))

Response of system to the control «(-)
10.3.1. Introduction to optimal control theory.

We will now study the possibility of optimally controlling the seluticn
x(-) of the ordinary differential equation

x(s) = f(x(s),a(s)) (t<s<T)

(1) B
x(l) =&

Here = = f;, T > 0 is a fixed terminal time, and z € R" is a given initial

point, taken on by our solution x(-) at the starting time ¢t > 0. At later

times t < s < T, x(-) evolves according to the ODE, where
f:R"xA—-R"

is a given bounded, Lipschitz continuous function and A is some given com-
pact subset of, say, R™. The function «(-) appearing in (1) is a control, that
is, some appropriate scheme for adjusting parameters from the set A as time
evolves, thereby affecting the dynamics of the system modeled by (1).

Let us write
(2) A:={a:[0,T] - A| a(-) is measurable}
to denote the set of admissible controls. Then since
3) [f(z,a)| <C, |f(z,a) —£(y,a)| < Clz —y| (z,y €R", ac A)

for some constant C, we see that for each control a(-) € A, the ODE (1)
has a unique, Lipschitz continuous solution x(-) = x*()(-), existing on the
time interval [¢,7T] and solving the ODE for a.e. time t < s < 7. We call
x(-) the response of the system to the control a(-), and x(s) the state of the
system at time s.
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Our goal is to find a control a*(-) which optimally steers the system.
However in order to define what “optimal” means, we must first introduce a
cost criterion. Given x € R™ and 0 <t < T, let us define for each admissible
control a(-) € A the corresponding cost functional

T
(4) Cotle()] = / r(x(s), a(s)) ds + g(x(T)),

where x(-) = x*()(-) solves the ODE (1) and
r:R"xA—-R, ¢g:R*" >R

are given functions. We call r the running cost per unit time and g the
terminal cost, and will henceforth assume

o { oo iel<c

Ir(z,a) —r(y,a)l, |9(z) — g9(y)| < Clz - y|
for some constant C.

(z,y € R"ac A)

Given now x € R™ and 0 < t < T, we would like to find if possible
a control a*(-) which minimizes the cost functional (4) among all other
admissible controls. This is a finite horizon optimal control problem. (See
Problems 10 and 11 for infinite horizon problems.)

10.3.2. Dynamic programming.

The method of dynamic programming investigates the above problem by
turning attention to the wvalue function

(6) u(z,t) == inf Cpia(’)] (xeR™ 0<t<T).
a()eA

The plan is this: having defined u(z,t) as the least cost given that we
start at the position z at time t, we want to study u as a function of z
and t. We are therefore embedding our given control problem (1), (4) into
the larger class of all such problems, as x and ¢ vary. The idea then is
to show that u solves a certain Hamilton-Jacobi type PDE and to show
conversely that a solution of this PDE helps us to synthesize an optimal
feedback control.

Hereafter, we fix t e R™, 0 <t < T.
THEOREM 1 (Optimality conditions). For each h > 0 so small that
t+h <T, we have

t+h
(7) u(z,t) = inf {/t r(x(s), a(s))ds + u(x(t + h),t + h)} :

a(-)eA
where x(-) = x*()(-) solves the ODE (1) for the control a(-).
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Proof. 1. Choose any control a;(-) € A and solve the ODE

{ 5(1(8) = f(Xl(S), 061(8)) (t <s<t+ h)
x1(t) = z.

(8)

Fix € > 0 and choose then a3(-) € A so that

T

9  u(xa(t+h),t+h)+e= / r(x2(s), az(s)) ds + g(x2(T)),
t+h
where
5(2(3) = f(XQ(S), 02(8)) (t +h<s< T)
e Lot Rt

Now define the control

(11) as(s) == { ay(s) if t<s<t+h

az(s) if t+h<s<T,
and let

(12) { 5(3(3) ::If;(X;;(S), ag(s)) (t < s <K< T)

X3 (t) .

By uniqueness of solutions to the differential equation (1), we have

(13) x3(s) = { xi(s) i t<s<t+h

xa2(s) if t+h<s<T.
Thus the definition (6) implies

u(z,t) < Cgtlas(:)]

T
:/t r(x3(s), as(s)) ds + g(x3(T))

t+h T
= /t r(xl(s),al(s))ds-l-/t r(x2(s), a2(s)) ds + g(x2(T))

+h

t+h
S/t r(x1(s), @1(s)) ds + u(x1(t + h),t + h) + €,

the last inequality resulting from (9). As a;(-) € A was arbitrary, we con-

clude

t+h
(14)  wu(z,t) < inf {/t r(x(s), a(s))ds +u(x(t + h),t + h)} + ¢,

a(-)EA
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x(-) = x*()(.) solving (1).

2. Fixing again € > 0, select now ay(-) € A so that

T
(15) u(z,t) + € > /t r(x4(s), @q(s)) ds + g(x4(T)),

where { %a(s) = £(xa(s), aa(s)) (¢ <s<T)

Observe then from (6) that
T

16)  ubct+h)t+h) < [ rG(s),ass) ds +gx(T))
t+h

Therefore

t+h
u(z,t) +€> a(l-I)lgA {/t r(x(s), a(s)) ds + u(x(t + h),t + h)} :

x(-) = x*0)(.) solving (1). This inequality and (14) complete the proof of
(7). O
10.3.3. Hamilton—Jacobi—Bellman equation.

Our eventual goal is writing down as a PDE an “infinitesimal version”
of the optimality conditions (7). But first we must check that the value
function u is bounded and Lipschitz continuous.

LEMMA (Estimates for value function). There exists a constant C such
that
lu(z, t)| < C,

u(z,t) — u(z,?)| < C(lz — 2| + |t — 1)
forallz,z e R*, 0<t,t<T.
Proof. 1. Clearly hypothesis (5) implies u is bounded on R™ x [0, T

2. Fix z,2 € R", 0 <t < T. Let € > 0 and then choose &(-) € A so that

T
(17) u(@ ) +e> /t r(&(s), &(s)) ds + g(&(T),
where x(-) solves the ODE
(1) { x(s) = f£(%(s),&(s)) (t<s<T)

x(t) = .
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Then

T
u(z, t) — ul#, 1) < / r(x(s), &(s)) ds + g(x(T))
(19) t

T
- /t r(X(s), a(s)) ds — g(x(T)) +
where x(-) solves

x(s) =f(x(s),a(s)) (t<s<T)

(20)
x(t) = x.

Since f is Lipschitz continuous, (18), (20) and Gronwall’s inequality (§B.2)

imply [x(s) — %x(s)] < Clz — Z| (t <s <T'). Hence we deduce from (5) and

(19) that u(z,t) —u(z,t) < C|z — Z| + €. The same argument with the roles
of x and Z reversed implies

u(z,t) —u(@ )| < Clo— 2| (o, €R, 0<t <T).

3. Now let z € R®, 0 <t <t <T. Take € > 0 and choose a(-) € A so
that

wz,t) + €2 /tT?“(X(SX a(s)) ds + g(x(T)),
x(+) solving the ODE (1). Define
a(s):=a(s+t—1t) fort <s<T
and let X(-) solve

{ x(s) = f(%(s),a(s)) (F<s<T)

Then %(s) = x(s +t — t). Hence

R T
u(@d) = ula,t) < [ r((s),a(s) ds + g(x(T)
T
(21) — [ rlx(s),als)) ds = g(x() +

T
—— [ r(x(s), () ds + g(x(T + ¢ =) = g(x(T)) + ¢
T+t—t

<Clt—t +e
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Next pick &(-) so that

) T
u(a ) +e> / r(&(s), &(s)) ds + g(X(T)),

where . R
{ x(s) = f(x(s),a(s)) (t<s<T)
%(1) = z.
Defi . R
N (s) {&(s+t—t) if t<s<T+t—-t
T &) if T+t-3<s<T,

and let x(-) solve (1). Then a(s) = &(s +t — t), x(s)
t <s<T+t—t. Consequently

%X(s+t—t) for

R T
) ~u(e,d) < [ rx(s).als)) ds + g(x(T))
T
- [ (), a9 ds — g((T) +

T
— [ r(x(s),als) ds + gx(T) — glx(T+t - D) +
T+t—t
<Clt—t| +e
This inequality and (21) prove

lu(z,t) —u(z,t)| < Clt -1t (0<t<t<T, zcR"). O

We prove next that the value function solves a Hamilton—Jacobi type
partial differential equation.

THEOREM 2 (A PDE for the value function). The value function u is the
unique viscosity solution of this terminal-value problem for the Hamilton—
Jacobi—Bellman equation:

in {f(z,a)- D )}y =0 mR*x(0,T
22) { us + min {f(z,a) - Du+r(z,a)} in (0,T)
u=g onR"x {t=T}.
Remarks. (i) The Hamilton-Jacobi-Bellman PDE has the form
ut + H(Du,z) =0 in R™ x (0,7),
for the Hamiltonian

(23) H(p,2) = min {£(z,0) -p+r(z,0)} (p,5 € RY).
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From the inequalities (5), we deduce that H satisfies the estimates (3) in
§10.2.

(ii) Since (22) is a terminal-value problem, we must specify what we mean
by a solution. Let us say that a bounded, uniformly continuous function
is a viscosity solution of (22) provided

(a) u=gon R™ x {t =T},
and

(b) for each v € C*°(R"™ x (0,T))

if u — v has a local maximum at a point (zg, tg) € R™ x (0,T),
(24) then
ve(zo, to) + H(Dv(zg, o), zo) > 0,
and

if u — v has a local minimum at a point (zg,tg) € R™ x (0,7,
(25) then
ve(xo, to) + H(Dv(zo,to), zo) < 0.

Observe that for our terminal-value problem (22) we reverse the sense of the
inequalities from those for the initial-value problem.

(iii) The reader should check that if u is the viscosity solution of (22),
then w(z,t) ;= u(z,T —t) (z € R",0 < t < T) is the viscosity solution of
the initial-value problem

we — H(Dw,z) =0 in R x (0,7)
w=g onR"x{t=0}

Proof. 1. In view of the lemma, u is bounded and Lipschitz continuous. In
addition, we see directly from (4) and (6) that

u(z,T) = a(i_I)lgA Crrla(-)] =g(x) (zeR").

2. Now let v € C°(R™ x (0,7")), and assume
u — v has a local maximum at a point (zg,t) € R™ x (0, 7).
We must prove

(26)  wilwoto) + min{f(so,0) - Dv(ao, o) +(z0,0)} 2 0.



