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Suppose not. Then there exist a € A and 6 > 0 such that
(27) ve(z,t) + £(z,a) - Dv(z,t) + r(z,a) < —60 <0
for all points (z,t) sufficiently close to (xg, t), say

(28) |z — 20| + |t — to| < 4.

Since u — v has a local maximum at (xg, tg), we may as well also suppose

{ (u —v)(z,t) < (u—v)(zo,0)

29
(29) for all (z,t) satisfying (28).

Consider now the constant control a(s) = a (tg < s < T) and the corre-

sponding dynamics
(30) { X(s) = f(x(s),a) (to <s<T)

X(to) = X2yp.

Choose 0 < h < § so small that |x(s) — zg| < § for tg < s <ty + h. Then
(31) wvi(x(s), s)+f(x(s),a)-Dv(x(s), s)+r(x(s),a) < —0 (to < s <tp+h),
according to (27), (28). But utilizing (29), we find

u(x(to + h), to + h) — u(.’lt(), t()) < U(X(to + h), to + h) — v(:l?(), to)

to+h to+h
= [ s = [ ule(s) o) + Dolx(s) ) x(5) s

0 0

(32)

to+h
_ / vi(x(s), 5) + £(x(s),a) - Dv(x(s), 5) ds.
to
In addition, the optimality condition (7) provides us with the inequality
to+h
(33) w(zo, t0) < / r(x(s), a) ds + u(x(to + h), to + h).
t

0

Combining (32) and (33), we discover

to+h
0< /t vi(x(s), ) + £(x(s), @) - Dv(x(s), 5) + r(x(s), a) ds < —Bh,

0

according to (31). This contradiction establishes (26).

3. Now suppose

u — v has a local minimum at a point (zg,tg) € R™ x (0,7T);
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we must prove
(34) v¢(zo,to) + Iréifll{f(xo, a) - Dv(zo,t0) + r(z0,0a)} <O0.
a

Suppose not. Then there exists § > 0 such that
(35) vi(z,t) + £(z,a) - Dv(z,t) + r(z,a) > 6 >0
for all @ € A and all (z,t) sufficiently close to (zo, to), say

(36) |z — zo| + |t — to| < 4.

Since u — v has a local minimum at (zg, tp), we may as well also suppose
{ (u—v)(z,t) > (u—v)(zo, to)
for all (z,t) satisfying (36).

Choose 0 < h < § so small that |x(s) — zg| < § for tyg < s < tg + h, where
x(-) solves

(37)

(38) { X(s) = f(x(s), a(s)) (to<s<T)

x(to) = xo
for some control a(-) € A. This is possible owing to hypothesis (3).
Then utilizing (37), we find for any control a(-) that

u(x(to + h), to + h) — u(zo, to)

> U(X(to + h), to + h) — U(JZ(), t())
to+h d

(39) _ /t “o(x(s),5) ds

0to+h
- / vi(x(s), 8) + £(x(s), a(s)) - Do(x(s), s) ds,

by (38). On the other hand, according to the optimality condition (7) we
can select a control a(-) € A so that

to+h
(40) ’u(.il)(), to) > / " T'(X(S), a(s)) ds + U(X(to + h), to + h) - %

to

Combining (39) and (40), we discover

to+h
on / v (x(s), 8) + £(x(s), a(s)) - Do(x(s), )
+ r(x(s), a(s)) ds > 6h,

according to (35). This contradiction proves (34). O
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Design of optimal controls. We have now shown that the value function
u, defined by (6), is the unique viscosity solution of the terminal-value prob-
lem (22) for the Hamilton-Jacobi-Bellman equation. How does this PDE
help us solve the problem of synthesizing an optimal control? In informal
terms, the method is this. Given an initial time 0 < ¢ < T and an initial
state x € R™, we consider the optimal ODE

{ x*(s) = f(x*(s),a*(s)) (t<s<T)

. () =z,

where at each time s, a*(s) € A is selected so that

gy T () DUl (9),6) 47 (5), % (6)
= H(Du(x*(s), s),x*(s)).

In other words, given that the system is at the point x*(s) at time s, we
adjust the optimal control value a*(s) so as to attain the minimum in the
definition (23) of the Hamiltonian H. We call a*(:) so defined a feedback
control.

It is fairly easy to check that this prescription does in fact generate a
minimum cost trajectory, at least in regions where u and a*(-) are smooth
(so that (42) makes sense). There are however problems in interpreting (42)
at points where the gradient Du does not exist.

10.3.4. Hopf-Lax formula revisited.

Remember that earlier in §3.3 we investigated this initial-value problem
for the Hamilton—Jacobi equation:

(43) {ut+H(Du):0 in R™ x (0, 7]

u=g onR"x {t=0},
under the assumptions that

H
p — H(p) is convex, lim H(p) = 400,

lpl—oo [P

and
g : R™ — R is Lipschitz continuous.

Notice that we are now taking 0 <t < T, to be consistent with §10.2. We
introduced as well the Hopf-Lax formula for a solution:

(44) u(z,t) = min {tL ("Bt;y> +g(y)} (z € R™,t > 0),

yeR™
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where L is the Legendre transform of H:

(45) L(v) = psellﬂgl{p v—H(p)} (¢€R").

In order to tie together the theory set forth here and in §3.3, let us
now check that the Hopf-Lax formula gives the correct viscosity solution,
as defined in §10.1.1. (The proof is really just a special case of that for
Theorem 2.)

THEOREM 3 (Hopf-Lax formula as viscosity solution). Assume in addi-
tion that g is bounded. Then the unique viscosity solution of the initial-value
problem (43) is given by the formula (44).

Proof. 1. As shown in §3.3 the function w defined by (44) is Lipschitz
continuous and takes on the initial function g at time ¢ = 0. It is easy to
verify as well that w is also bounded on R™ x (0, T}, since g is bounded.

2. Now let v € C°(R™ x (0, 00)) and assume u — v has a local maximum
at (zo,to) € R™ x (0,00). According to Lemma 1 in §3.3.2,

(46) u(zg, to) = ;relﬁgri {(to —t)L (aéz : f) + u(a:,t)}

for each 0 <t < tg. Thus for each 0 <t < tg, z € R™

(47) u(zo,to) < (tg —t)L (3;0 — f) + u(z, t).
-

But since u — v has a local maximum at (zo, tp),
u(zo, to) — v(zo,%0) > u(z,t) — v(z,1)

for (z,t) close to (xg,tp). Combining this estimate with (47), we find

(49 ooy to) —(a,0) < (1~ O 25

for t < tg, (x,t) close to (zo,tp). Now write h =ty — ¢ and set z = zg — hv,
where v € R™ is given. Inequality (48) becomes

v(zo,to) — v(zo — hv,tg — h) < hL(v).
Divide by A > 0 and send h — O:

ve(zo,to) + Dv(zo, to) - v — L(v) <0.
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This is true for all v € R™ and so

(49) /Ut(:cOatO) +H(DU($07t0)) S 07
since
(50) H(p) = sup {p-v—L(v)},

by the convex duality of H and L. We have, as desired, established the
inequality (49) whenever u — v has a local maximum at (zg, to).

3. Now suppose instead u — v has a local minimum at a point (zg,tg) €
R™ x (0,T). We must prove

(51) ve(xo,to) + H(Dv(zo,t9)) > 0.
Suppose to the contrary that estimate (51) fails, in which case

ve(z,t) + H(Dv(z,t)) < -6 <0
for some 6 > 0 and all points (z,t) close enough to (zg,%p). In view of (50)
(52) ve(z,t) + Du(z,t) - v — L(v) < —6
for all (z,t) near (zg,t9) and all v € R™.

Now from (46) we see that if h > 0 is small enough,
Ty — T1

(53) u(.’L’o,to) = hL ( 3

for some point z; close to zg. We then compute

) +u(zy, to — h)

1

d

v(zg,t0) — v(z1,t0 — h) = / %v(sxo + (1 —s)z1, to+ (s —1)h)ds
0

= / Dv(sxo + (1 — S)xl, to + (8 — l)h) . (mo - 371)

+ vi(szg + (1 — 8)z1, to+ (s — 1)h)hds

_h/ Du(- - <O_x1>+vt(-~-)ds.

Now if h > 0 is sufficiently small, we may apply (52), to find

v(zo, to) — v(z1,t0 — h) < AL ("”0 ; ml) — 0h.
But then (53) forces
v(xo, to) — v(z1,to — h) < u(wo,to) — u(zy,to — h) — Oh,

a contradiction, since u — v has a local minimum at (zg,%y). Consequently
the desired inequality (51) is indeed valid. O
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10.4. PROBLEMS

1. Assume wu is a viscosity solution of
ut + H(Du,z) =0 in R™ x (0, 00).
Show that @ := —u is a viscosity solution of
o + H(D@,z) =0 in R™ x (0, 0),

for H(p,z) :== —H(—p, z).
2. Let {u*}$, be viscosity solutions of the Hamilton—Jacobi equations

uf + H(Du*,z) =0 in R" x (0, 0)

(k =1,...), and suppose u*¥ — v uniformly. Assume as well that H

is continuous. Show wu is a viscosity solution of
ur + H(Du,z) =0 in R™ x (0, 00).

Hence the uniform limits of viscosity solutions are viscosity solutions.

3. Suppose for each € > 0 that u€ is a smooth solution of the parabolic

equation
n

u; + H(Du®,x) — ¢ Z aijugixj =0
ij=1
in R™ x (0,00), where the smooth coefficients a¥ (i, = 1,...,n)
satisfy the uniform ellipticity condition from Chapter 6. Suppose also
that H is continuous and that u® — u uniformly as ¢ — 0.

Prove that u is a viscosity solution of w; + H(Du,x) = 0. (This
exercise shows that viscosity solutions do not depend upon the precise
structure of the parabolic smoothing.)

4.  Let u® (i = 1,2) be viscosity solutions of

uj + H(Du',z) =0 in R™ x (0,00)
u*' =g¢* on R"™ x {t=0}.

Assume H satisfies condition (3) in §10.2. Prove the contraction prop-

erty
sup [ul (-, ) — u?(-,t)| < suplgt — g% (¢t >0).
R” R™
5.  (a) Show that u(x) := 1 — || is a viscosity solution of

lW/| =1 1in (—1,1)
(+) { u(=1) = u(1) = 0.
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This means that for each v € C*(—1,1), if v — v has a maximum
(minimum) at a point zy € (—1,1), then |v'(zg)| <1 (> 1).

(b) Show that 4(x) := |z| — 1 is not a viscosity solution of (x).

(c) Show that 4 is a viscosity solution of

(+4) Pt

(Hint: What is the meaning of a viscosity solution of (xx)?)

~1 in(-1,1)
a(1) = 0.

(d) Why do problems (x), (x*) have different viscosity solutions?

Let U C R™ be open, bounded. Set u(z) := dist(z,0U) (z € U).
Prove that u is Lipschitz continuous and that it is a viscosity solution
of the eikonal equation

|Du|=1 inU.

This means that for each v € C*°(U), if u — v has a maximum (mini-
mum) at a point zg € U, then |Dv(zg)| <1 (> 1).

Suppose an open set U C R" is subdivided by a smooth hypersurface
[ into the subregions V' and V~. Let v denote the unit normal to
[, pointing into V1. Assume that u is a viscosity solution of

H(Du)=0 inU

and that v is smooth in V' and V~. Write u; for the limit of Du - v
along I' from within V*, and write u,, for the limit from within V.

Prove that along I' we have the inequalities
HAu, +(1=Xul) >0 if u, <ul

and
HQu, +(1-=XNu}) <0 if u,j' <u,,

for each 0 < )\ < 1.

A surface described by the graph of u : R?> — R is illuminated by
parallel light rays from the vertical e3 direction. We assume the sur-
face has constant albedo and in addition is Lambertian, meaning that
incoming right rays are scattered equally in all directions. Then the
intensity 1 = i(x) of the reflected light above the point z € R? is given
by the formula ¢ = e3 - v, where v is the upward pointing unit normal
to the surface.



