Assignment 1

Exercise (9). Let X be a topological space and $\{U_{\alpha}\}_{\alpha \in A}$ an open covering such that U_{α} is irreducible for every $\alpha \in A$ and $U_{\alpha} \cap U_{\beta} \neq \emptyset$ for every $\alpha, \beta \in A$.

Claim. $X \neq \emptyset$ is irreducible \iff every two non empty open subsets of X have a non empty intersection.

" \Longrightarrow " By contradiction: suppose U and V are two arbitrary non empty open subsets of X such that $U \cap V = \emptyset$.

Let's consider the complements: $U^C \cup V^C = X$ (i.e. we have the union of two proper closed sets whose union is X) but this is a contradiction because by definition of irreducible X cannot be written as union of two proper closed subsets.

" \Leftarrow " By contradiction: suppose U and V are two arbitrary proper closed subsets of X such that $U \cup V = X$.

Let's consider the complements: $U^C \cap V^C = \emptyset$ (i.e. we have the intersection of two non empty open sets whose intersection is empty) but this is a contradiction of the hypothesis made.

Now we can take any two U and V non empty open subsets of X and show that their intersection is not empty.

Since $\{U_{\alpha}\}_{\alpha \in A}$ is an open covering, $\exists i, j \in A$ such that $U_i \cap U \neq \emptyset$ and $U_j \cap V \neq \emptyset$.

Since $U_i \cap U$ and $U_i \cap U_j$ are both non empty open subsets of U_i which is irreducible, we have that: $(U_i \cap U) \cap (U_i \cap U_j) = U \cap U_i \cap U_j \neq \emptyset$.

Since $U \cap U_i \cap U_j$ and $U_j \cap V$ are both non empty open subsets of U_j which is irreducible, we have that: $(U \cap U_i \cap U_j) \cap (U_j \cap V) = U \cap V \cap U_i \cap U_j \neq \emptyset$. Which means that $U \cap V \neq \emptyset$ since by hypothesis $U_i \cap U_j \neq \emptyset$.

Elena Peressi