AG 3 - exercises of the third assignment

Clemente Romano

December 5, 2022

Definition 1. Let X be a qp variety, let $Aut(X)$ be the set of automorphism of X (i.e the isomorphism from X to X), then clearly $Aut(X)$ is a group with respect to the composition operation.

In particular one can consider $Aut(\mathbb{P}^1_{\mathbb{K}})$.

For any

$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{K})
$$

Let φ_A : $\mathbb{P}^1_{\mathbb{K}} \to \mathbb{P}^1_{\mathbb{K}}$ be the map defined in this way

$$
\varphi_A([x_0, x_1]) := [ax_0 + bx_1, cx_0 + dx_1]
$$

so basically $\varphi_A([x]) := [A \cdot x]$. Let $\mathbb{PGL}(2,\mathbb{K}) = \mathbb{P}(GL(2,\mathbb{K})) = {\varphi_A : A \in GL(2,\mathbb{K})}$ Then it's clear that $\mathbb{PGL}(2,\mathbb{K})$ is a subgroup of $Aut(\mathbb{P}_{\mathbb{K}}^1)$ $(\varphi_A \circ \varphi_B = \varphi_{A \cdot B} \text{ therefore } \varphi_{A^{-1}} = (\varphi_A)^{-1})$

Exercise 3. If $\mathbb{K} = \overline{\mathbb{K}}$ then $\mathbb{PGL}(2,\mathbb{K}) = Aut(\mathbb{P}^1_{\mathbb{K}})$

Proof. ⊂ has already been proven, therefore I only prove ⊃

Let $\varphi \in Aut(\mathbb{P}^1_{\mathbb{K}})$, I want to show that $\varphi \in \mathbb{PGL}(2,\mathbb{K})$

Claim : there exists $A \in GL(2, \mathbb{K})$ such that $\varphi_A(\varphi([0, 1])) = [0, 1]$.

This is just an easy linear algebra exercise, in this particular case let $[P_0, P_1] =$ $\varphi([0,1])$, then

if
$$
P_0 \neq 0
$$
 $A = \begin{pmatrix} P_1 & -P_0 \\ -1/P_0 & 0 \end{pmatrix}$ if $P_1 \neq 0$ $A = \begin{pmatrix} P_1 & -P_0 \\ 0 & 1/P_1 \end{pmatrix}$

Since $\mathbb{PGL}(2,\mathbb{K})$ is closed under composition and

$$
\varphi = \varphi_{A^{-1}} \circ (\varphi_A \circ \varphi)
$$

I have that

$$
\varphi \in \mathbb{PGL}(2, \mathbb{K}) \iff \varphi_A \circ \varphi \in \mathbb{PGL}(2, \mathbb{K})
$$

therefore, wlog, I can assume $\varphi([0,1]) = [0,1]$

Now since φ is bijective it is in particular injective, therefore for any $P \in U_0$ $\varphi(P) \in U_0$, therefore I can restrict the domain and the image of φ on U_0 , obtaining $\varphi_{|_{U_0}}$ which will be an automorphism of U_0 . then since $j_0 : \mathbb{A}^1_{\mathbb{K}} \to U_0$ and ρ_0 : $U_0 \rightarrow \mathbb{A}^1_{\mathbb{K}}$ are both isomorphism I have that

$$
\varphi':=\rho_0\circ\varphi_{|_{U_0}}\circ j_0\;:\;\mathbb{A}^1_{\mathbb{K}}\to\mathbb{A}^1_{\mathbb{K}}
$$

Is an automorphism of $\mathbb{A}^1_{\mathbb{K}}$, thus using the theorem about morphism of affine varietis (which needs the closureness of K as hypothesis!) I have that $\varphi \in \mathbb{K}[x]$, in particular since φ has to be invertible and the inverse need to be a morphism, it's easy to see that $\varphi(x) = a + bx$ with $b \neq 0$

Now let

$$
A:=\begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix}
$$

I claim that $\varphi = \varphi_A$

if $P = [0, 1]$ then it's clear that $\varphi(P) = [0, 1] = \varphi_A(P)$ if $P \in U_0$ then $P = [1, P_1]$ for some $P_1 \in \mathbb{K}$ and

$$
\varphi(P) = j_0 \circ \varphi' \circ \rho_0(P) = j_0 \circ \varphi'(P_1) = j_0(a + bP_1) = [1, a + bP_1] = \varphi_A(P)
$$

Thus $\varphi = \varphi_A \in \mathbb{PGL}(2,\mathbb{K})$ as wanted to show

 \Box

Exercise 4. Let φ : $X \to Y$ be a morphism between affine varietis $X \subset \mathbb{A}^n$ and $Y \subset \mathbb{A}^m$, and consider the pull-back φ^* : $\mathcal{O}_Y(Y) \to \mathcal{O}_X(X)$. Prove that $ker \varphi^*$) $I(\varphi(X)) \subset \mathcal{O}_Y(Y)$, where $I(\phi(X))$ denotes the ideal of the image in of φ in the ring $\mathcal{O}_Y(Y)$

Proof.

$$
ker \phi^* = \{ f \in \mathcal{O}_Y(Y) : \varphi^*(f) = 0 \}
$$

= $\{ f \in \mathcal{O}_Y(Y) : \varphi^*(f)(x) = 0 \,\forall x \in X \}$
= $\{ f \in \mathcal{O}_Y(Y) : f(\varphi(x)) = 0 \,\forall x \in X \}$
= $\{ f \in \mathcal{O}_Y(Y) : f(y) = 0 \,\forall y \in Y \}$
= $I(\phi(X))$

 \Box

Exercise 5. Prove that the projection

$$
\pi \; : \; \mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n \,, \quad \pi(a_0, \ldots, a_n) = [a_0 : \cdots : a_n]
$$

is a morphism of qp varietis

Proof. I prove the theorem applying the definition.

First I prove that π is continuos. Let $Z \subset \mathbb{P}^n$ be closed, then $Z = V_H(f_1, \ldots, f_r)$ with $f_i \in \mathbb{K}[x_0, \ldots, x_n]$ all homogeneous. Then it's clear that

$$
\pi^{-1}(Z) = \{x \in \mathbb{A}^{n+1} \setminus \{0\} : \pi(x) \in Z\}
$$

= $\{x \in \mathbb{A}^{n+1} \setminus \{0\} : \pi(x) \in V_H(f_1, \dots, f_r)\}$
= $\{x \in \mathbb{A}^{n+1} \setminus \{0\} : f_1(x) = \dots = f_r(x) = 0\}$
= $\mathbb{A}^{n+1} \setminus \{0\} \cap V(f_1, \dots, f_r)$

Therefore it is clear that $\pi^{-1}(Z)$ is closed in $\mathbb{A}^{n+1} \setminus \{0\}$ Now I prove that for any regular function $\varphi \in \mathcal{O}_{\mathbb{P}^n}(U)$ $\varphi \circ \pi \in \mathcal{O}_{\mathbb{A}^{n+1} \setminus \{0\}}(\pi^{-1}(U))$

Let $P \in \pi^{-1}(U)$, then $\pi(P) = [P] \in U$ so there exists $f, g \in \mathbb{K}[x_0, x_1, \ldots, x_n]$ homogeneous of the same degree such that $g(P) \neq 0$ and $\varphi = f/g$

Observe that $\varphi([x]) = f(x)/g(x)$ (at least when $x \in U \setminus V(g)$), therefore it's clear that $\phi(\pi(x)) = \phi([x]) = f(x)/g(x)$

Since *P* is arbitrary, by definition I have proved
\n
$$
\varphi \circ \pi \in \mathcal{O}_{\mathbb{A}^{n+1} \setminus \{0\}}(\pi^{-1}(U))
$$