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Proposed problems

1. Let X be a separable Banach space and Y a subspace of X. Show that Y ,
endowed with the induced norm, is separable.

2. Let X be a Banach space and Y a finite-dimensional subspace of X. Show that
Y is closed.

3. Let (M,d) be a compact metric space. Show that M is complete and separable.

4. Let (M,d) be a complete metric space and {An, n ∈ N} a countable family of
open and dense subsets of M . Show that the set

A
.
=
⋂
n∈N

An

is dense in M .

5. Let H be a real Hilbert space and a ∈ H a nonzero vector. Show that for every
x ∈ H, we have

dist(x, {a}⊥) = |(x, a)|
∥a∥

.

6. Consider the Hilbert space ℓ∞ with its usual norm ∥ · ∥ℓ∞ and the sets c0
.
=

{(an) ∈ ℓ∞ : an → 0} and c
.
= {(an) ∈ ℓ∞ : an → a ∈ R}. Show that c0 and c are

closed separable subspaces of ℓ∞.

Answer. Let cc(N,R) be the elements with compact support (recall, we are dealing

with functions N → R). Then it is easy to see that c0 = cc(N,R) and that cc(N,Q)

is a countable dense subspace of cc(N,R), and so also of c0. Since c =
⋃

q∈Q(c0 + q)
we obtain that also c is separable.

7. Consider the Hilbert space ℓ2 and a real sequence (an) such that an > 0 for
every n ∈ N and an → +∞. Show that the set

A
.
=

{
u ∈ ℓ2 :

∑
n∈N

an|un|2 ≤ 1

}
is a precompact subset of ℓ2.

Answer. Let T : D(T ) → ℓ2 be the map x −→ y = ax where x, y, a : N → R and

D(T )
.
=

{
u ∈ ℓ2 :

∑
n∈N

an|un|2 < ∞

}
.

Now, it is easy to see that the above map is invertible, and that ℓ2 ∋ y −→
x = T−1y := y

a ∈ D(T ) ⊂ ℓ2 is in fact a compact operator. Then, since A =

T−1Dℓ2(0, 1) we conclude that A is relatively compact.
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8. Let H be a Hilbert space and C1, C2 two nonempty, closed and convex subsets
such that C1 ⊂ C2. Given x ∈ H, call PCi

x the projection of x on Ci and d(x,Ci)
the distance of x from Ci (i = 1, 2). Show that

∥PC1x− PC2x∥2 ≤ 2
(
d(x,C1)

2 − d(x,C2)
2
)
, ∀x ∈ H.

9. Let H be a complex Hilbert space and T ∈ L(H) an operator such that ∥T∥ ≤ 1.
Show that

(a) Tx = x if and only if (Tx, x) = ∥x∥2;
(b) ker(I − T ) = ker(I − T ∗).

Answer. In (a) the implication ⇒ is obvious. So let us consider ⇐ and let us
consider a nonzero x ∈ H s.t. (Tx, x) = ∥x∥2. Then ∥x∥2 ≤ ∥Tx∥∥x∥ ≤ ∥x∥2,
where we used ∥T∥ ≤ 1, implies ∥Tx∥ = ∥x∥. Now, for x̂ = x/∥x∥ consider the
orthogonal decomposition

Tx = (Tx, x̂)x̂+ (Tx− (Tx, x̂)x̂) = x+ (Tx− (Tx, x̂)x̂) .

Then, by ∥Tx∥ = ∥x∥ and

∥Tx∥2 = ∥x∥2 + ∥Tx− (Tx, x̂)x̂∥2,

we conclude that Tx− (Tx, x̂)x̂ = 0, and so Tx = x.

10. Find a Banach space X and a subset S ⊆ X such that S is strongly closed but
not weakly closed.

Answer. In infinite dimension, take S = {x ∈ X : ∥x∥ = 1}. In general, if
f ∈ C0(X,R) is a continuous convex function with limx→∞ f(x) = +∞, then for
Sr = {x ∈ X : f(x) = r} is strongly closed but , by repeating the proof in the special
case f(x) := ∥x∥, the weak closure is {x ∈ X : f(x) ≤ r}.

11. Find a Banach space X, a bounded closed subset S ⊆ X and a continuous
function f : S → R such that

sup
x∈S

f(x) = +∞.

Answer. Recall that one of the exercises of Cuccagna’s notes states the following:
Let X be an infinite dimensional Banach space. Show that for any r ∈ (0, 1/2)

there exists a sequence {vn} in X such that ∥vn∥X = 1 and the closed balls

DX(vn, r) are pairwise disjoint. Show also that
⋃∞

n=1 DX(vn, r) is a closed set
in X.

if we assume the above statement, let any g ∈ C0(X,R) with g(0) ̸= 0 and
g(x) = 0 for ∥x∥ ≥ 1/2. Then consider

f(x) =

∞∑
n=1

ng

(
x− vn

r

)
Then each term of the sum is zero outside DX(vn, r/2), so it is easy to conclude

that f ∈ C0(X,R). Obviously we have
⋃∞

n=1 DX(vn, r) ⊆ DX(0, r + 1) =: S, so we
have the desired result.
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12. Let X be a Banach space and K ⊆ X a compact subset. Show that any
sequence in K which converges weakly, actually converges strongly.

Answer. If false, there would be an example of xn ⇀ x which does not converge
strongly to x. On the other hand, for any strongly convergence subsequence {xnk

},
we have necessarily xnk

k→+∞−−−−−→ x (because of xnk
⇀ x). But the fact that it is false

that xn
n→+∞−−−−−→ x, implies that there exists an ϵ0 > and a subsequence {xnk

} with
∥xnk

− x∥ ≥ ϵ0. By compactness, {xnk
} has a subsequence that converges strongly

at a point y ∈ K with ∥y − x∥ ≥ ϵ0. But we have just discussed the fact that we
must have y = x. So we get a contradiction.

13. Let (X, d) be a metric space. Given two subsets A,B ⊆ X, set

dist(A,B)
.
= inf{d(x, y) : x ∈ A, y ∈ B}.

a) Given x ∈ X and positive numbers 0 < ρ < r, show that there exists δ > 0
such that

dist(B(x, ρ), B(x, r)c) ≥ δ.

b) Given a proper, nonempty, closed subset C ⊆ X, show that there exists a
ball B(x, r) in X such that dist(B(x, r), C) > 0.

14. Let X,Y be Banach spaces and T ∈ L(X,Y ) a compact operator. Let (xn)
be a sequence in X weakly converging to x in X. Show that the sequence (Txn)
converges strongly to Tx in Y .

Answer. We know that there is C > 0 such that ∥xn∥ < C for all n. Then (Txn)

is a sequence in K := TDX(0, C), which is a compact subspace of Y . Since T is
continuous for the weak topologies, we know Txn ⇀ Tx. Then use the result in
Exercise 12.

15. Let α > 0 and consider the sequence of functions given by

un(x)
.
= min{1, |x|−α}χB(0,n)(x), n ∈ N, x ∈ Rd.

Study the convergence of (un) in the strong and weak (weak* if p = ∞) topology
of Lp(Rd) for p ∈ [1,∞].

Answer. If we set u(x) := min{1, |x|−α}, we have u ∈ Lp(Rd) for ap > d.
Now u(x) − un(x) = χR\B(0,n)(x)u(x) which converges monotonically to 0 for any

x ∈ Rd. For d/a < p < ∞, by dominated convergence, we obtain un
n→∞−−−−→ u in

Lp(Rd). If p = ∞, we have

0 ≤ u(x)− un(x) = χR\B(0,n)(x)u(x) ≤ |n|−α,

and so we get un
n→∞−−−−→ u in L∞(Rd). Obviously, the above implies also weak

convergence. For p ≤ d/a, it is easy to check that ∥un∥Lp(Rd)
n→∞−−−−→ ∞, and so the

sequence in not weakly convergent.

16. Let H be a Hilbert space, T ∈ L(H) and T ∗ the adjoint of T .

(a) Show that ∥T ∗T∥ = ∥TT ∗∥ = ∥T∥2.
(b) Show that T ∗T and TT ∗ are selfadjoint operators.
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17. Let H be a Hilbert space and {Mk, k ∈ N} a countable collection of finite-
dimensional subspaces of H. Call Pk the orthogonal projector on Mk (k ∈ N) and
set

P
.
=

∞∑
k=1

2−kPk.

Show that P is a compact operator in L(H).

Answer. First of all, we have ∥Pk∥ ≤ 1 for all k. Then

∥P − SN∥ ≤
∞∑

k=N+1

2−k = 2−N N→+∞−−−−−→ 0, where SN :=

N∑
k=1

2−kPk.

Since SN is finite rank for any N , we get that P is compact.

18. Consider the sequence of functions given by

un(x, y) =
(
cos
(x
n

)
+ sin

(x
n

))
(1+e−ny2

), (x, y) ∈ I
.
= [−1, 1]×[−1, 1], n ∈ N.

Study the convergence of (un) in the strong and weak topology of Lp(I) (weak* if
p = ∞).

Answer. First of all, we have

un(x, y)− vn(x, y) =
(
cos
(x
n

)
+ sin

(x
n

))
e−ny2

for

vn(x, y) := cos
(x
n

)
+ sin

(x
n

)
.

It is straightforward that for p < ∞ we have

∥un − vn∥Lp(I) ≤ 2∥e−ny2

∥Lp(0,1) ≤ 2n− 1
2p ∥e−y2

∥Lp(R)
n→∞−−−−→ 0.

Since

∥un − vn∥L∞(I) ≥ ∥vn(·, 0)∥L∞((0,1)) ≥ |vn(0, 0)| = 1,

we obviously do not have un − vn
n→∞−−−−→ 0 strongly in L∞(I). However, for f ∈

L1(I) we have

|⟨un − vn, f⟩| ≤ 2

∫
I

e−ny2

|f(x, y)|dxdy n→∞−−−−→ 0

by dominated convergence, and so un−vn ⇀ 0 weakly* in L∞(I). Since (use bounds
of errors for alternating series)

|vn(x, y)− 1| ≤
∣∣∣cos(x

n

)
− 1
∣∣∣+ | sin

(x
n

)
| ≤ x2

2n2
+

x

n
≤ 3

2n

we have vn
n→∞−−−−→ 1 in C0(I), and so in particular also for all Lp(I). So, summing

up, un
n→∞−−−−→ 1 strongly in Lp(I) for p < ∞ and un ⇀ 1 weakly*, but not strongly,

if p = ∞.

19. Let H be a complex Hilber space, T ∈ L(H) and (xn) a sequence in H weakly
converging to x ∈ H. Show that the sequence (Txn) converges weakly to Tx.
Answer. We have

(Txn, y) = (xn, T
∗y)

n→+∞−−−−−→ (x, T ∗y) = (Tx, y) for all y ∈ H =⇒ Txn ⇀ Tx.
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20. Given x ∈ R, let B(x, 1) be the open unit ball of center x in R. Consider
a sequence (xn) in R and define the sequence of functions un

.
= χB(xn,1), where

χ denotes the characteristic function. Study the strong and weak convergence
of the sequence (un) in the space L2(R) (that is to say establish if the sequence
is converging in such topologies and, in affirmative case, find the limit), in the
following cases:

(a) xn → 0;
(b) |xn| → +∞.

Answer. Notice that un(x) = χB(0,1)(x − xn) and that in Cuccagna’s notes it is

shown that if xn
n→∞−−−−→ ∞ then χB(0,1)(·−xn) ⇀ 0 in L2(R). In the case xn

n→∞−−−−→ 0

we have, instead, χB(0,1)(· − xn)
n→∞−−−−→ χB(0,1) strongly in L2(R), by the fact that

the group Rd is strongly continuous (but not continuous in the operator norm) in
L2(R).

21. Let H be a Hilbert space endowed with the inner product ⟨·, ·⟩ and D a subset
of H such that lsp(D) is dense in H. Show that, given a bounded sequence (xn) in
H, such that ⟨xn, y⟩ → ⟨x, y⟩ for any y ∈ D, then xn ⇀ x.

22. Let I = [0, 1] ⊆ R and consider the Hilbert space X = L2(I,R). Set

(Tu)(x)
.
=

∫ x

0

u(t) dt.

Show that T ∈ L(X) and find the adjoint T ∗ of T . Answer. Continuity is very

simple, since, in fact, T is a bounded operator from L2(I,R) into C1/2(I), by, for
x < y,

|Tu(x)− Tu(y)| ≤
∫ y

x

|u(t)|dt ≤ |x− y| 12 ∥u∥L2(I)

Notice that this implies that TDL2(I)(0, 1) is relatively compact in C0(I), and so

also in L2(I), which implies that T is a compact operator. For the adjoint∫ 1

0

Tu(x)v(x)dx =

∫ 1

0

dxv(x)

∫ x

0

u(t)dt =

∫ 1

0

dt u(t)

∫ 1

t

v(x)dx =⇒ T ∗v(x) =

∫ 1

x

v(t)dt.

23. Consider the set E
.
= {en, n ∈ N} in ℓ2 defined by

en(k) = δn,k.

Show that E is a Hilbert basis in ℓ2.

24. Let U be a bounded family in L1(R) and ρ ∈ C∞
c (R). Show that the family

{ρ ⋆ u, u ∈ U} is equicontinuous.

Answer. Since ρ ∈ C∞
c (R), ρ is uniformly continuous, and so

∀ ϵ > 0 ∃ δϵ > 0 s.t. |x1 − x2| < δϵ =⇒ |ρ(x1)− ρ(x2)| < ϵ

Since there exists C > 0 s.t. ∥u∥L1(R) < C for all u ∈ U , for |x1 −x2| < δϵ we have

|ρ ⋆ u(x1)− ρ ⋆ (x2)| ≤
∫

|ρ(x1 − y)− ρ(x2 − y)| |u(y)|dy < Cϵ for all u ∈ U .
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This implies that {ρ ⋆ u, u ∈ U} is equicontinuous.

25. Let H be a Hilbert space and T ∈ L(H). Show that T is compact if and only
if the adjoint T ∗ is compact.

Answer. T is compact if and only if for any ϵ > 0 there exists a finite rank Tϵ

s.t. ∥T − Tϵ∥ < ϵ. Notice now, that ∥T ∗ − T ∗
ϵ ∥ = ∥T − Tϵ∥ < ϵ. So, if T ∗

ϵ is finite
rank, then we conclude the exercise. So let S be finite rank. Then

S =

n∑
j=1

(·, fj)gj .

In the special case S = (·, f1)g1
(Su, v) = ((u, f1)g1, v) = (u, f1)(g1, v) = (u, (g1, v)f1) = (u, S∗v).

So

S∗v = (g1, v)f1 = (v, g1)f1.

So, more generally

S∗ =

n∑
j=1

(·, gj)fj ,

which implies that T ∗
ϵ is finite rank.

26. Let H be a Hilbert space on C, {ek, k ∈ N} an orthonormal system in H and
(λk) an element of ℓ1(C). Set

Tx
.
=

∞∑
k=1

λk(x, ek)ek.

Show that T is a compact operator in L(H).

27. Consider the Hilbert space E
.
= L2(Rn,C) and let K ∈ L2(Rn×Rn,C). Define

(TKu)(x)
.
=

∫
Rn

K(x, y)u(y) dy.

Show that TK ∈ L(E) and that TK is selfadjoint if and only if K(x, y) = K(y, x)
for any pair (x, y) ∈ Rn × Rn.

Answer. u, v ∈ C0
c (Rn) we have∫

Rn

(TKu)(x)v(x)dx =

∫
Rn

∫
Rn

K(x, y)u(y) dyv(x)dx =

∫
Rn

∫
Rn

K(x, y)v(x)dxu(y) dy

=

∫
Rn

∫
Rn

K(y, x)v(y)dyu(x) dx =

∫
Rn

u(x)TSv(x)dx

with S(x, y) = K(y, x). If the operator is selfadjoint, we conclude that∫
Rn

u(x)TSv(x)dx =

∫
Rn×Rn

u(x)v(y)K(y, x)dxdy =

∫
Rn

u(x)TKv(x)dx

=

∫
Rn×Rn

u(x)v(y)K(x, y)dxdy for all u, v ∈ C0
c (Rn).
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Since C0
c (Rn)

⊗
C0

c (Rn) generates all L2(Rn ×Rn,C), from the above we conclude∫
Rn×Rn

f(x, y)K(y, x)dxdy =

∫
Rn×Rn

f(x, y)K(x, y)dxdy for all f ∈ L2(Rn × Rn,C).

This implies K(x, y) = K(y, x) for a.a. (x, y) ∈ Rn × Rn.

28. Let H be a Hilbert space and (un) an orthonormal sequence in H. Show that
(un) converges weakly to zero. Answer. For any f ∈ H we have

f =

∞∑
n=1

(f, un)un with ∥f∥2 =

∞∑
n=1

|(f, un)|2.

Obviously the above implies (un, f)
n→+∞−−−−−→ 0 for any f ∈ H. This is equivalent to

un ⇀ 0.

29. Let p ∈ [1,∞[ and f ∈ Lp(R). Show that for every δ > 0 we have

meas ({x : |f(x)| > δ}) ≤ δ−p∥f∥pp.

Answer. This is the well known, and simple to prove, Chebyshev’s inequality.

30. Let E ⊆ R be a measurable set with finite measure, p ∈ ]1,∞], (un) a sequence

in Lp(E) and u ∈ Lp(E) such that un ⇀ u for p < ∞ or
∗
⇀ if p = ∞. Prove that

the sequence (un) is equiintegrable.

31. Let H be a real Hilbert space, M ⊆ X a closed subspace and P the orthogonal
projector on M . Show that P is selfadjoint. Answer. Recall that Px ∈ M with

(Px− x, y) = 0 for all x ∈ H and y ∈ M .

Notice that H = M ⊕M⊥. Then, since

(x, (P ∗ − 1)y) = 0 for all x ∈ H and y ∈ M =⇒ P ∗y = y for all y ∈ M .

So P ∗ = P in M . Next,

0 = (Px, y) = (x, P ∗y) for all x ∈ H and y ∈ M⊥.

So P ∗y = 0 for y ∈ M⊥. Since we also have Py = 0 for y ∈ M⊥, we conclude
P ∗ = P everywhere in H.

32. Consider the space X = C0(Rd)
.
= Cc(Rd)

∥·∥∞
. Given S ∈ X ′ define

U
.
=
{
O ⊆ Rd open: ⟨S, u⟩X′,X = 0 ∀u ∈ X with suppu ⊆ O

}
.

Then introduce

N
.
=
⋃
O∈U

O (domain of nullity of S); suppS
.
= Rd \N (support of S).

(i) Given a ∈ Rd, set

Ta(u) = u(a).

Show that Ta ∈ X ′ and find its norm and support.
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(ii) Let (an) be a sequence in Rd, consider the sequence (Sn) = (Tan) and the
series

S =

∞∑
n=1

3−nSn.

(a) Show that S ∈ X ′ and find its norm and support.
(b) Show that there exists a subsequence (Snk

) weakly* converging in X ′.

Answer. We have ∥Ta∥ = 1 as can be seen that more generally considering

σNf =

N∑
n=1

3−nf(an) for σN :=

N∑
n=1

3−nSn

and, since we can always find f ∈ Cc(Rd) of norm 1 and with f(an) = 1 for all
n = 1, ..., N , we get

∥σN∥ =

N∑
n=1

3−n = 3−1 1− 3−N−1

1− 3−1
= 2−1(1− 3−N−1)

The implies that for all N < M we have

∥σN − σM∥ =

M∑
n=N+1

3−n <

∞∑
n=N+1

3−n = 3−N−1 3

2
.

Hence, by completeness of X ′, there exists S limit of the above sum, with ∥σN∥ N→+∞−−−−−→
2−1 = ∥S∥. I skip the discussion of the support and go to the last question. Given
any sequence (an) in Rd there always exists a subsequence (ank

) which either a limit
a ∈ Rd or which goes to infinity. In the first case, for any f ∈ C0(Rd), we have

Tank
f = f(ank

)
k→+∞−−−−−→ f(a) = Taf

while in the second case we have

Tank
f = f(ank

)
k→+∞−−−−−→ 0,

since it is easy to see that C0(Rd) = {f ∈ C0(Rd) : limx→∞ f(x) = 0}. In the first
case Tank

⇀ Ta while in the second Tank
⇀ 0.

33. Consider the sequence of functions given by un(t) = sin(nt), with n ∈ N and
t ∈ I

.
= [0, 2π]. Study the convergence of (un) in the uniform topology of C(I), in

the strong topology of L∞(I) and in the weak* topology of L∞(I) (that is to say
establish if the sequence is converging in such topologies and, in affirmative case,
find the limit). Answer. Clearly (sin(nt)) is not convergent strongly, while for any

f ∈ L1(I) we have ∫
I

sin(nt)f(t)dt
n→+∞−−−−−→ 0

by the Riemann Lebesgue lemma, and so sin(nt) ⇀ 0 in the weak* topology of
L∞(I).
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34. Let X = C0(R2,R), endowed with the uniform norm, and (an) a sequence in
R+. Set

⟨fn, u⟩
.
=

∫ 2π

0

u(an cos θ, an sin θ) dθ, ∀n ∈ N, ∀u ∈ X.

Show that fn ∈ X ′ for every n ∈ N and find its norm and support.
Suppose an → 0+ and study the convergence of the sequence (fn) in the strong

and weak* topology of X ′ (that is to say establish if the sequence converges in such
topologies and, in the affirmative case, find the limit).

Answer. We have fn =
1

an
dx|∂D(0,an), where dx|∂D(0,an) is the restriction of

the Lebesgue measure of R2 on the circle ∂D(0, an) and with ∥fn∥(C0)′ = 2π. It is
elementary that for any u we have∫ 2π

0

u(an cos θ, an sin θ) dθ
n→+∞−−−−−→ u(0),

and so fn ⇀ δ(x) *–weakly . But it is easy to show that ∥fn − fm∥(C0)′ ≥ 2π for
an ̸= am.

35. Given α ∈ R and R > 0, consider the function u defined on Rd by

u(x) =

{
|x|α, x ̸= 0

0, x = 0.

Establish for which p ∈ [1,+∞] we have u ∈ Lp(BRd(0, R)).

Answer. We need pα > −d. So, for example, if p = ∞, then α ≥ 0.

36. Let E ⊆ Rd be a measurable set, p, q ∈ [1,∞[ and u ∈ Lp(E) ∩ Lq(E). Given
α ∈ [0, 1], set

1

r

.
=

1− α

p
+

α

q
.

Show that u ∈ Lr(E) and that

∥u∥Lr(E) ≤ ∥u∥1−α
Lp(E) · ∥u∥

α
Lq(E).

Answer. We have

∥u∥Lr(E) = ∥ |u| ∥Lr(E) = ∥ |u|1−α|u|α ∥Lr(E) ≤ ∥ |u|1−α ∥
L

p
1−α (E)

∥|u|α ∥
L

p
α (E)

by Hölder

= ∥u∥1−α
Lp(E) · ∥u∥

α
Lq(E),

where we use the identity ∥|f |a∥Lq = ∥f∥aLaq .

37. Let I
.
= [0, 1] and consider the sequence of functions given by

un(t) = e−nt, t ∈ I, n ∈ N.
Study the convergence of the sequence (un) in the following spaces:

(i) C0(I) endowed with the uniform topology;
(ii) L1(I) endowed with the strong topology;
(iii) L1(I) endowed with the weak topology;
(iv) L∞(I) endowed with the strong topology;

9



(v) L∞(I) endowed with the weak* topology.

Answer. We have limn→+∞ e−nt = 0 if t > 0 and 1 if t = 0. So, clearly
the sequence is not convergent uniformly in [0, 1] (since the limit function is not
continuous). This also excludes convergence in L∞(I) endowed with the strong
topology. We have

0 <

∫ 1

0

e−ntdt = n−1

∫ n

0

e−tdt < n−1 n→+∞−−−−−→ 0,

which implies that e−nt n→+∞−−−−−→ 0 strongly, and so also weakly, in L1(I). Finally,
if f ∈ L1(I) ∫ 1

0

e−ntf(t)dt
n→+∞−−−−−→ 0,

by dominated convergence, and shows e−nt ⇀ 0 in L∞(I) endowed with the weak*
topology.

38. Let E ⊆ R be a measurable set with finite measure and let m ∈ L∞(E). Set

(Tu)(x)
.
= m(x) · u(x) for a.e. x ∈ E.

Given p, q ∈ [1,∞[, with p ≥ q, show that T ∈ L(Lp(E), Lq(E)) and provide an
estimate of its norm.

Answer. We have

∥mu∥Lq(E) ≤ ∥m∥L∞(E)∥u∥Lq(E) = ∥m∥L∞(E)∥1Eu∥Lq(E) ≤ ∥m∥L∞(E)|E| 1r ∥u∥Lp(E),

where |E| is the measure of E and 1
p = 1

r + 1
q .

39. Let X = Cc(R) and T : X → X be a linear application such that

∥Tu∥L1 ≤ ∥u∥L1 ; ∥Tu∥L2 ≤ ∥u∥L1 ∀u ∈ X.

Given r ∈ [1, 2], show that there exists T̃ ∈ L(L1, Lr) such that ∥T̃∥L(L1,Lr) ≤ 1

and T̃ |X = T .

Answer. This is part of a more general result, called the Riestz interpolation
Theorem. Here is just a consequence ot Hölder’s inequality, because for u ∈ Cc(R),

by exercise 36, using
1

r
=

1− 2
r′

1
+

2
r′

2

∥Tu∥Lr ≤ ∥Tu∥1−
2
r′

L1 ∥Tu∥
2
r′
L2 ≤ ∥u∥1−

2
r′

L1 ∥u∥
2
r′
L1 = ∥u∥L1 .

Then, by the density of Cc(R) in L1(R), we get the unique extension T̃ ∈ L(L1, Lr)

with ∥T̃∥L(L1,Lr) ≤ 1 and T̃ |X = T .

40. Consider the sequence of functions given by

un(x, y) = cos(nx)e−ny, (x, y) ∈ I
.
= [0, 2π]× [0, 2π], n ∈ N.

(a) Study the equicontinuity of (un) on I.
(b) Study the convergence of (un) in the uniform topology of C(I), in the strong

topology of L∞(I) and in the weak* topology of L∞(I).
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Answer. It is not equicontinuous. Indeed, for y = 0 and for fixed m and n = 2mk
we have

cos(0)− cos
(
2mk

π

2m

)
= 1− (−1)k.

Since here π
2m is arbitrarily close to 0 for m ≫ 1, we see that equicontinuity in

the origin is false. Since un(x, y)
n→+∞−−−−−→ 0 pointwise for y > 0 and un(0, 0) ≡ 0,

there can be no uniform convergence in C(I), nor in the strong topology of L∞(I)
(which would imply uniform convergence in C(I)). But there is weak* convergence
in L∞(I) to 0, like in exercise 37.

41. Let X = C0(R2,R) endowed with the uniform topology and consider the family
of subsets of R2 given by

Aα
.
=
{
(x, y) ∈ R2 : y > α|x|, x2 + y2 < α−2

}
, α > 0.

Set

Tαu
.
=

∫
Aα

u(x, y) dxdy, α > 0.

(a) Show that Tα ∈ X ′ for every α > 0 and find its norm and support.
(b) Study the convergence of the family (Tα)α>0 in the strong and weak* topol-

ogy of X ′ when α → 0+ and when α → +∞.

Answer. We have

|Tαu| ≤
∫
Aα

|u(x, y)|dxdy ≤
∫
Aα

dxdy∥u∥L∞ = |Aα|∥u∥L∞ .

So ∥Tα∥ ≤ |Aα| and it is easy to show that there is equality. Finally,

|Aα| = 2
(π
2
− arctanα

) 1

α2
.

We obviously have Tα
α→+∞−−−−−→ 0 strongly, while we cannot have weak* convergence

for α ↘ 0 because ∥Tα∥
α→0+−−−−→ +∞.

42. Let I = [0, 1], X = C(I,R) and Y = L2(I). Set

(Tu)(x)
.
=

∫ x

x2

u(t) dt.

(a) Show that T ∈ L(X) and establish if T (BX
1 ) is relatively compact in X.

(b) Show that T ∈ L(Y ) and establish if T (BY
1 ) is relatively compact in Y .

Answer. One can write T = A−B with

Au(x) =

∫ x

0

u(t) dt

Bu(x) =

∫ x2

0

u(t) dt

11



Using Hölder inequality, for x1 < x2,

|Au(x1)−Au(x2)| ≤
∫ x2

x1

|u(t)|dt ≤ |x1 − x2|
1
2 ∥u∥L2(I)

|Bu(x1)−Bu(x2)| ≤
∫ x2

2

x2
1

|u(t)|dt ≤ |x2
1 − x2

2|
1
2 ∥u∥L2(I) ≤

√
2|x1 − x2|

1
2 ∥u∥L2(I).

Then T : Y → C
1
2 (I) is bounded, and hence T (BY

1 ) is bounded in X and equicon-
tinuous. This means that T : Y → X is compact and, a fortiori, also the other
maps T : Y → Y and T : X → X.

43. Consider the sequence of functions given by

un(x, y) = sin

(
n2x

n+ 1

)
ey/n, (x, y) ∈ I

.
= [0, 2π]× [0, 2π], n ∈ N.

(a) Study the equicontinuity of (un) on I.
(b) Study the convergence of (un) in the uniform topology of C(I); in the strong

and in the weak* topology of L∞(I).

Answer. Using

1

1 + 1
n

= 1− 1

n
+O

(
1

n2

)
we have

un(π/2, 0) = sin

(
n

π
2

1 + 1
n

)
= sin

(
n
π

2
− π

2
+O

(
1

n

))
= − cos

(
n
π

2
+O

(
1

n

))
sin
(π
2

)
= − cos

(
n
π

2
+O

(
1

n

))
= − cos

(
n
π

2

)
cos

(
O

(
1

n

))
+ sin

(
n
π

2

) (
O

(
1

n

))
= − cos

(
n
π

2

)
+O

(
1

n

)
and

un(π/2− π/(2n), 0) = sin

(
n

(
π
2 − π

2n

)
1 + 1

n

)
= sin

(
n
π

2
− π +O

(
1

n

))
= − sin

(
n
π

2
+O

(
1

n

))
.

For n = 2k we have

un(π/2− π/(2n), 0)− un(π/2, 0) = cos (kπ)− sin

(
kπ +O

(
1

k

))
+O

(
1

k

)
= cos (kπ)− sin (kπ) +O

(
1

k

)
= (−1)k +O

(
1

k

)
.

This excludes equicontinuity in (π/2, 0), which would require that for any ϵ > 0
there exists δ > 0 such that∣∣∣x− π

2

∣∣∣ < δ =⇒ |un(x, 0)− un(π/2, 0)| < ϵ for all n.

12



There is no strong convergence since otherwise we would have equicontinuity, which
we have just excluded. On the other hand, for any f ∈ C0(I) we have∫

I

un(x, y)f(x, y)dxdy =

∫ 2π

0

dyey/n
∫ 2π

0

sin

(
n2x

n+ 1

)
f(x, y)dx

=

∫ 2π

0

dyey/n
∫ 2π

0

sin

(
nx

(
1− 1

n
+O

(
1

n2

)))
f(x, y)dx

=

∫ 2π

0

dyey/n
∫ 2π

0

sin

(
nx− x+O

(
1

n

))
f(x, y)dx

=

∫ 2π

0

dyey/n
∫ 2π

0

sin (nx) cos

(
x+O

(
1

n

))
f(x, y)dx

−
∫ 2π

0

dyey/n
∫ 2π

0

cos (nx) sin

(
x+O

(
1

n

))
f(x, y)dx =: In + IIn.

We claim that In
n→+∞−−−−−→ 0 and IIn

n→+∞−−−−−→ 0. We will prove only the first limit,
since the second is similar. We have

In =

∫ 2π

0

dyey/n
∫ 2π

0

sin (nx) cos (x) f(x, y)dx+O

(
1

n

)
.

Then, for f(x, y) = a(x)b(y)

In ≤
∫ 2π

0

dye2π|b(y)|
∣∣∣∣∫ 2π

0

sin (nx) cos (x) a(x)dx

∣∣∣∣+O

(
1

n

)
.

Since by Riemann-Lebesgue∫ 2π

0

sin (nx) cos (x) a(x)dx
n→+∞−−−−−→ 0

we get In
n→+∞−−−−−→ 0 by dominated convergence. This extends by linearity for all

f ∈ L1(0, 2π)
⊗

L1(0, 2π) and, since the un are uniformly bounded in n, by density,
to all f ∈ L1(I).

44. Let X = C0(R2,R) endowed with the uniform norm and consider the family
of subsets of R2 given by

Aα
.
=
{
(x, y) ∈ R2 : x > 0, y > α|x|, x2 + y2 < α2

}
, α > 0.

Set

Tαu
.
=

1

α2

∫
Aα

u(x, y) dxdy, α > 0.

(a) Show that Tα ∈ X ′ for any α > 0 and find its norm and support.
(b) Establish if the family (Tα)α>0 converges in the strong and weak* topology

of X ′ when α → 0+ and, in affirmative case, determine the limit T0.
(c) Find norm and support of T0.

45. Let I = [0, 1], X = C(I,R) and α(x)
.
= min{1, 2x}. Set

(Tu)(x)
.
=

∫ α(x)

0

|u(t)|2 dt.

Establish if T ∈ L(X) and if T (BX
1 ) is relatively compact in X.

13



46. Consider the following family of Cauchy problems:{
y′ = 1

1+ty t > 0

y(0) = 1 + 1
n n ∈ N.

(a) Show that for every n ∈ N there exists a solution yn(·) defined on the whole
R+.

(b) Show that the sequence (yn) amdits a subsequence uniformly converging
on each compact subinterval of R+.

Answer. First of all, for y(0) > 0 the corresponding solution is positive and strictly
growing. Suppose that one of these solutions, with initial value y0 > 0, has maxi-
mum forward time of existence [0, t1). We need to show that t0 = +∞. If not and
t1 < +∞, then, by monotonicity, the limit lim

t→t−1

y(t) exists. If this limit is finite

and equals to y1, by 0 < y0 < y1 we have y1 ∈ R+. but then, considering{
y′ = 1

1+ty t > 0

y(t1) = y1

it is easy to see that we can extend the previous equation beyond [0, t1). So we get
a contradiction, and lim

t→t−1

y(t) = +∞. Let us show that also this is impossible. Let

0 < t2 < t1 with y(t2) ≥ 1. Then, for t2 < t < t1 we have y(t) > y(t2)

y(t)− y(t2) =

∫ t

t2

y′(s)ds =

∫ t

t2

1

1 + sy(s)
ds ≤

∫ t

t2

1

1 + t2
dt =

t− t2
1 + t2

t→t−1−−−→ t1 − t2
1 + t2

.

Hence +∞ = lim
t→t−1

(y(t)−y(t2)) ≤
t1 − t2
1 + t2

, which obviously is a contradiction. So we

conclude that if y(0) = y0 > 0, the corresponding solution is defined in [0,+∞). The
uniform convergence on compact intervals, is a consequence of the ”well posedness”
of solutions of the Cauchy problem for ODE’s, which is a very general fact. Suppose

that (y0n) is a sequence in R+ with y0n
n→+∞−−−−−→ y0 with y0 ∈ R+. Then we can

prove that the yn
n→+∞−−−−−→ y in C0([0, T ]) for any T > 0, where yn(t) = y0n and

y(0) = y0 using the Growall inequality. From

y′ − y′n = f(t, y)− f(t, yn)

we get, after some elementary computations,

|y(t)− yn(t)| ≤
(
1 +

∫ t

0

An(s)ds

)
|y0 − y0n|+

∫ t

0

An(s)|y(s)− yn(s)|ds

with An(s) :=
|f(s, y(s))− f(s, yn(s))|

|y(s)− yn(s)|
.

Notice now that

An(s) ≤
∫ 1

0

|∂yf(s, yn(s) + τ(y(s)− yn(s)))|dτ ≤ sup {|∂yf(s, y)| : s ∈ [0, T ] and y ≥ 0} ≤ T

So we get

|y(t)− yn(t)| ≤
(
1 + T 2

)
|y0 − y0n|+ T

∫ t

0

|y(s)− yn(s)|ds.

14



Now, Gronwall’s inequality yields

|y(t)− yn(t)| ≤ eTt
(
1 + T 2

)
|y0 − y0n|

which yields yn
n→+∞−−−−−→ y in C0([0, T ]).

47. Consider the sequence of functions given by

un(x, y) = sin

(
nx

n+ 1

)
(1 + e−n|y|), (x, y) ∈ I

.
= [− 1, 1]× [− 1, 1], n ∈ N.

(a) Study the equicontinuity of (un) on I.
(b) Study the convergence of (un) in the uniform topology of C(I), in the strong

topology of L∞(I) and in the weak* topology of L∞(I).

48. Let I = [0, 1], X = C0(I) and m ∈ X. Set

(Tmu)(x)
.
= m(x)u(x), u ∈ X, x ∈ I.

Show that Tm ∈ L(X) and that it is compact if and only if m(x) = 0 for every
x ∈ I.

Answer. We have σ(Tm) = m(I). We must have 0 ∈ m(I) and m(I)\{0} must
be discrete and m(I) must be connected. So, summing up, m(I) = {0}, which
implies m ≡ 0 and Tm = 0.

49. Let B the closed unit ball in R, endowed with the euclidean norm ∥ · ∥. Define

un(x)
.
= |sin(∥x∥)|

1
n n ∈ N.

Study the equicontinuity of the family
{
un, n ∈ N

}
on B. Answer. Recall that the

condition of the Ascoli Arzela Theorem are both sufficient and necessary. Obviously
the above sequence is is bounded in C0(B). Notice that pointwise we have

|sin(|x|)|
1
n

n→+∞−−−−−→
{
1 if x ̸= 0
0 if x = 0

and this excludes the existence of a subsequence converging uniformly. So the se-
quence is not equicontinuous.

50. Consider the sequence of functions given by

un(x, y) =
e−

ny
n+1

(1 + e−nx2)
, (x, y) ∈ I

.
= [− 1, 1]× [− 1, 1], n ∈ N.

Study the convergence of (un) in the uniform topology of C(I), in the strong topol-
ogy and in the weak* topology of L∞(I).

51. Let φ ∈ Cc(R) and (an) a sequence in R. Define

un(x)
.
= φ(x− an), x ∈ R, n ∈ N.

a) Show that un ∈ Lp(R) for every p ∈ [1,∞].
b) Study the relative compactness of the sequence (un) in the strong and in the

weak topology of Lp (weak* if p = ∞). That is to say: establish if and for which
p ∈ [1,∞] there exists a converging subsequence in such topologies.

52. Let I = [0, 1] ⊂ R and B
.
=
{
u ∈ C1(I) : ∥u′∥L2(I) ≤ 1

}
.
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a) Show that B is an equicontinuous family.
b) Given a sequence (un) in {u ∈ B : u(0) = 0, u(1) = 1}, show that there exist

u ∈ C0(I) and a subsequence (unk
) which converges uniformly to u.

c) Show by a counterexample that property b) does not hold in B.

53. Let B the closed unit ball in Rd, endowed with the euclidean norm ∥ · ∥. Set

un(x)
.
= e−n∥x∥ n ∈ N.

Study the equicontinuity of the family
{
un, n ∈ N

}
on B.

54. Consider the sequence of functions given by

un(x, y) = min
{
n, |x|− 1

2

}
sin
( ny

n+ 1

)
, (x, y) ∈ I

.
= [− 1, 1]× [− 1, 1], n ∈ N.

Study the convergence of (un) in the strong and weak topology (weak* if p = ∞)
of Lp(I).

55. Let φ ∈ Cc(R) with suppφ ⊆ [−1, 1], φ ≥ 0 e
∫
R φdt = 1. Consider the Dirac

sequence given by
ρn(t)

.
= nφ(nt) ∀t ∈ R ∀n ∈ N

and let (an) be a sequence in R. Set
un(t)

.
= ρn(x− an) ∀t ∈ R ∀n ∈ N.

a) Show that un ∈ Lp(R) for every p ∈ [1,∞] and for every n ∈ N.
b) Considering the cases an = n and an = n−2, study the convergence of the

sequence (un) in the strong and weak topology of Lp (weak* if p = ∞).

56. Let I = [0, 1] ⊂ R, X = C0(I) and Y = L1(I). Set

Tu(x)
.
=

∫ x

0

xyu(y) dy.

a) Show that T ∈ L(X) and T ∈ L(Y ).
b) Establish if T is compact in L(X) and in L(Y ), explaining the reasons.

57. Let (ρn)n∈N be a regularizing sequence in R. Study the equiintegrability of the
following families:

a) fn = ρn, n ∈ N;
b) gn = ρ′n , n ∈ N;
c) hn

.
= ρ1 ⋆ ρn, n ∈ N.

58. Let α > 0 and consider the sequence of functions given by

un(x)
.
= min{1, |x|−α}χB(0,n)(x), n ∈ N, x ∈ Rd.

Study the strong and weak (weak* if p = ∞) convergence of (un) in the spaces
Lp(Rd) for p ∈ [1,∞].

59. Let Q
.
= [−1, 1]3 ⊆ R3 and set

f(x1, x2, x3) =

{(
x1 x

2
2 x

3
3

)−1
, x1 x2 x3 ̸= 0

0, x1 x2 x3 = 0.

- Establish for which p ∈ [1,∞] we have f ∈ Lp(R3);
- establish for which p ∈ [1,∞] we have f ∈ Lp(Q);
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- establish for which p ∈ [1,∞] we have f ∈ Lp(R3 \Q).

60. Let E ⊆ R be a measurable set, pi ∈ [1,∞], fi ∈ Lpi(E) for i = 1, . . . , n, and
r ∈ [1,∞] given by

1

r

.
=

n∑
i=1

1

pi
.

Show that
n∏

i=1

fi ∈ Lr(E)

and that the following inequality holds:∥∥∥∥∥
n∏

i=1

fi

∥∥∥∥∥
Lr(E)

≤
n∏

i=1

∥fi∥Lpi (E).

61. Let (ρn)n∈N be a regularizing family in R and f ∈ C0(R). Set

fn(x)
.
= (ρn ⋆ f)(x), x ∈ R.

Show that the definition is well posed and that the sequence (fn) converges uni-
formly to f on any compact subset K ⊆ R.

62. Let I = [−1, 1] ⊆ R and (un) a sequence in C2(R) such that

(a) un is convex on R for every n ∈ N;
(b) There exists K ≥ 0 such that |un(0)| + |u′

n(t)| ≤ K for every t ∈ I and
for every n ∈ N.

(1) Show that the sequence (u′
n) is relatively compact in L1(I).

(2) Show that there exists a subsequence (unk
) and a map u ∈ C0(I) such that

(unk
) converges uniformly to u on I.

63. Let I = [0, 1] ⊆ R and {en, n ∈ N} a Hilber basis L2(I). Set

(em ⊗ en)(x, y)
.
= em(x)en(y); m,n ∈ N, (x, y) ∈ I × I.

Show that the family {em ⊗ en; m,n ∈ N} is a Hilbert basis in L2(I × I).

Answer. It is an orthonormal family. Now, for u, v ∈ L2(I), we have∑
n,m∈N

|(u⊗ v, em ⊗ en)|2 =
∑

n,m∈N
|(u, em)|2|(v, en)|2 =

∑
m∈N

|(u, em)|2
∑
n∈N

|(v, en)|2

= ∥u∥2L2(I)∥v∥
2
L2(I) = ∥u⊗ v∥2L2(I×I)

This means that each u⊗ v is in the closed space spanned by the above orthonormal
family, hence also the linear conmbinations of these elements. Since the latter are
dense in L2(I × I), it follows that the space generated by the orthonormal family is
L2(I × I), and thus the orthonormal family is a Hilbert basis.

64. Let I
.
= [− 1, 1] ⊆ R and consider the sequence of functions given by:

un(t) = e−n · ent
2

; t ∈ I, n ∈ N.
Study the convergence of the sequence (un) in the following spaces:

(i) C0(I) with uniform topology;
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(ii) L1(I) with strong topology;
(iii) L1(I) with weak topology;
(iv) L∞(I) with strong topology;
(v) L∞(I) with weak* topology.

65. For every n ∈ N set

fn(x) = sin
(x
n

)
; gn(x) = sin

(
n2x

)
; hn(x) = sin

(
nx

n+ 1

)
; x ∈ [0, 2π].

Study the equicontinuity of the sequences {fn, n ∈ N}, {gn, n ∈ N} e {hn, n ∈ N}
on [0, 2π].

66. Let I = [0, 1] ⊂ R and, for every n ∈ N, consider the subintervals of the form

Imn
.
=

[
m

n
,
m+ 1

n

[
, m = 0, 1, . . . , n− 1.

Then set

un(t)
.
= (−1)m for t ∈ Imn .

Study the strong and weak convergence of the sequence (un) in L2(I).

67. Let D be te unit disk in C. Study the equicontinuity of the following families
of functions in C(D):

(i) {fa(z) = eiaz, a ∈ R};
(ii) {fa(z) = ei

z
a , a ∈ R a ̸= 0};

(iii) {fa(z) = eiaz, a ∈ R, |a| > 1};
(iv) {fa(z) = eiaz, a ∈ R, |a| < 1}.

68. Let X = C([0, 1],R) and (an) a sequence in [0, 1]. Set

⟨fn, u⟩
.
= u(an), ∀n ∈ N, ∀u ∈ X.

Show that fn ∈ X ′ for every n ∈ N and that there exists a subsequence (fnk
) which

converges in the topology σ(X ′, X).

69. Study the equicontinuity of the following families in C(I) (I ⊆ R)).
(i) {fa(x) = eax, a ∈ R}, I = R;
(ii) {fa(x) = a(1− x)2, a ∈ R+}, I = [−1, 1];
(iii) {fa(x) = x−a, a ∈ R+, }, I = ]1,+∞[;
(iv) {fa(x) = x−a, a ∈ R+, }, I = ]0,+∞[.

70. Let p ∈ [1,∞[. Consider the space X = Lp([0, 1]) and set

(Tu) (x) =

∫ x

0

u(t) dt.

(i) Show that T ∈ L(X) and that ∥T∥L(X) ≤
(
p

1
p

)−1

.

(ii) Given a sequence (un) in X weakly converging to u in X, show that the
sequence (Tun) converges strongly to Tu in X.
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Answer. The bound follows from

|Tu(x)| ≤
∫ x

0

|u(t)|dt ≤ x
1
p′ ∥u∥Lp([0,1])

and from

∥x
1
p′ ∥Lp([0,1]) =

(∫ 1

0

x
p
p′ dx

) 1
p

=

(
1

p
p′ + 1

dx

) 1
p

=
(
p

1
p

)−1
(

1
1
p′ +

1
p

dx

) 1
p

=
(
p

1
p

)−1

.

For part (ii), the result follows from the fact that T : Lp([0, 1]) → Lp([0, 1]) is
compact. The case p = 1 is discussed in Cuccagna’s notes. The case p > 1 is easier
because we have for any x1 < x2

|Tu(x1)− Tu(x2)| ≤
∫ x2

x1

|u(x)|dx ≤ p′
√

|x1 − x2|∥u∥Lp([0,1]).

From this and Ascoli Arzela we conclude that T : Lp([0, 1]) → C0([0, 1]) is compact
for p > 1 and so, at fortiori, also T : Lp([0, 1]) → Lp([0, 1]) is compact.

71. Let C > 0, p ∈ [1,∞[, α ∈ ]0, 1[ and B
.
= {x ∈ Rd : ∥x∥ ≤ 1}. Consider the set

U
.
= {u ∈ C(B) : u(0) = 0, |u(x)− u(y)| ≤ C|x− y|α ∀x, y ∈ B} .

Show that U is relatively compact in Lp(B).

Answer. It is immediate that U is bounded and equicontinuous and so relatively
compact in C0(B), and hence also in Lp(B).

72. Let I
.
= [0, 1] and (un) a sequence in C1([0, 1]) such that

|un(0)|+
∫
I

|u′
n(t)| dt ≤ 1 ∀n ∈ N.

Show that there exist a subsequence (unk
) and a map u ∈ L1(I) such that unk

→ u
strongly in L1(I).

73. Let E ⊆ Rd be ameasurable set such that 0 < m(E) < +∞. For every
p ∈ [1,+∞[ and for every f ∈ Lp(E) set

Np[f ]
.
=

(
1

m(E)

∫
E

|f(x)|p
) 1

p

.

Show that Np[·] is a norm on Lp(E) and that, if 1 ≤ p ≤ q < +∞, we have

Np[f ] ≤ Nq[f ] ∀f ∈ Lq(E).

74. Let X be a Banach space and set K(X)
.
= {T ∈ L(X) : T is compact}. Show

that K(X) is closed in L(X).

75. Let X = C0(R2) and (an) a sequence in R+. For every n ∈ N and for every
u ∈ X set

Tn(u) =

∫ +an

−an

u(x, nx) dx.

Show that Tn ∈ X ′ for every n ∈ N a find its norm and support. Study the
convergence of the sequence (Tn) in the strong and weak* topology of X ′ in the

cases an = 1 + n2 and an = e−
1
n .
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76. Let I = [0, 1] and H an equicontinuous subset of C0(I). Show that H is
equicontinuous.

77. Let I = [0, 1], Br = B(0, r) the ball in Rd of center zero and radius r, p ∈ [1,∞],
Xp

.
= Lp(B1) and Y

.
= C0(I,R). Given u ∈ Xp and t ∈ I, set

(Tu)(t)
.
=

∫
Bt

u(y) dy.

Show that T ∈ L(Xp, Y ) for every p and establish for which p it is compact.

78. For (x, y) ∈ I
.
= [− 1, 1]× [− 1, 1], consider the sequence of functions given by

un(x, y) =

(
cos

(
nx2

n+ 1

)
sin (nx)

)
(1 + e−ny2

), n ∈ N.

Study the convergence of (un) in the strong and weak topology (weak* if p = ∞)
of Lp(I).

79. Let (an) and (bn) sequence in R+ and set Rn
.
= [ − an, an] × [ − bn, bn] ⊆ R2

and

un(x, y)
.
= χRn(x, y), (x, y) ∈ R2.

Study the convergence of (un) in the strong and weak topology of L1(R2) and in
the strong and weak* topology of L∞(R2) in the following cases:

1. an = n, bn = n−1;
2. an = n, bn = n− 1

2 ;
3. an = n

n+1 , bn = n−1;
4. an = n

n+1 , bn = n
n+1 .

80. Let X = C0(R2,R), endowed with the uniform norm, and (an), (bn) sequences
in R+. Define

⟨fn, u⟩
.
=

∫ 2π

0

u(an cos θ, bn sin θ) dθ, n ∈ N, u ∈ X.

Show that fn ∈ X ′ for every n ∈ N and find its norm and support.
Suppose an → 1, bn → 0 and study the convergence of the sequence (fn) in the

strong and weak* topology of X ′.

81. Let I = [0, 1], M > 0 and (un) a sequence in C1(I) such that

1.
∫
I
|un(t)|2 ≤ M ∀n ∈ N;

2. u′
n(t) + t ≥ 0 ∀t ∈ I,∀n ∈ N.

Show that the sequence (un) is relatively compact in L1(I). Answer. Here too,

like in exercise 86 below, it is possible to restrict to case un(0) ≡ 0. Next, let

u
′+
n = max{u′

n, 0} and u
′−
n = max{−u

′

n, 0}. Then

un = u
′+
n − u

′−
n and un = vn − wn with

vn(x) :=

∫ x

0

u
′+
n (t)dt and

wn(x) :=

∫ x

0

u
′−
n (t)dt.
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Form u
′−
n (t) ≤ t ≤ 1 we have for any x1 < x2

|wn(x1)− wn(x2)| ≤
∫ x2

x1

dt = |x2 − x1|.

So (wn) is relatively compact in C0(I) by Ascoli–Arzelá, and hence also in L2(I)
(where, hence, it is bounded) and L1(I). Also (vn) is relatively compact in L1(I),
by Exercise 86 below.

82. Let (xn) be a sequence in a Hilbert space H endowed with the inner product
⟨·, ·⟩. Show that, if the sequence (⟨xn, y⟩) converges for every y ∈ H, then the
sequence (xn) converges weakly.
83. Let I = [0, 1] and call X the Banach space C(I), endowed with the uniform
norm. Introduce the space

Y
.
= {u ∈ X,u differentiable on I with u′ ∈ X}

and set

∥u∥Y
.
= ∥u∥∞ + ∥u′∥∞, u ∈ Y.

Prove that (Y, ∥ · ∥Y ) is a Banach space.
Let α be a nonzero element of X and set

(Tu)(x)
.
= α(x)u′(x) u ∈ Y, x ∈ I.

(i) Prove that T ∈ L(Y,X) and find its norm.
(ii) Establish if T is compact and justify the answer.

Answer. (Y, ∥ · ∥Y ) is a Banach space. Indeed, let (un, u
′
n)

n→+∞−−−−−→ (u, v) in
C(I)× C(I). Then, since for any x ∈ I we have

un(x) =

∫ x

0

u′
n(t)dt,

it follows, taking the limit in n, that

u(x) =

∫ x

0

v(t)dt,

and so by the Fundamental Theorem of calculus, v = u′. We have T ∈ L(Y,X)
with a bound

∥Tu∥ ≤ ∥α∥L∞(I)∥u′∥L∞(I) =⇒ ∥T∥ ≤ ∥α∥L∞(I).

Consider now that map X ↪→ Y given by v → (u, v), with u′ = v with u(0) =
0. Then, if T is compact, also the multiplier map X ∋ v → Sv := αv ∈ X,
is compact. Recall that σ(S) = α(I). It is clear, from the Spectral Theorem of
compact operators, that α(I) must contain 0, be at most countable, and have 0 as
unique accumulation point. Since α(I) is connected, it follows that we must have
α(I) = {0}, that is α ≡ 0, hence T , if compact, is the 0 operator.

84. Let H be a Hilbert space. For T ∈ L(H) denote by R(T ) and N(T ), re-
spectively, the range and the kernel of T . Calling T ∗ the adjoint of T , prove that
N(T ) = (R(T ∗))⊥ and (R(T )) = (N(T ∗))⊥.
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85. Let Br = B(0, r) be the ball in Rd of center zero and radius r and X
.
= C0(R).

Let m be a map in C(R), with m(x) ≥ 0 for every x ∈ R, and, for every t > 0, set

Tt(u)
.
= t−d

∫
Bt

m(y)u(y) dy.

Prove that Tt ∈ X ′ for every t > 0 and find its norm and support. Study the
convergence of Tt as t → 0+ in the strong and weak* topology of X ′. Answer. It

is obvious that

|Tt(u)| ≤ t−d

∫
Bt

m(y) dy∥u∥L∞(Rd)

so that this yields an element in (L∞(Rd))′, in fact t−d1B1

(
x
t

)
m(x) ∈ L1(Rd). As

an element in X ′, we have t−d1B1

(
x
t

)
m(x) ⇀ m(0)δ(x) in the weak* topology of

X ′. If we have strong convergence in X ′, this implies strong convergence in L1(Rd)
to an element u ∈ L1(Rd). It is easy to see that u = 0 a.e. in Rd, which implies
u = 0. So we conclude that strong convergence in X ′ is necessarily to 0 and implies
m(0) = 0. Viceversa, if m(0) = 0, we know that for any ϵ > 0 there exists δϵ > 0
such that |x| < δϵ implies |m(x)| < ϵ. Then, for 0 < t < δϵ we have

∥t−d1B1

(x
t

)
m∥L1(Rd) = ∥t−d1B1

(x
t

)
m∥L1(Bt) ≤ ∥t−d1B1

(x
t

)
m∥L1(Bδϵ )

≤ ϵ

and so, indeed, we conclude t−d1B1

( ·
t

)
m

t→0+−−−−→ 0 in L1(Rd).

86. Let I = [0, 1] and (un), (vn) be two bounded sequences in L2(I). Assume in
addition that the maps I ∋ x 7→ un(x) and I ∋ x 7→ vn(x) are continuous and
monotone non decreasing for every n ∈ N; then define

fn(x, y)
.
= un(x)vn(y), (x, y) ∈ Q

.
= I × I.

Prove that fn lies in L2(Q) for every n ∈ N and that the sequence (fn) is rel-
atively compact in L1(Q). Answer. First of all, it is sufficient to show that

(un) is relatively compact in L1(I). The argument which follows is rather com-
plicated. Notice, incidentally, that here it is crucial that relative compactness is
in L1(I), since it is easy to obtain a non relatively compact set L2(I) using for

example n
1
2χ[0,1](n(1 − x)) (notice that n

1
2χ[0,1](n(1 − x))

n→+∞−−−−−→ 0 in L1(I)). I
will also assume that un(0) ≡ 0, since it is easy to see that we can reduce to this
case and I will also assume ∥un∥L2(I) ≤ 1 for all n. Next, for any M > 0 let

x
(n)
M = inf{x : un(x) ≥ M}. Then 1 − x

(n)
M ≤ M−1/2∥un∥L2(I) ≤ M−1/2 follows

from the Chebyshev inequality. So x
(n)
M ≥ 1−M−1/2. Next, split

un = vn + wn where

vn := χ[0,1−M−1/2]un

wn = χ[1−M−1/2,1]un

Notice that

∥wn∥L1(I) ≤ ∥χ[1−M−1/2,1]∥L1(I)∥un∥L2(I) ≤ M−1/4.
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Now, we have vn(0) ≡ 0 and vn(1−M−1/2) ≤ M . Then, see

https://math.stackexchange.com/questions/1003580/a-bounded-monotonic-function

-on-an-closed-interval-has-fourier-coefficient-decay

it is easy to see that there exists a fixed C > 0 such that the Fourier series

vn(x) ∼
∑
j∈Z

v̂n(j)e
i 2π

1−M−1/2
jx

satisfies

|v̂n(j)| ≤
C

⟨j⟩
for all n ∈ N.

Notice that this implies that (vn) defines a bounded sequence in Hs (TM ) where
TM = R

(1−M−1/2)Z for any s ∈ (0, 1/2). Since the immersion Hs (TM ) ↪→ L2(0, 1−
M−1/2) is compact, we conclude that (vn) is relatively compact in L2(0, 1−M−1/2),
and so also in L1(0, 1 − M−1/2). So for any ϵ > 0 we conclude that there is a
finite covering of (vn) in L1(0, 1−M−1/2) with balls of radius ϵ/2. Now, choosing
M−1/4 < ϵ/2 we conclude that there exists a finite covering of (un) in L1(0, 1) with
balls of radius ϵ. This yields the desired result.

87. Let I = [0, 1], Q
.
= I × I and (an), (bn) sequences in ]0, 1]. Define the family

of sets Rn
.
= [0, an]× [0, bn] ⊆ Q and set

un(x, y)
.
= (1 + sin(nx))(1 + e−ny)χRn

(x, y), (x, y) ∈ Q.

Study the convergence of (un) in the strong and weak topology of L1(Q) and in the
strong and weak* topology of L∞(Q) in the following cases:

1. an = n−2, bn = 1− n−1;
2. an = 1− n−2, bn = 1− n−1.

Answer. In the first case, we have

|un(x, y)| ≤ 4χ[0,n−2](x)χ[I](y)
n→+∞−−−−−→ 0 in L1(Q) by Dominated Convergence.

We have ∥un∥L∞(Q) = 2 and this and the above imply that un is not strongly
convergent in L∞(Q), however un ⇀ 0 in the weak* topology of L∞(Q). In the
second case, set

vn(x, y) := (1 + sin(nx))(1 + e−ny)χ[0,bn](y).

Then

vn(x, y)− un(x, y) = (1 + sin(nx))(1 + e−ny)χ[1−n−2,1](x)χ[0,bn](y)
n→+∞−−−−−→ 0

in L1(Q) by Dominated Convergence.

Next,

vn(x, y) = (1 + sin(nx)) + wn(x, y) for

wn(x, y) := −(1 + sin(nx))χ[bn,1](y) + (1 + sin(nx))e−nyχ[0,bn](y)

where wn
n→+∞−−−−−→ 0 in L1(Q) by Dominated Convergence.
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We have 1+sin(nx) ⇀ 1 in L1(Q) in the weak* topology of L∞(Q) by the Riemann–
Lebesgue Lemma. On the other hand

∥1 + sin(nx)− 1∥L1(Q) =

∫ 1

0

| sin(nx)|dx n→+∞−−−−−→ 2

π

which implies that 1 + sin(nx) does not converge to 1 in L1(Q). We also have

vn − un ⇀ 0 in the weak* topology of L∞(Q) and

wn ⇀ 0 in the weak* topology of L∞(Q).

There is no strong convergence of un in L∞(Q), since this would imply strong
convergence to 1, in particular also in L1(Q), which has just been excluded.

88. Let H be a complex Hilbert space with inner product (·, ·). Prove that we have

4(x, y) = (∥x+ y∥2 − ∥x− y∥2)− i(∥x+ iy∥2 − ∥x− iy∥2) ∀x, y ∈ H.

89. Let I = [0, 1] and call X the Banach space C(I), endowed with the uniform
norm. Let g ∈ C(I × I) and set

(Tu)(x)
.
=

∫
I

g(x, y)u(y) dy u ∈ X, x ∈ I.

(i) Prove that T ∈ L(X) and estimate its norm.
(ii) Establish if T is compact and justify the answer.
(iii) Compute the norm of T in the case g(x, y) = ex+y.

Answer. We have

|(Tu)(x)| ≤
∫
I

|g(x, y)u(y)|dy ≤
∫
I

|g(x, y)|dy∥u∥L∞(I).

So we have the bound

∥T∥ ≤ sup
x∈I

∫
I

|g(x, y)u(y)|dy.

Using the fact that g : I × I → R is uniformly continuous, it is easy to show that
TDC(I)(0, 1) is bounded and equicontinuous, and so relatively compact by Ascoli
Arzela.

90. Let X = C0(R2) and, for every n ∈ N, consider the set

Rn
.
= ]− n, n[× ]− n−1, n−1[ ⊆ R2.

Given u ∈ X and n ∈ N set

(Tnu)(x) =
1

n

∫
Rn

e−(x2+y2)u(x, y) dxdy.

Prove that Tn ∈ X ′ for every n ∈ N and find its norm and support. Study the
convergence of the sequence (Tn) in the strong and weak* topology of X ′.

Answer. It is pretty straightforward that

∥Tn∥ =
1

n

∫
Rn

e−(x2+y2) dxdy ≤ 1

n

∫
Rn

dxdy =
1

n
Area(Rn) =

4

n

n→+∞−−−−−→ 0.
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91. Let Q = [0, 1]
d ⊆ R and consider (un), (vn), two relatively compact sequences

in L2(Q). Define
fn(x)

.
= un(x)vn(x), x ∈ Q, n ∈ N.

Prove that fn lies in L1(Q) for every n ∈ N and that the sequence (fn) is relatively
compact in L1(Q).

92. Let φ : R+ → R+ be map of class C1 such that φ(0) = 0 and 1 ≤ φ′(t) ≤ 2 for
every t > 0. Let I = [0, 1] and (un) a sequence in L1(R).

(i) Prove that the sequence (vn) defined by vn(t)
.
= un(φ(t)) for t ∈ I and

n ∈ N lies in L1(I).
(ii) Assuming that un → u strongly in L1(R), study the convergence of (vn) in

the strong and weak convergence of L1(I).
(iii) Assuming that un ⇀ u weakly in L1(R), study the convergence of (vn) in

the strong and weak convergence of L1(I).

93. Let Q = [0, 1] × [0, 1] and X the Banach space C0(Q), endowed with the
uniform norm. Set

(Tnu)
.
=

∫ 1

0

n e−nx u(x, x2) dx, u ∈ X.

Prove that Tn ∈ X ′ for every n ∈ N and find its norm and support. Study the
convergence of (Tn) in the strong and weak* topology of X ′.

Answer. We have the map I : C0(Q) → C0([0, 1]) and n e−nx a sequence in
L1([0, 1]). If this sequence was convergent to a f ∈ L1([0, 1]), then there would
be a subsequence converging almost everywhere point wise to f . But then f = 0,

impossible in view of the fact that ∥n e−nx∥L1([0,1])
n→+∞−−−−−→ 1. This is equivalent to

say that (Tn) is not strongly convergent. However we have Tnu
n→+∞−−−−−→ u(0, 0), so

there is weak* convergence in X ′.

94. Let H be a Hilbert space, T ∈ L(H) and (Tn) a sequence in L(H).

(i) Prove that Tn → T if and only if T ∗
n → T ∗.

(ii) Prove that the sequence (Tnx) converges weakly to Tx for every x ∈ H if
and only if the sequence (T ∗

nx) converges weakly to T ∗x for every x ∈ H.

95. Let I = [0, 1] ⊆ R and X = C0(I). Given a map m ∈ L2(I), set

Tu(x)
.
=

∫ x2

0

m(y)u(y) dy.

Prove that T ∈ L(X) and establish if T is compact in L(X), justifying the
answer.

Answer. For any x1 < x2 we have

|Tu(x2)− Tu(x1)| ≤ ∥u∥L∞(I)

∫ x2
2

x2
1

|m(y)|dy ≤ ∥u∥L∞(I)∥m∥L2(I)

√
x2
2 − x2

1

≤
√
2∥u∥L∞(I)∥m∥L2(I)

√
x2 − x1

So T{u ∈ X : ∥u∥L∞(I) ≤ 1} is a bounded equiconcontinuous family, and hence
also a relatively compact one by Ascoli–Arzela.
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96. Let Q = [0, 1]
d ⊆ R. Consider two relatively compact families U and V in

C0(Q) and define

F
.
= {f : f(x) = sin(u(x) · v(x)), x ∈ Q, u ∈ U, v ∈ V } .

Prove that F is a relatively compact family in C0(Q).

97. Let I = [0, 1] ⊆ R, p > 1 and X = L∞(I). Given a map m ∈ Lp(I), set

Tu(x)
.
=

∫ x

0

m(y)u(y) dy.

Prove that T ∈ L(X) and establish if T is compact in L(X), justifying the answer.

Answer. We have that T : L∞(I) → C
1
p′ (I) is bounded, by the formula below, and

hence the map from X into itself is compact. The formula is, for x1 < x2,

|Tu(x1)− Tu(x2)| ≤
∫ x2

x1

|m(x)|dx∥u∥L∞(I) ≤ |x1 − x2|
1
p′ ∥m∥Lp(I)∥u∥L∞(I).

98. Let X be the Banach space C0(R2), endowed with the uniform norm, and let
(gn) be a sequence in Cb(R2) such that

0 ≤ gn(x, y) ≤ (1 + x2 + y2)−1 ∀(x, y) ∈ R2,∀n ∈ N

and

gn −→ g in Cb(R2).

Set

(Tnu)
.
=

∫
R
gn(x, x)u(x, x) dx, u ∈ X.

Prove that Tn ∈ X ′ for every n ∈ N and find its norm and support. Study the
convergence of (Tn) in the strong and weak* topology of X ′.

Answer. We are considering the continuous map I : C0(R2) ∋ u(x, y) ↪→
u(x, x) ∈ C0(R). Then, Tn = Sn ◦ I with Sn identifies with L1(R) ∋ vn(x) =
gn(x, x). Set also v(x) = g(x, x). It is easy to see that g(x, y) satisfies

0 ≤ g(x, y) ≤ (1 + x2 + y2)−1 ∀(x, y) ∈ R2.

So, by dominated convergence,

lim
n→+∞

∫
R
|vn − v|dx = 0.

Hence Tn
n→+∞−−−−−→ T strongly in X ′, with

(Tu)
.
=

∫
R
g(x, x)u(x, x) dx, u ∈ X.

99. Let f ∈ L2(R) and set

(Tu)(x)
.
=

∫
R
f(x− y)u(y) dy.

Establish for which indices p, q ∈ [1,+∞] we have T ∈ L(Lp(R), Lq(R)).
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100. Let I = [0, 1] ⊆ R, X = C0(I) and Y = L1(I). Set

Tu(x)
.
=

∫ x

0

xyu(y) dy.

a) Prove that T ∈ L(X) and T ∈ L(Y ).
b) Establish if T is compact in L(X) and in L(Y ), justifying the answer.
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