SISSA

Advanced Analysis - A

Academic year 2019-2020

Proposed problems

1. Let X be a separable Banach space and Y a subspace of X . Show that Y , endowed with the induced norm, is separable.

2. Let X be a Banach space and Y a finite-dimensional subspace of X . Show that Y is closed.

3. Let (M, d) be a compact metric space. Show that M is complete and separable.

4. Let (M, d) be a complete metric space and $\{A_n, n \in \mathbb{N}\}\$ a countable family of open and dense subsets of M . Show that the set

$$
A \doteq \bigcap_{n \in \mathbb{N}} A_n
$$

is dense in M.

5. Let H be a real Hilbert space and $a \in H$ a nonzero vector. Show that for every $x \in H$, we have

dist
$$
(x, \{a\}^{\perp}) = \frac{|(x, a)|}{\|a\|}.
$$

6. Consider the Hilbert space ℓ^{∞} with its usual norm $\|\cdot\|_{\ell^{\infty}}$ and the sets $c_0 \doteq$ ${(a_n) \in \ell^{\infty} : a_n \to 0}$ and $c = {(a_n) \in \ell^{\infty} : a_n \to a \in \mathbb{R}}$. Show that c_0 and c are closed separable subspaces of ℓ^{∞} .

Answer. Let $c_c(\mathbb{N}, \mathbb{R})$ be the elements with compact support (recall, we are dealing with functions $\mathbb{N} \to \mathbb{R}$). Then it is easy to see that $c_0 = \overline{c_c(\mathbb{N}, \mathbb{R})}$ and that $c_c(\mathbb{N}, \mathbb{Q})$ is a countable dense subspace of $c_c(\mathbb{N}, \mathbb{R})$, and so also of c_0 . Since $c = \overline{\bigcup_{q \in \mathbb{Q}} (c_0 + q)}$ we obtain that also c is separable.

7. Consider the Hilbert space ℓ^2 and a real sequence (a_n) such that $a_n > 0$ for every $n \in \mathbb{N}$ and $a_n \to +\infty$. Show that the set

$$
A \doteq \left\{ u \in \ell^2 : \sum_{n \in \mathbb{N}} a_n |u_n|^2 \le 1 \right\}
$$

is a precompact subset of ℓ^2 .

Answer. Let $T: D(T) \to \ell^2$ be the map $x \to y = ax$ where $x, y, a : \mathbb{N} \to \mathbb{R}$ and

$$
D(T) \doteq \left\{ u \in \ell^2 : \sum_{n \in \mathbb{N}} a_n |u_n|^2 < \infty \right\}.
$$

Now, it is easy to see that the above map is invertible, and that $\ell^2 \ni y \longrightarrow$ $x = T^{-1}y := \frac{y}{a} \in D(T) \subset \ell^2$ is in fact a compact operator. Then, since $A =$ $T^{-1}\overline{D_{\ell^2}(0,1)}$ we conclude that A is relatively compact.

8. Let H be a Hilbert space and C_1 , C_2 two nonempty, closed and convex subsets such that $C_1 \subset C_2$. Given $x \in H$, call $P_{C_i}x$ the projection of x on C_i and $d(x, C_i)$ the distance of x from C_i $(i = 1, 2)$. Show that

$$
||P_{C_1}x - P_{C_2}x||^2 \le 2\left(d(x, C_1)^2 - d(x, C_2)^2\right), \quad \forall x \in H.
$$

9. Let H be a complex Hilbert space and $T \in \mathcal{L}(H)$ an operator such that $||T|| \leq 1$. Show that

- (a) $Tx = x$ if and only if $(Tx, x) = ||x||^2$;
- (b) $ker(I T) = ker(I T^*).$

Answer. In (a) the implication \Rightarrow is obvious. So let us consider \Leftarrow and let us consider a nonzero $x \in H$ s.t. $(Tx,x) = ||x||^2$. Then $||x||^2 \le ||Tx|| ||x|| \le ||x||^2$, where we used $||T|| \leq 1$, implies $||Tx|| = ||x||$. Now, for $\hat{x} = x/||x||$ consider the orthogonal decomposition

$$
Tx = (Tx, \widehat{x})\widehat{x} + (Tx - (Tx, \widehat{x})\widehat{x}) = x + (Tx - (Tx, \widehat{x})\widehat{x}).
$$

Then, by $||Tx|| = ||x||$ and

$$
||Tx||^2 = ||x||^2 + ||Tx - (Tx, \hat{x})\hat{x}||^2,
$$

we conclude that $Tx - (Tx, \hat{x})\hat{x} = 0$, and so $Tx = x$.

10. Find a Banach space X and a subset $S \subseteq X$ such that S is strongly closed but not weakly closed.

Answer. In infinite dimension, take $S = \{x \in X : ||x|| = 1\}$. In general, if $f \in C^{0}(X,\mathbb{R})$ is a continuous convex function with $\lim_{x\to\infty} f(x) = +\infty$, then for $S_r = \{x \in X : f(x) = r\}$ is strongly closed but, by repeating the proof in the special case $f(x) := ||x||$, the weak closure is $\{x \in X : f(x) \le r\}.$

11. Find a Banach space X, a bounded closed subset $S \subseteq X$ and a continuous function $f : S \to \mathbb{R}$ such that

$$
\sup_{x \in S} f(x) = +\infty.
$$

Answer. Recall that one of the exercises of Cuccagna's notes states the following: Let X be an infinite dimensional Banach space. Show that for any $r \in (0, 1/2)$ there exists a sequence $\{v_n\}$ in X such that $||v_n||_X = 1$ and the closed balls $\overline{D_X(v_n,r)}$ are pairwise disjoint. Show also that $\bigcup_{n=1}^{\infty} \overline{D_X(v_n,r)}$ is a closed set in X.

if we assume the above statement, let any $g \in C⁰(X,\mathbb{R})$ with $g(0) \neq 0$ and $g(x) = 0$ for $||x|| \ge 1/2$. Then consider

$$
f(x) = \sum_{n=1}^{\infty} n g\left(\frac{x - v_n}{r}\right)
$$

Then each term of the sum is zero outside $D_X(v_n, r/2)$, so it is easy to conclude that $f \in C^0(X, \mathbb{R})$. Obviously we have $\bigcup_{n=1}^{\infty} \overline{D_X(v_n, r)} \subseteq \overline{D_X(0, r+1)} =: S$, so we have the desired result.

12. Let X be a Banach space and $K \subseteq X$ a compact subset. Show that any sequence in K which converges weakly, actually converges strongly.

Answer. If false, there would be an example of $x_n \to x$ which does not converge strongly to x. On the other hand, for any strongly convergence subsequence $\{x_{n_k}\},$ we have necessarily $x_{n_k} \xrightarrow{k \to +\infty} x$ (because of $x_{n_k} \to x$). But the fact that it is false that $x_n \xrightarrow{n \to +\infty} x$, implies that there exists an $\epsilon_0 >$ and a subsequence $\{x_{n_k}\}$ with $||x_{n_k} - x|| \geq \epsilon_0$. By compactness, $\{x_{n_k}\}\$ has a subsequence that converges strongly at a point $y \in K$ with $||y - x|| \geq \epsilon_0$. But we have just discussed the fact that we must have $y = x$. So we get a contradiction.

13. Let (X, d) be a metric space. Given two subsets $A, B \subseteq X$, set

 $dist(A, B) \doteq inf{d(x, y) : x \in A, y \in B}.$

a) Given $x \in X$ and positive numbers $0 \leq \rho \leq r$, show that there exists $\delta > 0$ such that

$$
dist(B(x, \rho), B(x, r)^c) \ge \delta.
$$

b) Given a proper, nonempty, closed subset $C \subseteq X$, show that there exists a ball $B(x, r)$ in X such that $dist(B(x, r), C) > 0$.

14. Let X, Y be Banach spaces and $T \in \mathcal{L}(X, Y)$ a compact operator. Let (x_n) be a sequence in X weakly converging to x in X. Show that the sequence (Tx_n) converges strongly to Tx in Y.

Answer. We know that there is $C > 0$ such that $||x_n|| < C$ for all n. Then (Tx_n) is a sequence in $K := TD_X(0, C)$, which is a compact subspace of Y. Since T is continuous for the weak topologies, we know $Tx_n \rightharpoonup Tx$. Then use the result in Exercise 12.

15. Let $\alpha > 0$ and consider the sequence of functions given by

$$
u_n(x) \doteq \min\{1, |x|^{-\alpha}\}\chi_{B(0,n)}(x), \quad n \in \mathbb{N}, \ x \in \mathbb{R}^d.
$$

Study the convergence of (u_n) in the strong and weak (weak* if $p = \infty$) topology of $L^p(\mathbb{R}^d)$ for $p \in [1,\infty]$.

Answer. If we set $u(x) := \min\{1, |x|^{-\alpha}\}\text{, we have } u \in L^p(\mathbb{R}^d) \text{ for } ap > d.$ Now $u(x) - u_n(x) = \chi_{\mathbb{R} \setminus B(0,n)}(x)u(x)$ which converges monotonically to 0 for any $x \in \mathbb{R}^d$. For $d/a < p < \infty$, by dominated convergence, we obtain $u_n \xrightarrow{n \to \infty} u$ in $L^p(\mathbb{R}^d)$. If $p = \infty$, we have

$$
0 \le u(x) - u_n(x) = \chi_{\mathbb{R} \setminus B(0,n)}(x)u(x) \le |n|^{-\alpha},
$$

and so we get $u_n \xrightarrow{n \to \infty} u$ in $L^{\infty}(\mathbb{R}^d)$. Obviously, the above implies also weak convergence. For $p \le d/a$, it is easy to check that $||u_n||_{L^p(\mathbb{R}^d)} \xrightarrow{n \to \infty} \infty$, and so the sequence in not weakly convergent.

16. Let H be a Hilbert space, $T \in \mathcal{L}(H)$ and T^* the adjoint of T.

- (a) Show that $||T^*T|| = ||TT^*|| = ||T||^2$.
- (b) Show that T^*T and TT^* are selfadjoint operators.

17. Let H be a Hilbert space and $\{M_k, k \in \mathbb{N}\}\$ a countable collection of finitedimensional subspaces of H. Call P_k the orthogonal projector on M_k ($k \in \mathbb{N}$) and set

$$
P \doteq \sum_{k=1}^{\infty} 2^{-k} P_k.
$$

Show that P is a compact operator in $\mathcal{L}(H)$.

Answer. First of all, we have $||P_k|| \leq 1$ for all k. Then

$$
||P - S_N|| \le \sum_{k=N+1}^{\infty} 2^{-k} = 2^{-N} \xrightarrow{N \to +\infty} 0
$$
, where $S_N := \sum_{k=1}^{N} 2^{-k} P_k$.

Since S_N is finite rank for any N, we get that P is compact.

18. Consider the sequence of functions given by

 $u_n(x, y) = \left(\cos\left(\frac{x}{n}\right)\right)$ $\Big) + \sin\left(\frac{x}{n}\right) \Big(1 + e^{-ny^2}\Big), \quad (x, y) \in I \doteq [-1, 1] \times [-1, 1], \quad n \in \mathbb{N}.$ Study the convergence of (u_n) in the strong and weak topology of $L^p(I)$ (weak* if $p = \infty$).

Answer. First of all, we have

$$
u_n(x, y) - v_n(x, y) = \left(\cos\left(\frac{x}{n}\right) + \sin\left(\frac{x}{n}\right)\right)e^{-ny^2} \text{ for}
$$

$$
v_n(x, y) := \cos\left(\frac{x}{n}\right) + \sin\left(\frac{x}{n}\right).
$$

It is straightforward that for $p < \infty$ we have

$$
||u_n - v_n||_{L^p(I)} \le 2||e^{-ny^2}||_{L^p(0,1)} \le 2n^{-\frac{1}{2p}}||e^{-y^2}||_{L^p(\mathbb{R})} \xrightarrow{n \to \infty} 0.
$$

Since

$$
||u_n - v_n||_{L^{\infty}(I)} \ge ||v_n(\cdot, 0)||_{L^{\infty}((0,1))} \ge |v_n(0,0)| = 1,
$$

we obviously do not have $u_n - v_n \xrightarrow{n \to \infty} 0$ strongly in $L^{\infty}(I)$. However, for $f \in$ $L^1(I)$ we have

$$
|\langle u_n - v_n, f \rangle| \le 2 \int_I e^{-ny^2} |f(x, y)| dx dy \xrightarrow{n \to \infty} 0
$$

by dominated convergence, and so $u_n-v_n \rightharpoonup 0$ weakly* in $L^{\infty}(I)$. Since (use bounds of errors for alternating series)

$$
|v_n(x, y) - 1| \le \left| \cos\left(\frac{x}{n}\right) - 1 \right| + \left| \sin\left(\frac{x}{n}\right) \right| \le \frac{x^2}{2n^2} + \frac{x}{n} \le \frac{3}{2n}
$$

we have $v_n \xrightarrow{n \to \infty} 1$ in $C^0(I)$, and so in particular also for all $L^p(I)$. So, summing up, $u_n \xrightarrow{n \to \infty} 1$ strongly in $L^p(I)$ for $p < \infty$ and $u_n \to 1$ weakly*, but not strongly, if $p = \infty$.

19. Let H be a complex Hilber space, $T \in \mathcal{L}(H)$ and (x_n) a sequence in H weakly converging to $x \in H$. Show that the sequence (Tx_n) converges weakly to Tx . Answer. We have

$$
(Tx_n, y) = (x_n, T^*y) \xrightarrow{n \to +\infty} (x, T^*y) = (Tx, y) \text{ for all } y \in H \Longrightarrow Tx_n \to Tx.
$$

20. Given $x \in \mathbb{R}$, let $B(x, 1)$ be the open unit ball of center x in R. Consider a sequence (x_n) in R and define the sequence of functions $u_n \doteq \chi_{B(x_n,1)}$, where χ denotes the characteristic function. Study the strong and weak convergence of the sequence (u_n) in the space $L^2(\mathbb{R})$ (that is to say establish if the sequence is converging in such topologies and, in affirmative case, find the limit), in the following cases:

- (a) $x_n \to 0;$
- (b) $|x_n| \to +\infty$.

Answer. Notice that $u_n(x) = \chi_{B(0,1)}(x-x_n)$ and that in Cuccagna's notes it is shown that if $x_n \xrightarrow{n \to \infty} \infty$ then $\chi_{B(0,1)}(\cdot - x_n) \to 0$ in $L^2(\mathbb{R})$. In the case $x_n \xrightarrow{n \to \infty} 0$ we have, instead, $\chi_{B(0,1)}(\cdot - x_n) \xrightarrow{n \to \infty} \chi_{B(0,1)}$ strongly in $L^2(\mathbb{R})$, by the fact that the group \mathbb{R}^d is strongly continuous (but not continuous in the operator norm) in $L^2(\mathbb{R})$.

21. Let H be a Hilbert space endowed with the inner product $\langle \cdot, \cdot \rangle$ and D a subset of H such that $\text{lsp}(D)$ is dense in H. Show that, given a bounded sequence (x_n) in H, such that $\langle x_n, y \rangle \to \langle x, y \rangle$ for any $y \in D$, then $x_n \to x$.

22. Let $I = [0, 1] \subseteq \mathbb{R}$ and consider the Hilbert space $X = L^2(I, \mathbb{R})$. Set

$$
(Tu)(x) \doteq \int_0^x u(t) \, dt.
$$

Show that $T \in \mathcal{L}(X)$ and find the adjoint T^* of T. Answer. Continuity is very simple, since, in fact, T is a bounded operator from $L^2(I,\mathbb{R})$ into $C^{1/2}(I)$, by, for $x < y$,

$$
|Tu(x) - Tu(y)| \le \int_x^y |u(t)|dt \le |x - y|^{\frac{1}{2}}||u||_{L^2(I)}
$$

Notice that this implies that $TD_{L^2(I)}(0,1)$ is relatively compact in $C^0(I)$, and so also in $L^2(I)$, which implies that T is a compact operator. For the adjoint

$$
\int_0^1 T u(x)v(x) dx = \int_0^1 dx v(x) \int_0^x u(t) dt = \int_0^1 dt \ u(t) \int_t^1 v(x) dx \implies T^*v(x) = \int_x^1 v(t) dt.
$$

23. Consider the set $E \doteq \{e^n, n \in \mathbb{N}\}\$ in ℓ^2 defined by

$$
e^n(k) = \delta_{n,k}.
$$

Show that E is a Hilbert basis in ℓ^2 .

24. Let U be a bounded family in $L^1(\mathbb{R})$ and $\rho \in C_c^{\infty}(\mathbb{R})$. Show that the family $\{\rho \star u, u \in \mathcal{U}\}\$ is equicontinuous.

Answer. Since $\rho \in C_c^{\infty}(\mathbb{R})$, ρ is uniformly continuous, and so

 $\forall \epsilon > 0 \quad \exists \delta_{\epsilon} > 0 \text{ s.t. } |x_1 - x_2| < \delta_{\epsilon} \Longrightarrow |\rho(x_1) - \rho(x_2)| < \epsilon$

Since there exists $C > 0$ s.t. $||u||_{L^1(\mathbb{R})} < C$ for all $u \in \mathcal{U}$, for $|x_1 - x_2| < \delta_{\epsilon}$ we have

$$
|\rho \star u(x_1) - \rho \star (x_2)| \le \int |\rho(x_1 - y) - \rho(x_2 - y)| |u(y)| dy < C\epsilon \text{ for all } u \in \mathcal{U}.
$$

This implies that $\{\rho \star u, u \in \mathcal{U}\}\$ is equicontinuous.

25. Let H be a Hilbert space and $T \in \mathcal{L}(H)$. Show that T is compact if and only if the adjoint T^* is compact.

Answer. T is compact if and only if for any $\epsilon > 0$ there exists a finite rank T_{ϵ} s.t. $||T - T_{\epsilon}|| < \epsilon$. Notice now, that $||T^* - T_{\epsilon}^*|| = ||T - T_{\epsilon}|| < \epsilon$. So, if T_{ϵ}^* is finite rank, then we conclude the exercise. So let S be finite rank. Then

$$
S = \sum_{j=1}^{n} (\cdot, f_j) g_j.
$$

In the special case $S = (\cdot, f_1)g_1$

$$
(Su, v) = ((u, f1)g1, v) = (u, f1)(g1, v) = (u, \overline{(g1, v)}f1) = (u, S*v).
$$

So

$$
S^*v = \overline{(g_1, v)} f_1 = (v, g_1) f_1.
$$

So, more generally

$$
S^* = \sum_{j=1}^n (\cdot, g_j) f_j,
$$

which implies that T_{ϵ}^* is finite rank.

26. Let H be a Hilbert space on \mathbb{C} , $\{e_k, k \in \mathbb{N}\}\$ an orthonormal system in H and (λ_k) an element of $\ell^1(\mathbb{C})$. Set

$$
Tx \doteq \sum_{k=1}^{\infty} \lambda_k(x, e_k) e_k.
$$

Show that T is a compact operator in $\mathcal{L}(H)$.

27. Consider the Hilbert space $E \doteq L^2(\mathbb{R}^n, \mathbb{C})$ and let $K \in L^2(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{C})$. Define

$$
(T_K u)(x) \doteq \int_{\mathbb{R}^n} K(x, y) u(y) \, dy.
$$

Show that $T_K \in \mathcal{L}(E)$ and that T_K is selfadjoint if and only if $K(x, y) = \overline{K(y, x)}$ for any pair $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$.

Answer.
$$
u, v \in C_c^0(\mathbb{R}^n)
$$
 we have
\n
$$
\int_{\mathbb{R}^n} (T_K u)(x) \overline{v(x)} dx = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x, y) u(y) dy \overline{v(x)} dx = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x, y) \overline{v(x)} dx u(y) dy
$$
\n
$$
= \int_{\mathbb{R}^n} \overline{\int_{\mathbb{R}^n} \overline{K(y, x)} v(y) dy u(x) dx} = \int_{\mathbb{R}^n} u(x) \overline{T_S v(x)} dx
$$
\nwith $S(x, y) = \overline{K(y, x)}$. If the operator is selfadjoint, we conclude that

$$
\int_{\mathbb{R}^n} u(x) \overline{T_S v(x)} dx = \int_{\mathbb{R}^n \times \mathbb{R}^n} u(x) \overline{v(y)} K(y, x) dx dy = \int_{\mathbb{R}^n} u(x) \overline{T_K v(x)} dx
$$

$$
= \int_{\mathbb{R}^n \times \mathbb{R}^n} u(x) \overline{v(y)} K(x, y) dx dy \text{ for all } u, v \in C_c^0(\mathbb{R}^n).
$$

Since $C_c^0(\mathbb{R}^n) \otimes C_c^0(\mathbb{R}^n)$ generates all $L^2(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{C})$, from the above we conclude

Z $\mathbb{R}^n \times \mathbb{R}^n$ $f(x, y)K(y, x)dxdy =$ $\mathbb{R}^n \times \mathbb{R}^n$ $f(x,y)\overline{K(x,y)}dx dy$ for all $f \in L^2(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{C})$. This implies $K(x, y) = \overline{K(y, x)}$ for a.a. $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$.

28. Let H be a Hilbert space and (u_n) an orthonormal sequence in H. Show that (u_n) converges weakly to zero. Answer. For any $f \in H$ we have

$$
f = \sum_{n=1}^{\infty} (f, u_n) u_n \text{ with } ||f||^2 = \sum_{n=1}^{\infty} |(f, u_n)|^2.
$$

Obviously the above implies $(u_n, f) \xrightarrow{n \to +\infty} 0$ for any $f \in H$. This is equivalent to $u_n \rightharpoonup 0.$

29. Let $p \in [1,\infty]$ and $f \in L^p(\mathbb{R})$. Show that for every $\delta > 0$ we have

$$
\operatorname{meas}\left(\{x : |f(x)| > \delta\}\right) \le \delta^{-p} \|f\|_p^p.
$$

Answer. This is the well known, and simple to prove, Chebyshev's inequality.

30. Let $E \subseteq \mathbb{R}$ be a measurable set with finite measure, $p \in [1, \infty]$, (u_n) a sequence in $L^p(E)$ and $u \in L^p(E)$ such that $u_n \rightharpoonup u$ for $p < \infty$ or $\stackrel{*}{\rightharpoonup}$ if $p = \infty$. Prove that the sequence (u_n) is equiintegrable.

31. Let H be a real Hilbert space, $M \subseteq X$ a closed subspace and P the orthogonal projector on M. Show that P is selfadjoint. Answer. Recall that $Px \in M$ with

$$
(Px - x, y) = 0 \text{ for all } x \in H \text{ and } y \in M.
$$

Notice that $H = M \oplus M^{\perp}$. Then, since

 $(x,(P^*-1)y) = 0$ for all $x \in H$ and $y \in M \implies P^*y = y$ for all $y \in M$. So $P^* = P$ in M. Next,

$$
0 = (Px, y) = (x, P^*y) \text{ for all } x \in H \text{ and } y \in M^{\perp}.
$$

So $P^*y = 0$ for $y \in M^{\perp}$. Since we also have $Py = 0$ for $y \in M^{\perp}$, we conclude $P^* = P$ everywhere in H.

32. Consider the space $X = C_0(\mathbb{R}^d) \doteq \overline{C_c(\mathbb{R}^d)}^{\|\cdot\|_{\infty}}$. Given $S \in X'$ define

$$
U \doteq \left\{ O \subseteq \mathbb{R}^d \text{ open: } \langle S, u \rangle_{X',X} = 0 \,\,\forall u \in X \text{ with } \operatorname{supp} u \subseteq O \right\}.
$$

Then introduce

- $N \doteq \left| \int O \text{ (domain of nullity of } S \text{)} \right|$; supp $S \doteq \mathbb{R}^d \setminus N$ (support of S). $O\in U$
- (i) Given $a \in \mathbb{R}^d$, set

$$
T_a(u) = u(a).
$$

Show that $T_a \in X'$ and find its norm and support.

(ii) Let (a_n) be a sequence in \mathbb{R}^d , consider the sequence $(S_n) = (T_{a_n})$ and the series

$$
S = \sum_{n=1}^{\infty} 3^{-n} S_n.
$$

- (a) Show that $S \in X'$ and find its norm and support.
- (b) Show that there exists a subsequence (S_{n_k}) weakly* converging in X'.

Answer. We have $||T_a|| = 1$ as can be seen that more generally considering

$$
\sigma_N f = \sum_{n=1}^N 3^{-n} f(a_n)
$$
 for $\sigma_N := \sum_{n=1}^N 3^{-n} S_n$

and, since we can always find $f \in C_c(\mathbb{R}^d)$ of norm 1 and with $f(a_n) = 1$ for all $n = 1, ..., N$, we get

$$
\|\sigma_N\| = \sum_{n=1}^N 3^{-n} = 3^{-1} \frac{1 - 3^{-N-1}}{1 - 3^{-1}} = 2^{-1} (1 - 3^{-N-1})
$$

The implies that for all $N < M$ we have

$$
\|\sigma_N - \sigma_M\| = \sum_{n=N+1}^M 3^{-n} < \sum_{n=N+1}^\infty 3^{-n} = 3^{-N-1} \frac{3}{2}.
$$

Hence, by completeness of X', there exists S limit of the above sum, with $\|\sigma_N\| \xrightarrow{N \to +\infty}$ $2^{-1} = ||S||$. I skip the discussion of the support and go to the last question. Given any sequence (a_n) in \mathbb{R}^d there always exists a subsequence (a_{n_k}) which either a limit $a \in \mathbb{R}^d$ or which goes to infinity. In the first case, for any $f \in C_0(\mathbb{R}^d)$, we have

$$
T_{a_{n_k}}f = f(a_{n_k}) \xrightarrow{k \to +\infty} f(a) = T_a f
$$

while in the second case we have

$$
T_{a_{n_k}}f = f(a_{n_k}) \xrightarrow{k \to +\infty} 0,
$$

since it is easy to see that $C_0(\mathbb{R}^d) = \{f \in C^0(\mathbb{R}^d) : \lim_{x \to \infty} f(x) = 0\}$. In the first case $T_{a_{n_k}} \rightharpoonup T_a$ while in the second $T_{a_{n_k}} \rightharpoonup 0$.

33. Consider the sequence of functions given by $u_n(t) = \sin(nt)$, with $n \in \mathbb{N}$ and **EXECUTE:** The sequence of (u_n) in the uniform topology of $C(I)$, in the uniform topology of $C(I)$, in the strong topology of $L^{\infty}(I)$ and in the weak* topology of $L^{\infty}(I)$ (that is to say establish if the sequence is converging in such topologies and, in affirmative case, find the limit). Answer. Clearly $(\sin(nt))$ is not convergent strongly, while for any

 $f \in L^1(I)$ we have

$$
\int_I \sin(nt)f(t)dt \xrightarrow{n \to +\infty} 0
$$

by the Riemann Lebesgue lemma, and so $sin(nt) \rightarrow 0$ in the weak* topology of $L^{\infty}(I)$.

34. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$, endowed with the uniform norm, and (a_n) a sequence in \mathbb{R}^+ . Set

$$
\langle f_n, u \rangle \doteq \int_0^{2\pi} u(a_n \cos \theta, a_n \sin \theta) \, d\theta, \quad \forall n \in \mathbb{N}, \ \forall u \in X.
$$

Show that $f_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support.

Suppose $a_n \to 0^+$ and study the convergence of the sequence (f_n) in the strong and weak* topology of X' (that is to say establish if the sequence converges in such topologies and, in the affirmative case, find the limit).

Answer. We have $f_n = \frac{1}{a}$ $\frac{1}{a_n}dx_{|\partial D(0,a_n)}$, where $dx_{|\partial D(0,a_n)}$ is the restriction of the Lebesgue measure of \mathbb{R}^2 on the circle $\partial D(0, a_n)$ and with $||f_n||_{(C_0)'} = 2\pi$. It is elementary that for any u we have

$$
\int_0^{2\pi} u(a_n \cos \theta, a_n \sin \theta) d\theta \xrightarrow{n \to +\infty} u(0),
$$

and so $f_n \rightharpoonup \delta(x)$ *-weakly. But it is easy to show that $||f_n - f_m||_{(C_0)^{'}} \geq 2\pi$ for $a_n \neq a_m$.

35. Given $\alpha \in \mathbb{R}$ and $R > 0$, consider the function u defined on \mathbb{R}^d by

$$
u(x) = \begin{cases} |x|^{\alpha}, & x \neq 0 \\ 0, & x = 0. \end{cases}
$$

Establish for which $p \in [1, +\infty]$ we have $u \in L^p(B_{\mathbb{R}^d}(0, R)).$

Answer. We need $p\alpha > -d$. So, for example, if $p = \infty$, then $\alpha \geq 0$.

36. Let $E \subseteq \mathbb{R}^d$ be a measurable set, $p, q \in [1, \infty]$ and $u \in L^p(E) \cap L^q(E)$. Given $\alpha \in [0,1]$, set

$$
\frac{1}{r} \doteq \frac{1-\alpha}{p} + \frac{\alpha}{q}
$$

.

Show that $u \in L^r(E)$ and that

$$
||u||_{L^r(E)} \le ||u||_{L^p(E)}^{1-\alpha} \cdot ||u||_{L^q(E)}^{\alpha}.
$$

Answer. We have

$$
||u||_{L^{r}(E)} = || |u|| ||_{L^{r}(E)} = || |u|^{1-\alpha} |u|^{\alpha} ||_{L^{r}(E)} \le || |u|^{1-\alpha} ||_{L^{\frac{p}{1-\alpha}}(E)} || |u|^{\alpha} ||_{L^{\frac{p}{\alpha}}(E)} \text{ by Hölder}
$$

=
$$
||u||_{L^{p}(E)}^{1-\alpha} \cdot ||u||_{L^{q}(E)}^{\alpha},
$$

where we use the identity $|||f|^a||_{L^q} = ||f||_{L^{aq}}^a$.

37. Let $I \doteq [0, 1]$ and consider the sequence of functions given by

$$
u_n(t) = e^{-nt}, \quad t \in I, \quad n \in \mathbb{N}.
$$

Study the convergence of the sequence (u_n) in the following spaces:

- (*i*) $C^0(I)$ endowed with the uniform topology;
- (*ii*) $L^1(I)$ endowed with the strong topology;
- (*iii*) $L^1(I)$ endowed with the weak topology;
- $(iv) L^{\infty}(I)$ endowed with the strong topology;

(v) $L^{\infty}(I)$ endowed with the weak* topology.

Answer. We have $\lim_{n\to+\infty}e^{-nt} = 0$ if $t > 0$ and 1 if $t = 0$. So, clearly the sequence is not convergent uniformly in [0, 1] (since the limit function is not continuous). This also excludes convergence in $L^{\infty}(I)$ endowed with the strong topology. We have

$$
0 < \int_0^1 e^{-nt} dt = n^{-1} \int_0^n e^{-t} dt < n^{-1} \xrightarrow{n \to +\infty} 0,
$$

which implies that $e^{-nt} \xrightarrow{n \to +\infty} 0$ strongly, and so also weakly, in $L^1(I)$. Finally, if $f \in L^1(I)$

$$
\int_0^1 e^{-nt} f(t) dt \xrightarrow{n \to +\infty} 0,
$$

by dominated convergence, and shows $e^{-nt} \rightharpoonup 0$ in $L^{\infty}(I)$ endowed with the weak^{*} topology.

38. Let $E \subseteq \mathbb{R}$ be a measurable set with finite measure and let $m \in L^{\infty}(E)$. Set

$$
(Tu)(x) \doteq m(x) \cdot u(x) \text{ for a.e. } x \in E.
$$

Given $p, q \in [1, \infty],$ with $p \ge q$, show that $T \in \mathcal{L}(L^p(E), L^q(E))$ and provide an estimate of its norm.

Answer. We have

 $\|mu\|_{L^q(E)} \le \|m\|_{L^{\infty}(E)} \|u\|_{L^q(E)} = \|m\|_{L^{\infty}(E)} \|1_E u\|_{L^q(E)} \le \|m\|_{L^{\infty}(E)} |E|^{\frac{1}{r}} \|u\|_{L^p(E)},$ where |E| is the measure of E and $\frac{1}{p} = \frac{1}{r} + \frac{1}{q}$.

39. Let $X = C_c(\mathbb{R})$ and $T: X \to X$ be a linear application such that

$$
||Tu||_{L^1} \le ||u||_{L^1};
$$
 $||Tu||_{L^2} \le ||u||_{L^1}$ $\forall u \in X.$

Given $r \in [1,2]$, show that there exists $\tilde{T} \in \mathcal{L}(L^1, L^r)$ such that $\|\tilde{T}\|_{\mathcal{L}(L^1, L^r)} \leq 1$ and $\tilde{T}|_X = T$.

Answer. This is part of a more general result, called the Riestz interpolation Theorem. Here is just a consequence ot Hölder's inequality, because for $u \in C_c(\mathbb{R})$, by exercise 36, using $\frac{1}{r} = \frac{1 - \frac{2}{r'}}{1}$ $\frac{r'}{1}$ + $\frac{2}{r'}$ 2

$$
||Tu||_{L^r} \leq ||Tu||_{L^1}^{1-\frac{2}{r'}} ||Tu||_{L^2}^{\frac{2}{r'}} \leq ||u||_{L^1}^{1-\frac{2}{r'}} ||u||_{L^1}^{\frac{2}{r'}} = ||u||_{L^1}.
$$

Then, by the density of $C_c(\mathbb{R})$ in $L^1(\mathbb{R})$, we get the unique extension $\tilde{T} \in \mathcal{L}(L^1, L^r)$ with $\|\tilde{T}\|_{\mathcal{L}(L^1,L^r)} \leq 1$ and $\tilde{T}|_X = T$.

40. Consider the sequence of functions given by

$$
u_n(x, y) = \cos(nx)e^{-ny}
$$
, $(x, y) \in I \doteq [0, 2\pi] \times [0, 2\pi]$, $n \in \mathbb{N}$.

- (a) Study the equicontinuity of (u_n) on I.
- (b) Study the convergence of (u_n) in the uniform topology of $C(I)$, in the strong topology of $L^{\infty}(I)$ and in the weak* topology of $L^{\infty}(I)$.

Answer. It is not equicontinuous. Indeed, for $y = 0$ and for fixed m and $n = 2mk$ we have

$$
\cos(0) - \cos\left(2mk\frac{\pi}{2m}\right) = 1 - (-1)^k.
$$

Since here $\frac{\pi}{2m}$ is arbitrarily close to 0 for $m \gg 1$, we see that equicontinuity in the origin is false. Since $u_n(x, y) \xrightarrow{n \to +\infty} 0$ pointwise for $y > 0$ and $u_n(0, 0) \equiv 0$, there can be no uniform convergence in $C(I)$, nor in the strong topology of $L^{\infty}(I)$ (which would imply uniform convergence in $C(I)$). But there is weak* convergence in $L^{\infty}(I)$ to 0, like in exercise 37.

41. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$ endowed with the uniform topology and consider the family of subsets of \mathbb{R}^2 given by

$$
A_{\alpha} \doteq \{(x, y) \in \mathbb{R}^2 : y > \alpha |x|, \ x^2 + y^2 < \alpha^{-2} \}, \quad \alpha > 0.
$$

Set

$$
T_{\alpha}u \doteq \int_{A_{\alpha}} u(x, y) \, dx dy, \quad \alpha > 0.
$$

- (a) Show that $T_{\alpha} \in X'$ for every $\alpha > 0$ and find its norm and support.
- (b) Study the convergence of the family $(T_\alpha)_{\alpha>0}$ in the strong and weak* topology of X' when $\alpha \to 0+$ and when $\alpha \to +\infty$.

Answer. We have

$$
|T_{\alpha}u| \leq \int_{A_{\alpha}} |u(x,y)| dx dy \leq \int_{A_{\alpha}} dx dy ||u||_{L^{\infty}} = |A_{\alpha}|||u||_{L^{\infty}}.
$$

So $||T_{\alpha}|| \leq |A_{\alpha}|$ and it is easy to show that there is equality. Finally,

$$
|A_{\alpha}| = 2\left(\frac{\pi}{2} - \arctan \alpha\right) \frac{1}{\alpha^2}.
$$

We obviously have $T_{\alpha} \xrightarrow{\alpha \to +\infty} 0$ strongly, while we cannot have weak* convergence for $\alpha \searrow 0$ because $||T_{\alpha}|| \xrightarrow{\alpha \rightarrow 0^+} +\infty$.

42. Let $I = [0, 1], X = C(I, \mathbb{R})$ and $Y = L^2(I)$. Set

$$
(Tu)(x) \doteq \int_{x^2}^x u(t) \, dt.
$$

(a) Show that $T \in \mathcal{L}(X)$ and establish if $T(B_1^X)$ is relatively compact in X.

(b) Show that $T \in \mathcal{L}(Y)$ and establish if $T(B_1^Y)$ is relatively compact in Y.

Answer. One can write $T = A - B$ with

$$
Au(x) = \int_0^x u(t) dt
$$

$$
Bu(x) = \int_0^{x^2} u(t) dt
$$

Using Hölder inequality, for $x_1 < x_2$,

$$
|Au(x_1) - Au(x_2)| \leq \int_{x_1}^{x_2} |u(t)| dt \leq |x_1 - x_2|^{\frac{1}{2}} \|u\|_{L^2(I)}
$$

$$
|Bu(x_1) - Bu(x_2)| \leq \int_{x_1^2}^{x_2^2} |u(t)| dt \leq |x_1^2 - x_2^2|^{\frac{1}{2}} \|u\|_{L^2(I)} \leq \sqrt{2}|x_1 - x_2|^{\frac{1}{2}} \|u\|_{L^2(I)}.
$$

Then $T: Y \to C^{\frac{1}{2}}(I)$ is bounded, and hence $T(B_1^Y)$ is bounded in X and equicontinuous. This means that $T: Y \to X$ is compact and, a fortiori, also the other maps $T: Y \to Y$ and $T: X \to X$.

43. Consider the sequence of functions given by

$$
u_n(x, y) = \sin\left(\frac{n^2x}{n+1}\right)e^{y/n}, \quad (x, y) \in I \doteq [0, 2\pi] \times [0, 2\pi], \quad n \in \mathbb{N}.
$$

- (a) Study the equicontinuity of (u_n) on I.
- (b) Study the convergence of (u_n) in the uniform topology of $C(I)$; in the strong and in the weak* topology of $L^{\infty}(I)$.

Answer. Using

$$
\frac{1}{1 + \frac{1}{n}} = 1 - \frac{1}{n} + O\left(\frac{1}{n^2}\right)
$$

we have

$$
u_n(\pi/2, 0) = \sin\left(n\frac{\pi}{1 + \frac{1}{n}}\right) = \sin\left(n\frac{\pi}{2} - \frac{\pi}{2} + O\left(\frac{1}{n}\right)\right)
$$

= $-\cos\left(n\frac{\pi}{2} + O\left(\frac{1}{n}\right)\right) \sin\left(\frac{\pi}{2}\right) = -\cos\left(n\frac{\pi}{2} + O\left(\frac{1}{n}\right)\right)$
= $-\cos\left(n\frac{\pi}{2}\right) \cos\left(O\left(\frac{1}{n}\right)\right) + \sin\left(n\frac{\pi}{2}\right)\left(O\left(\frac{1}{n}\right)\right) = -\cos\left(n\frac{\pi}{2}\right) + O\left(\frac{1}{n}\right)$

and

$$
u_n(\pi/2 - \pi/(2n), 0) = \sin\left(n\frac{\left(\frac{\pi}{2} - \frac{\pi}{2n}\right)}{1 + \frac{1}{n}}\right) = \sin\left(n\frac{\pi}{2} - \pi + O\left(\frac{1}{n}\right)\right)
$$

$$
= -\sin\left(n\frac{\pi}{2} + O\left(\frac{1}{n}\right)\right).
$$

For $n = 2k$ we have

$$
u_n(\pi/2 - \pi/(2n), 0) - u_n(\pi/2, 0) = \cos(k\pi) - \sin\left(k\pi + O\left(\frac{1}{k}\right)\right) + O\left(\frac{1}{k}\right)
$$

$$
= \cos(k\pi) - \sin(k\pi) + O\left(\frac{1}{k}\right) = (-1)^k + O\left(\frac{1}{k}\right).
$$

This excludes equicontinuity in $(\pi/2, 0)$, which would require that for any $\epsilon > 0$ there exists $\delta > 0$ such that

$$
\left| x - \frac{\pi}{2} \right| < \delta \Longrightarrow |u_n(x, 0) - u_n(\pi/2, 0)| < \epsilon \text{ for all } n.
$$

There is no strong convergence since otherwise we would have equicontinuity, which we have just excluded. On the other hand, for any $f \in C^{0}(I)$ we have

$$
\int_{I} u_{n}(x, y) f(x, y) dx dy = \int_{0}^{2\pi} dy e^{y/n} \int_{0}^{2\pi} \sin\left(\frac{n^{2}x}{n+1}\right) f(x, y) dx
$$

\n
$$
= \int_{0}^{2\pi} dy e^{y/n} \int_{0}^{2\pi} \sin\left(nx\left(1 - \frac{1}{n} + O\left(\frac{1}{n^{2}}\right)\right)\right) f(x, y) dx
$$

\n
$$
= \int_{0}^{2\pi} dy e^{y/n} \int_{0}^{2\pi} \sin\left(nx - x + O\left(\frac{1}{n}\right)\right) f(x, y) dx
$$

\n
$$
= \int_{0}^{2\pi} dy e^{y/n} \int_{0}^{2\pi} \sin(nx) \cos\left(x + O\left(\frac{1}{n}\right)\right) f(x, y) dx
$$

\n
$$
- \int_{0}^{2\pi} dy e^{y/n} \int_{0}^{2\pi} \cos(nx) \sin\left(x + O\left(\frac{1}{n}\right)\right) f(x, y) dx =: I_{n} + II_{n}.
$$

We claim that $I_n \xrightarrow{n \to +\infty} 0$ and $II_n \xrightarrow{n \to +\infty} 0$. We will prove only the first limit, since the second is similar. We have

$$
I_n = \int_0^{2\pi} dy e^{y/n} \int_0^{2\pi} \sin(nx) \cos(x) f(x, y) dx + O\left(\frac{1}{n}\right).
$$

Then, for $f(x, y) = a(x)b(y)$

$$
I_n \le \int_0^{2\pi} dy e^{2\pi} |b(y)| \left| \int_0^{2\pi} \sin(nx) \cos(x) a(x) dx \right| + O\left(\frac{1}{n}\right).
$$

Since by Riemann-Lebesgue

$$
\int_0^{2\pi} \sin(nx) \cos(x) a(x) dx \xrightarrow{n \to +\infty} 0
$$

we get $I_n \xrightarrow{n \to +\infty} 0$ by dominated convergence. This extends by linearity for all $f \in L^1(0, 2\pi) \bigotimes L^1(0, 2\pi)$ and, since the u_n are uniformly bounded in n, by density, to all $f \in L^1(I)$.

44. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$ endowed with the uniform norm and consider the family of subsets of \mathbb{R}^2 given by

$$
A_{\alpha} \doteq \{(x, y) \in \mathbb{R}^2 : x > 0, y > \alpha |x|, x^2 + y^2 < \alpha^2 \}, \alpha > 0.
$$

Set

$$
T_{\alpha}u \doteq \frac{1}{\alpha^2} \int_{A_{\alpha}} u(x, y) \, dx dy, \quad \alpha > 0.
$$

- (a) Show that $T_{\alpha} \in X'$ for any $\alpha > 0$ and find its norm and support.
- (b) Establish if the family $(T_{\alpha})_{\alpha>0}$ converges in the strong and weak* topology of X' when $\alpha \to 0^+$ and, in affirmative case, determine the limit T_0 .
- (c) Find norm and support of T_0 .

45. Let $I = [0, 1], X = C(I, \mathbb{R})$ and $\alpha(x) \doteq \min\{1, 2x\}.$ Set

$$
(Tu)(x) \doteq \int_0^{\alpha(x)} |u(t)|^2 dt.
$$

Establish if $T \in \mathcal{L}(X)$ and if $T(B_1^X)$ is relatively compact in X.

46. Consider the following family of Cauchy problems:

$$
\begin{cases}\ny' = \frac{1}{1+ty} & t > 0 \\
y(0) = 1 + \frac{1}{n} & n \in \mathbb{N}.\n\end{cases}
$$

- (a) Show that for every $n \in \mathbb{N}$ there exists a solution $y_n(\cdot)$ defined on the whole \mathbb{R}^+ .
- (b) Show that the sequence (y_n) amdits a subsequence uniformly converging on each compact subinterval of \mathbb{R}^+ .

Answer. First of all, for $y(0) > 0$ the corresponding solution is positive and strictly growing. Suppose that one of these solutions, with initial value $y_0 > 0$, has maximum forward time of existence [0, t₁). We need to show that $t_0 = +\infty$. If not and $t_1 < +\infty$, then, by monotonicity, the limit $\lim y(t)$ exists. If this limit is finite $t\rightarrow t_1^$ and equals to y_1 , by $0 < y_0 < y_1$ we have $y_1 \in \mathbb{R}_+$. but then, considering

$$
\begin{cases}\ny' = \frac{1}{1+ty} & t > 0 \\
y(t_1) = y_1\n\end{cases}
$$

it is easy to see that we can extend the previous equation beyond $[0, t_1)$. So we get a contradiction, and $\lim y(t) = +\infty$. Let us show that also this is impossible. Let $t \to t_1^{-}$ $t \to t_1^{-}$
0 < $t_2 < t_1$ with $y(t_2) \ge 1$. Then, for $t_2 < t < t_1$ we have $y(t) > y(t_2)$

$$
y(t) - y(t_2) = \int_{t_2}^t y'(s)ds = \int_{t_2}^t \frac{1}{1 + sy(s)}ds \le \int_{t_2}^t \frac{1}{1 + t_2}dt = \frac{t - t_2}{1 + t_2} \xrightarrow{t \to t_1^-} \frac{t_1 - t_2}{1 + t_2}.
$$

 $Hence +\infty = \lim_{t \to t_1^-}$ $(y(t)-y(t_2)) \leq \frac{t_1-t_2}{1+t_1}$ $\frac{1}{1+t_2}$, which obviously is a contradiction. So we conclude that if $y(0) = y_0 > 0$, the corresponding solution is defined in $[0, +\infty)$. The uniform convergence on compact intervals, is a consequence of the "well posedness" of solutions of the Cauchy problem for ODE's, which is a very general fact. Suppose that (y_{0n}) is a sequence in \mathbb{R}_+ with $y_{0n} \xrightarrow{n \to +\infty} y_0$ with $y_0 \in \mathbb{R}_+$. Then we can prove that the $y_n \xrightarrow{n \to +\infty} y$ in $C^0([0,T])$ for any $T > 0$, where $y_n(t) = y_{0n}$ and $y(0) = y_0$ using the Growall inequality. From

$$
y' - y'_n = f(t, y) - f(t, y_n)
$$

we get, after some elementary computations,

$$
|y(t) - y_n(t)| \le \left(1 + \int_0^t A_n(s)ds\right)|y_0 - y_{0n}| + \int_0^t A_n(s)|y(s) - y_n(s)|ds
$$

with $A_n(s) := \frac{|f(s, y(s)) - f(s, y_n(s))|}{|y(s) - y_n(s)|}.$

Notice now that

 $A_n(s) \leq \int_0^1$ $\int_{0}^{1} |\partial_y f(s, y_n(s) + \tau(y(s) - y_n(s)))| d\tau \leq \sup \{|\partial_y f(s, y)| : s \in [0, T] \text{ and } y \geq 0\} \leq T$ So we get

$$
|y(t) - y_n(t)| \le (1 + T^2) |y_0 - y_{0n}| + T \int_0^t |y(s) - y_n(s)| ds.
$$

Now, Gronwall's inequality yields

$$
|y(t) - y_n(t)| \le e^{Tt} (1 + T^2) |y_0 - y_{0n}|
$$

which yields $y_n \xrightarrow{n \to +\infty} y$ in $C^0([0,T])$.

47. Consider the sequence of functions given by

$$
u_n(x, y) = \sin\left(\frac{nx}{n+1}\right)(1 + e^{-n|y|}), \quad (x, y) \in I \doteq [-1, 1] \times [-1, 1], \quad n \in \mathbb{N}.
$$

- (a) Study the equicontinuity of (u_n) on I.
- (b) Study the convergence of (u_n) in the uniform topology of $C(I)$, in the strong topology of $L^{\infty}(I)$ and in the weak* topology of $L^{\infty}(I)$.

48. Let $I = [0, 1], X = C^{0}(I)$ and $m \in X$. Set

$$
(T_m u)(x) \doteq m(x)u(x), \quad u \in X, \ x \in I.
$$

Show that $T_m \in \mathcal{L}(X)$ and that it is compact if and only if $m(x) = 0$ for every $x \in I$.

Answer. We have $\sigma(T_m) = m(I)$. We must have $0 \in m(I)$ and $m(I) \setminus \{0\}$ must be discrete and $m(I)$ must be connected. So, summing up, $m(I) = \{0\}$, which implies $m \equiv 0$ and $T_m = 0$.

49. Let \overline{B} the closed unit ball in R, endowed with the euclidean norm $\|\cdot\|$. Define

 $u_n(x) \doteq |\sin(||x||)|^{\frac{1}{n}}$ $n \in \mathbb{N}$.

Study the equicontinuity of the family $\{u_n, n \in \mathbb{N}\}\$ on \overline{B} . Answer. Recall that the

condition of the Ascoli Arzela Theorem are both sufficient and necessary. Obviously the above sequence is is bounded in $C^0(B)$. Notice that pointwise we have

$$
|\sin(|x|)|^{\frac{1}{n}} \xrightarrow{n \to +\infty} \begin{cases} 1 & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}
$$

and this excludes the existence of a subsequence converging uniformly. So the sequence is not equicontinuous.

50. Consider the sequence of functions given by

$$
u_n(x,y) = \frac{e^{-\frac{ny}{n+1}}}{(1 + e^{-nx^2})}, \quad (x,y) \in I \doteq [-1,1] \times [-1,1], \quad n \in \mathbb{N}.
$$

Study the convergence of (u_n) in the uniform topology of $C(I)$, in the strong topology and in the weak* topology of $L^{\infty}(I)$.

51. Let $\varphi \in C_c(\mathbb{R})$ and (a_n) a sequence in \mathbb{R} . Define

$$
u_n(x) \doteq \varphi(x - a_n), \qquad x \in \mathbb{R}, \quad n \in \mathbb{N}.
$$

a) Show that $u_n \in L^p(\mathbb{R})$ for every $p \in [1, \infty]$.

b) Study the relative compactness of the sequence (u_n) in the strong and in the weak topology of L^p (weak* if $p = \infty$). That is to say: establish if and for which $p \in [1,\infty]$ there exists a converging subsequence in such topologies.

52. Let $I = [0, 1] \subset \mathbb{R}$ and $B = \{u \in C^1(I) : ||u'||_{L^2(I)} \le 1\}.$

a) Show that B is an equicontinuous family.

b) Given a sequence (u_n) in $\{u \in B : u(0) = 0, u(1) = 1\}$, show that there exist $u \in C⁰(I)$ and a subsequence (u_{n_k}) which converges uniformly to u.

c) Show by a counterexample that property b) does not hold in B.

53. Let \overline{B} the closed unit ball in \mathbb{R}^d , endowed with the euclidean norm $\|\cdot\|$. Set $u_n(x) \doteq e^{-n||x||}$ $n \in \mathbb{N}$.

Study the equicontinuity of the family $\{u_n, n \in \mathbb{N}\}\$ on \overline{B} .

54. Consider the sequence of functions given by

 $u_n(x, y) = \min\left\{n, |x|^{-\frac{1}{2}}\right\} \sin\left(\frac{ny}{n+1}\right)$), $(x, y) \in I \doteq [-1, 1] \times [-1, 1], \quad n \in \mathbb{N}.$

Study the convergence of (u_n) in the strong and weak topology (weak* if $p = \infty$) of $L^p(I)$.

55. Let $\varphi \in C_c(\mathbb{R})$ with supp $\varphi \subseteq [-1,1], \varphi \geq 0$ e $\int_{\mathbb{R}} \varphi dt = 1$. Consider the Dirac sequence given by

$$
\rho_n(t) \doteq n\varphi(nt) \quad \forall t \in \mathbb{R} \quad \forall n \in \mathbb{N}
$$

and let (a_n) be a sequence in R. Set

$$
u_n(t) \doteq \rho_n(x - a_n) \qquad \forall t \in \mathbb{R} \quad \forall n \in \mathbb{N}.
$$

a) Show that $u_n \in L^p(\mathbb{R})$ for every $p \in [1, \infty]$ and for every $n \in \mathbb{N}$.

b) Considering the cases $a_n = n$ and $a_n = n^{-2}$, study the convergence of the sequence (u_n) in the strong and weak topology of L^p (weak* if $p = \infty$).

56. Let $I = [0, 1] \subset \mathbb{R}$, $X = C^{0}(I)$ and $Y = L^{1}(I)$. Set

$$
Tu(x) \doteq \int_0^x xy u(y) \, dy.
$$

- a) Show that $T \in \mathcal{L}(X)$ and $T \in \mathcal{L}(Y)$.
- b) Establish if T is compact in $\mathcal{L}(X)$ and in $\mathcal{L}(Y)$, explaining the reasons.

57. Let $(\rho_n)_{n\in\mathbb{N}}$ be a regularizing sequence in R. Study the equiintegrability of the following families:

- a) $f_n = \rho_n$, $n \in \mathbb{N}$; **b**) $g_n = \rho'_n$, $n \in \mathbb{N};$
- c) $h_n \doteq \rho_1 \star \rho_n$, $n \in \mathbb{N}$.
c) $h_n \doteq \rho_1 \star \rho_n$, $n \in \mathbb{N}$.

58. Let $\alpha > 0$ and consider the sequence of functions given by

$$
u_n(x) \doteq \min\{1, |x|^{-\alpha}\}\chi_{B(0,n)}(x), \quad n \in \mathbb{N}, \ x \in \mathbb{R}^d.
$$

Study the strong and weak (weak* if $p = \infty$) convergence of (u_n) in the spaces $L^p(\mathbb{R}^d)$ for $p \in [1,\infty]$.

59. Let $Q \doteq [-1, 1]^3 \subseteq \mathbb{R}^3$ and set

$$
f(x_1, x_2, x_3) = \begin{cases} (x_1 x_2^2 x_3^3)^{-1}, & x_1 x_2 x_3 \neq 0 \\ 0, & x_1 x_2 x_3 = 0. \end{cases}
$$

- Establish for which $p \in [1,\infty]$ we have $f \in L^p(\mathbb{R}^3)$;
- establish for which $p \in [1,\infty]$ we have $f \in L^p(Q)$;

- establish for which $p \in [1,\infty]$ we have $f \in L^p(\mathbb{R}^3 \setminus Q)$.

60. Let $E \subseteq \mathbb{R}$ be a measurable set, $p_i \in [1, \infty]$, $f_i \in L^{p_i}(E)$ for $i = 1, \ldots, n$, and $r \in [1,\infty]$ given by

$$
\frac{1}{r} \doteq \sum_{i=1}^n \frac{1}{p_i}.
$$

Show that

$$
\prod_{i=1}^{n} f_i \in L^r(E)
$$

and that the following inequality holds:

$$
\left\| \prod_{i=1}^n f_i \right\|_{L^r(E)} \leq \prod_{i=1}^n \|f_i\|_{L^{p_i}(E)}.
$$

61. Let $(\rho_n)_{n \in \mathbb{N}}$ be a regularizing family in \mathbb{R} and $f \in C^0(\mathbb{R})$. Set

$$
f_n(x) \doteq (\rho_n \star f)(x), \quad x \in \mathbb{R}.
$$

Show that the definition is well posed and that the sequence (f_n) converges uniformly to f on any compact subset $K \subseteq \mathbb{R}$.

62. Let $I = [-1, 1] \subseteq \mathbb{R}$ and (u_n) a sequence in $C^2(\mathbb{R})$ such that

- (a) u_n is convex on R for every $n \in \mathbb{N}$;
- (b) There exists $K \geq 0$ such that $|u_n(0)| + |u'_n(t)| \leq K$ for every $t \in I$ and for every $n \in \mathbb{N}$.
- (1) Show that the sequence (u'_n) is relatively compact in $L^1(I)$.
- (2) Show that there exists a subsequence (u_{n_k}) and a map $u \in C^0(I)$ such that (u_{n_k}) converges uniformly to u on I.

63. Let $I = [0, 1] \subseteq \mathbb{R}$ and $\{e_n, n \in \mathbb{N}\}\$ a Hilber basis $L^2(I)$. Set

$$
(e_m \otimes e_n)(x, y) \doteq e_m(x)e_n(y); \quad m, n \in \mathbb{N}, \ (x, y) \in I \times I.
$$

Show that the family $\{e_m \otimes e_n; m, n \in \mathbb{N}\}\$ is a Hilbert basis in $L^2(I \times I)$.

Answer. It is an orthonormal family. Now, for $u, v \in L^2(I)$, we have

$$
\sum_{n,m \in \mathbb{N}} |(u \otimes v, e_m \otimes e_n)|^2 = \sum_{n,m \in \mathbb{N}} |(u, e_m)|^2 |(v, e_n)|^2 = \sum_{m \in \mathbb{N}} |(u, e_m)|^2 \sum_{n \in \mathbb{N}} |(v, e_n)|^2
$$

= $||u||_{L^2(I)}^2 ||v||_{L^2(I)}^2 = ||u \otimes v||_{L^2(I \times I)}^2$

This means that each $u \otimes v$ is in the closed space spanned by the above orthonormal family, hence also the linear conmbinations of these elements. Since the latter are dense in $L^2(I \times I)$, it follows that the space generated by the orthonormal family is $L^2(I \times I)$, and thus the orthonormal family is a Hilbert basis.

64. Let $I = [-1, 1] \subseteq \mathbb{R}$ and consider the sequence of functions given by:

$$
u_n(t) = e^{-n} \cdot e^{nt^2}; \quad t \in I, \quad n \in \mathbb{N}.
$$

Study the convergence of the sequence (u_n) in the following spaces:

(*i*) $C^0(I)$ with uniform topology;

- (*ii*) $L^1(I)$ with strong topology;
- (*iii*) $L^1(I)$ with weak topology;
- (iv) $L^{\infty}(I)$ with strong topology;
- (v) $L^{\infty}(I)$ with weak* topology.

65. For every $n \in \mathbb{N}$ set

$$
f_n(x) = \sin\left(\frac{x}{n}\right); \quad g_n(x) = \sin\left(n^2x\right); \quad h_n(x) = \sin\left(\frac{nx}{n+1}\right); \quad x \in [0, 2\pi].
$$

Study the equicontinuity of the sequences $\{f_n, n \in \mathbb{N}\}, \{g_n, n \in \mathbb{N}\}\in \{h_n, n \in \mathbb{N}\}\$ on $[0, 2\pi]$.

66. Let $I = [0, 1] \subset \mathbb{R}$ and, for every $n \in \mathbb{N}$, consider the subintervals of the form

$$
I_n^m \doteq \left[\frac{m}{n}, \frac{m+1}{n}\right[, \quad m = 0, 1, \dots, n-1.
$$

Then set

$$
u_n(t) \doteq (-1)^m \text{ for } t \in I_n^m.
$$

Study the strong and weak convergence of the sequence (u_n) in $L^2(I)$.

67. Let D be te unit disk in $\mathbb C$. Study the equicontinuity of the following families of functions in $C(D)$:

(i) ${f_a(z) = e^{iaz}, a \in \mathbb{R}};$ (ii) ${f_a(z) = e^{i\frac{z}{a}}, a \in \mathbb{R} \, a \neq 0};$ (iii) ${f_a(z) = e^{iaz}, a \in \mathbb{R}, |a| > 1};$ (iv) ${f_a(z) = e^{iaz}, a \in \mathbb{R}, |a| < 1}.$

68. Let $X = C([0, 1], \mathbb{R})$ and (a_n) a sequence in [0, 1]. Set

$$
\langle f_n, u \rangle \doteq u(a_n), \ \forall n \in \mathbb{N}, \ \forall u \in X.
$$

Show that $f_n \in X'$ for every $n \in \mathbb{N}$ and that there exists a subsequence (f_{n_k}) which converges in the topology $\sigma(X', X)$.

69. Study the equicontinuity of the following families in $C(I)$ ($I \subseteq \mathbb{R}$)).

(i) ${f_a(x) = e^{ax}, a \in \mathbb{R}}$, $I = \mathbb{R}$; (ii) ${f_a(x) = a(1-x)^2, a \in \mathbb{R}^+\}, I = [-1, 1];$ (iii) ${f_a(x) = x^{-a}, a \in \mathbb{R}^+, }, I =]1, +\infty[;$ (iv) ${f_a(x) = x^{-a}, a \in \mathbb{R}^+, }, I =]0, +\infty[$.

70. Let $p \in [1, \infty]$. Consider the space $X = L^p([0, 1])$ and set

$$
(Tu)(x) = \int_0^x u(t) dt.
$$

- (i) Show that $T \in \mathcal{L}(X)$ and that $||T||_{\mathcal{L}(X)} \leq (p^{\frac{1}{p}})^{-1}$.
- (ii) Given a sequence (u_n) in X weakly converging to u in X, show that the sequence $(T u_n)$ converges strongly to Tu in X.

Answer. The bound follows from

$$
|Tu(x)| \leq \int_0^x |u(t)|dt \leq x^{\frac{1}{p'}} ||u||_{L^p([0,1])}
$$

and from

$$
||x^{\frac{1}{p'}}||_{L^p([0,1])} = \left(\int_0^1 x^{\frac{p}{p'}} dx\right)^{\frac{1}{p}} = \left(\frac{1}{\frac{p}{p'}+1} dx\right)^{\frac{1}{p}} = \left(p^{\frac{1}{p}}\right)^{-1} \left(\frac{1}{\frac{1}{p'}+\frac{1}{p}} dx\right)^{\frac{1}{p}} = \left(p^{\frac{1}{p}}\right)^{-1}.
$$

For part (ii), the result follows from the fact that $T : L^p([0,1]) \to L^p([0,1])$ is compact. The case $p = 1$ is discussed in Cuccagna's notes. The case $p > 1$ is easier because we have for any $x_1 < x_2$

$$
|Tu(x_1)-Tu(x_2)| \leq \int_{x_1}^{x_2} |u(x)| dx \leq \sqrt[n]{|x_1-x_2|} \|u\|_{L^p([0,1])}.
$$

From this and Ascoli Arzela we conclude that $T: L^p([0,1]) \to C^0([0,1])$ is compact for $p > 1$ and so, at fortiori, also $T : L^p([0,1]) \to L^p([0,1])$ is compact.

71. Let
$$
C > 0
$$
, $p \in [1, \infty[$, $\alpha \in]0, 1[$ and $B = \{x \in \mathbb{R}^d : ||x|| \le 1\}$. Consider the set $U = \{u \in C(B) : u(0) = 0, |u(x) - u(y)| \le C|x - y|^{\alpha} \forall x, y \in B\}$.

Show that U is relatively compact in $L^p(B)$.

Answer. It is immediate that U is bounded and equicontinuous and so relatively compact in $C^0(B)$, and hence also in $L^p(B)$.

72. Let $I \doteq [0,1]$ and (u_n) a sequence in $C^1([0,1])$ such that

$$
|u_n(0)| + \int_I |u'_n(t)| dt \le 1 \quad \forall n \in \mathbb{N}.
$$

Show that there exist a subsequence (u_{n_k}) and a map $u \in L^1(I)$ such that $u_{n_k} \to u$ strongly in $L^1(I)$.

73. Let $E \subseteq \mathbb{R}^d$ be ameasurable set such that $0 < m(E) < +\infty$. For every $p \in [1, +\infty[$ and for every $f \in L^p(E)$ set

$$
N_p[f] \doteq \left(\frac{1}{m(E)}\int_E |f(x)|^p\right)^{\frac{1}{p}}.
$$

Show that $N_p[\cdot]$ is a norm on $L^p(E)$ and that, if $1 \le p \le q < +\infty$, we have

$$
N_p[f] \le N_q[f] \qquad \forall f \in L^q(E).
$$

74. Let X be a Banach space and set $\mathcal{K}(X) \doteq \{T \in \mathcal{L}(X) : T \text{ is compact}\}\.$ Show that $\mathcal{K}(X)$ is closed in $\mathcal{L}(X)$.

75. Let $X = C_0(\mathbb{R}^2)$ and (a_n) a sequence in \mathbb{R}^+ . For every $n \in \mathbb{N}$ and for every $u \in X$ set

$$
T_n(u) = \int_{-a_n}^{+a_n} u(x, nx) dx.
$$

Show that $T_n \in X'$ for every $n \in \mathbb{N}$ a find its norm and support. Study the convergence of the sequence (T_n) in the strong and weak* topology of X' in the cases $a_n = 1 + n^2$ and $a_n = e^{-\frac{1}{n}}$.

76. Let $I = [0, 1]$ and H an equicontinuous subset of $C^0(I)$. Show that \overline{H} is equicontinuous.

77. Let $I = [0, 1], B_r = B(0, r)$ the ball in \mathbb{R}^d of center zero and radius $r, p \in [1, \infty],$ $X_p \doteq L^p(B_1)$ and $Y \doteq C^0(I, \mathbb{R})$. Given $u \in X_p$ and $t \in I$, set

$$
(Tu)(t) \doteq \int_{B_t} u(y) \, dy.
$$

Show that $T \in \mathcal{L}(X_n, Y)$ for every p and establish for which p it is compact.

78. For $(x, y) \in I \doteq [-1, 1] \times [-1, 1]$, consider the sequence of functions given by

$$
u_n(x,y) = \left(\cos\left(\frac{nx^2}{n+1}\right)\sin(nx)\right)(1 + e^{-ny^2}), \quad n \in \mathbb{N}.
$$

Study the convergence of (u_n) in the strong and weak topology (weak* if $p = \infty$) of $L^p(I)$.

79. Let (a_n) and (b_n) sequence in \mathbb{R}^+ and set $R_n \doteq [-a_n, a_n] \times [-b_n, b_n] \subseteq \mathbb{R}^2$ and

$$
u_n(x, y) \doteq \chi_{R_n}(x, y), \quad (x, y) \in \mathbb{R}^2.
$$

Study the convergence of (u_n) in the strong and weak topology of $L^1(\mathbb{R}^2)$ and in the strong and weak* topology of $L^{\infty}(\mathbb{R}^2)$ in the following cases:

1. $a_n = n, b_n = n^{-1};$ 2. $a_n = n, b_n = n^{-\frac{1}{2}};$ 3. $a_n = \frac{n}{n+1}, b_n = n^{-1};$ 4. $a_n = \frac{n+1}{n+1}, b_n = \frac{n}{n+1}.$

80. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$, endowed with the uniform norm, and (a_n) , (b_n) sequences in \mathbb{R}^+ . Define

$$
\langle f_n, u \rangle \doteq \int_0^{2\pi} u(a_n \cos \theta, b_n \sin \theta) d\theta, \quad n \in \mathbb{N}, u \in X.
$$

Show that $f_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support.

Suppose $a_n \to 1, b_n \to 0$ and study the convergence of the sequence (f_n) in the strong and weak* topology of X' .

81. Let $I = [0, 1], M > 0$ and (u_n) a sequence in $C^1(I)$ such that

1. $\int_I |u_n(t)|^2 \leq M \ \forall n \in \mathbb{N};$

2. $u'_n(t) + t \geq 0 \ \forall t \in I, \forall n \in \mathbb{N}.$

Show that the sequence (u_n) is relatively compact in $L^1(I)$. Answer. Here too,

like in exercise 86 below, it is possible to restrict to case $u_n(0) \equiv 0$. Next, let $u_n^{'+} = \max\{u_n^{'}, 0\}$ and $u_n^{'} = \max\{-u_n^{'}, 0\}$. Then

$$
u_n = u_n^+ - u_n^- \text{ and } u_n = v_n - w_n \text{ with}
$$

$$
v_n(x) := \int_0^x u_n^{'+}(t)dt \text{ and}
$$

$$
w_n(x) := \int_0^x u_n^{'-}(t)dt.
$$

Form $u_n^{(-)}(t) \le t \le 1$ we have for any $x_1 < x_2$

$$
|w_n(x_1) - w_n(x_2)| \le \int_{x_1}^{x_2} dt = |x_2 - x_1|.
$$

So (w_n) is relatively compact in $C^0(I)$ by Ascoli-Arzelá, and hence also in $L^2(I)$ (where, hence, it is bounded) and $L^1(I)$. Also (v_n) is relatively compact in $L^1(I)$, by Exercise 86 below.

82. Let (x_n) be a sequence in a Hilbert space H endowed with the inner product $\langle \cdot, \cdot \rangle$. Show that, if the sequence $(\langle x_n, y \rangle)$ converges for every $y \in H$, then the sequence (x_n) converges weakly.

83. Let $I = [0, 1]$ and call X the Banach space $C(I)$, endowed with the uniform norm. Introduce the space

$$
Y \doteq \{ u \in X, u \text{ differentiable on } I \text{ with } u' \in X \}
$$

and set

$$
||u||_Y \stackrel{.}{=} ||u||_{\infty} + ||u'||_{\infty}, \ u \in Y.
$$

Prove that $(Y, \|\cdot\|_Y)$ is a Banach space.

Let α be a nonzero element of X and set

 $(Tu)(x) \doteq \alpha(x)u'(x) \quad u \in Y, \ x \in I.$

- (i) Prove that $T \in \mathcal{L}(Y, X)$ and find its norm.
- (ii) Establish if T is compact and justify the answer.

Answer. $(Y, \|\cdot\|_Y)$ is a Banach space. Indeed, let $(u_n, u'_n) \xrightarrow{n \to +\infty} (u, v)$ in $C(I) \times C(I)$. Then, since for any $x \in I$ we have

$$
u_n(x) = \int_0^x u'_n(t)dt,
$$

it follows, taking the limit in n, that

$$
u(x) = \int_0^x v(t)dt,
$$

and so by the Fundamental Theorem of calculus, $v = u'$. We have $T \in \mathcal{L}(Y, X)$ with a bound

$$
||Tu|| \le ||\alpha||_{L^{\infty}(I)} ||u'||_{L^{\infty}(I)} \Longrightarrow ||T|| \le ||\alpha||_{L^{\infty}(I)}.
$$

Consider now that map $X \hookrightarrow Y$ given by $v \to (u, v)$, with $u' = v$ with $u(0) =$ 0. Then, if T is compact, also the multiplier map $X \ni v \to Sv := \alpha v \in X$. is compact. Recall that $\sigma(S) = \alpha(I)$. It is clear, from the Spectral Theorem of compact operators, that $\alpha(I)$ must contain 0, be at most countable, and have 0 as unique accumulation point. Since $\alpha(I)$ is connected, it follows that we must have $\alpha(I) = \{0\}$, that is $\alpha \equiv 0$, hence T, if compact, is the 0 operator.

84. Let H be a Hilbert space. For $T \in \mathcal{L}(H)$ denote by $R(T)$ and $N(T)$, respectively, the range and the kernel of T . Calling T^* the adjoint of T , prove that $N(T) = (R(T^*))^{\perp}$ and $\overline{(R(T))} = (N(T^*))^{\perp}$.

85. Let $B_r = B(0, r)$ be the ball in \mathbb{R}^d of center zero and radius r and $X = C_0(\mathbb{R})$. Let m be a map in $C(\mathbb{R})$, with $m(x) \geq 0$ for every $x \in \mathbb{R}$, and, for every $t > 0$, set

$$
T_t(u) \doteq t^{-d} \int_{B_t} m(y) u(y) \, dy.
$$

Prove that $T_t \in X'$ for every $t > 0$ and find its norm and support. Study the convergence of T_t as $t \to 0^+$ in the strong and weak* topology of X'. Answer. It

is obvious that

$$
|T_t(u)| \le t^{-d} \int_{B_t} m(y) dy ||u||_{L^{\infty}(\mathbb{R}^d)}
$$

so that this yields an element in $(L^{\infty}(\mathbb{R}^d))'$, in fact $t^{-d}1_{B_1}(\frac{x}{t})$ $m(x) \in L^1(\mathbb{R}^d)$. As an element in X', we have $t^{-d}1_{B_1}(\frac{x}{t}) m(x) \rightharpoonup m(0)\delta(x)$ in the weak* topology of X'. If we have strong convergence in X', this implies strong convergence in $L^1(\mathbb{R}^d)$ to an element $u \in L^1(\mathbb{R}^d)$. It is easy to see that $u = 0$ a.e. in \mathbb{R}^d , which implies $u = 0$. So we conclude that strong convergence in X' is necessarily to 0 and implies $m(0) = 0$. Viceversa, if $m(0) = 0$, we know that for any $\epsilon > 0$ there exists $\delta_{\epsilon} > 0$ such that $|x| < \delta_{\epsilon}$ implies $|m(x)| < \epsilon$. Then, for $0 < t < \delta_{\epsilon}$ we have

$$
||t^{-d}1_{B_1}\left(\frac{x}{t}\right)m||_{L^1(\mathbb{R}^d)} = ||t^{-d}1_{B_1}\left(\frac{x}{t}\right)m||_{L^1(B_t)} \le ||t^{-d}1_{B_1}\left(\frac{x}{t}\right)m||_{L^1(B_{\delta_{\epsilon}})} \le \epsilon
$$

and so, indeed, we conclude $t^{-d}1_{B_1}(\frac{1}{t})$ m $\frac{t\rightarrow 0^+}{t\rightarrow 0}$ o in $L^1(\mathbb{R}^d)$.

86. Let $I = [0,1]$ and (u_n) , (v_n) be two bounded sequences in $L^2(I)$. Assume in addition that the maps $I \ni x \mapsto u_n(x)$ and $I \ni x \mapsto v_n(x)$ are continuous and monotone non decreasing for every $n \in \mathbb{N}$; then define

$$
f_n(x, y) \doteq u_n(x)v_n(y), \quad (x, y) \in Q \doteq I \times I.
$$

Prove that f_n lies in $L^2(Q)$ for every $n \in \mathbb{N}$ and that the sequence (f_n) is relatively compact in $L^1(Q)$. Answer. First of all, it is sufficient to show that

 (u_n) is relatively compact in $L^1(I)$. The argument which follows is rather complicated. Notice, incidentally, that here it is crucial that relative compactness is in $L^1(I)$, since it is easy to obtain a non relatively compact set $L^2(I)$ using for example $n^{\frac{1}{2}} \chi_{[0,1]}(n(1-x))$ (notice that $n^{\frac{1}{2}} \chi_{[0,1]}(n(1-x)) \xrightarrow{n \to +\infty} 0$ in $L^1(I)$). I will also assume that $u_n(0) \equiv 0$, since it is easy to see that we can reduce to this case and I will also assume $||u_n||_{L^2(I)} \leq 1$ for all n. Next, for any $M > 0$ let $x_M^{(n)} = \inf\{x : u_n(x) \ge M\}$. Then $1 - x_M^{(n)} \le M^{-1/2} ||u_n||_{L^2(I)} \le M^{-1/2}$ follows from the Chebyshev inequality. So $x_M^{(n)} \geq 1 - M^{-1/2}$. Next, split

$$
u_n = v_n + w_n \text{ where}
$$

$$
v_n := \chi_{[0,1-M^{-1/2}]} u_n
$$

$$
w_n = \chi_{[1-M^{-1/2},1]} u_n
$$

Notice that

$$
||w_n||_{L^1(I)} \le ||\chi_{[1-M^{-1/2},1]}||_{L^1(I)} ||u_n||_{L^2(I)} \le M^{-1/4}.
$$

Now, we have $v_n(0) \equiv 0$ and $v_n(1 - M^{-1/2}) \leq M$. Then, see

https://math.stackexchange.com/questions/1003580/a-bounded-monotonic-function -on-an-closed-interval-has-fourier-coefficient-decay

it is easy to see that there exists a fixed $C > 0$ such that the Fourier series

$$
v_n(x) \sim \sum_{j \in \mathbb{Z}} \widehat{v}_n(j) e^{i \frac{2\pi}{1 - M^{-1/2}} jx} \text{ satisfies}
$$

$$
|\widehat{v}_n(j)| \le \frac{C}{\langle j \rangle} \text{ for all } n \in \mathbb{N}.
$$

Notice that this implies that (v_n) defines a bounded sequence in $H^s(\mathbb{T}_M)$ where $\mathbb{T}_M = \frac{\mathbb{R}}{(1-M^{-1/2})\mathbb{Z}}$ for any $s \in (0,1/2)$. Since the immersion $H^s(\mathbb{T}_M) \hookrightarrow L^2(0,1-\mathbb{R})$ $M^{-1/2}$) is compact, we conclude that (v_n) is relatively compact in $L^2(0, 1-M^{-1/2})$, and so also in $L^1(0, 1 - M^{-1/2})$. So for any $\epsilon > 0$ we conclude that there is a finite covering of (v_n) in $L^1(0, 1 - M^{-1/2})$ with balls of radius $\epsilon/2$. Now, choosing $M^{-1/4} < \epsilon/2$ we conclude that there exists a finite covering of (u_n) in $L^1(0,1)$ with balls of radius ϵ . This yields the desired result.

87. Let $I = [0, 1], Q \doteq I \times I$ and $(a_n), (b_n)$ sequences in $]0, 1]$. Define the family of sets $R_n \doteq [0, a_n] \times [0, b_n] \subseteq Q$ and set

$$
u_n(x, y) \doteq (1 + \sin(nx))(1 + e^{-ny}) \chi_{R_n}(x, y), \quad (x, y) \in Q.
$$

Study the convergence of (u_n) in the strong and weak topology of $L^1(Q)$ and in the strong and weak* topology of $L^{\infty}(Q)$ in the following cases:

1. $a_n = n^{-2}, b_n = 1 - n^{-1};$ 2. $a_n = 1 - n^{-2}, b_n = 1 - n^{-1}.$

Answer. In the first case, we have

$$
|u_n(x,y)| \leq 4\chi_{[0,n^{-2}]}(x)\chi_{[I]}(y) \xrightarrow{n \to +\infty} 0 \text{ in } L^1(Q) \text{ by Dominated Convergence.}
$$

We have $||u_n||_{L^{\infty}(Q)} = 2$ and this and the above imply that u_n is not strongly convergent in $L^{\infty}(Q)$, however $u_n \rightharpoonup 0$ in the weak* topology of $L^{\infty}(Q)$. In the second case, set

$$
v_n(x, y) := (1 + \sin(nx))(1 + e^{-ny}) \chi_{[0, b_n]}(y)
$$

Then

$$
v_n(x, y) - u_n(x, y) = (1 + \sin(nx))(1 + e^{-ny})\chi_{[1-n^{-2}, 1]}(x)\chi_{[0, b_n]}(y) \xrightarrow{n \to +\infty} 0
$$

in L¹(Q) by Dominated Convergence.

Next,

$$
v_n(x, y) = (1 + \sin(nx)) + w_n(x, y) \text{ for}
$$

$$
w_n(x, y) := -(1 + \sin(nx))\chi_{[b_n, 1]}(y) + (1 + \sin(nx))e^{-ny}\chi_{[0, b_n]}(y)
$$

where $w_n \xrightarrow{n \to +\infty} 0$ in $L^1(Q)$ by Dominated Convergence.

We have $1+\sin(nx) \rightharpoonup 1$ in $L^1(Q)$ in the weak* topology of $L^{\infty}(Q)$ by the Riemann-Lebesgue Lemma. On the other hand

$$
||1 + \sin(nx) - 1||_{L^{1}(Q)} = \int_{0}^{1} |\sin(nx)| dx \xrightarrow{n \to +\infty} \frac{2}{\pi}
$$

which implies that $1 + \sin(nx)$ does not converge to 1 in $L^1(Q)$. We also have

$$
v_n - u_n \rightharpoonup 0 \text{ in the weak* topology of } L^{\infty}(Q) \text{ and}
$$

$$
w_n \rightharpoonup 0 \text{ in the weak* topology of } L^{\infty}(Q).
$$

There is no strong convergence of u_n in $L^{\infty}(Q)$, since this would imply strong convergence to 1, in particular also in $L^1(Q)$, which has just been excluded.

88. Let H be a complex Hilbert space with inner product (\cdot, \cdot) . Prove that we have $4(x, y) = (\|x + y\|^2 - \|x - y\|^2) - i(\|x + iy\|^2 - \|x - iy\|^2) \quad \forall x, y \in H.$

89. Let $I = [0, 1]$ and call X the Banach space $C(I)$, endowed with the uniform norm. Let $g \in C(I \times I)$ and set

$$
(Tu)(x) \doteq \int_I g(x, y)u(y) \, dy \quad u \in X, \ x \in I.
$$

- (i) Prove that $T \in \mathcal{L}(X)$ and estimate its norm.
- (ii) Establish if T is compact and justify the answer.
- (iii) Compute the norm of T in the case $g(x, y) = e^{x+y}$.

Answer. We have

$$
|(Tu)(x)| \leq \int_I |g(x,y)u(y)| dy \leq \int_I |g(x,y)| dy ||u||_{L^{\infty}(I)}.
$$

So we have the bound

$$
||T|| \le \sup_{x \in I} \int_I |g(x, y)u(y)| dy.
$$

Using the fact that $g: I \times I \to \mathbb{R}$ is uniformly continuous, it is easy to show that $TD_{C(I)}(0,1)$ is bounded and equicontinuous, and so relatively compact by Ascoli Arzela.

90. Let $X = C_0(\mathbb{R}^2)$ and, for every $n \in \mathbb{N}$, consider the set

$$
R_n \doteq \,]-n, n[\times]-n^{-1}, n^{-1}[\subseteq \mathbb{R}^2.
$$

Given $u \in X$ and $n \in \mathbb{N}$ set

$$
(T_n u)(x) = \frac{1}{n} \int_{R_n} e^{-(x^2 + y^2)} u(x, y) \, dx \, dy.
$$

Prove that $T_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support. Study the convergence of the sequence (T_n) in the strong and weak* topology of X'.

Answer. It is pretty straightforward that

$$
||T_n|| = \frac{1}{n} \int_{R_n} e^{-(x^2 + y^2)} dx dy \le \frac{1}{n} \int_{R_n} dx dy = \frac{1}{n} Area(R_n) = \frac{4}{n} \xrightarrow{n \to +\infty} 0.
$$

91. Let $Q = [0, 1]^d \subseteq \mathbb{R}$ and consider (u_n) , (v_n) , two relatively compact sequences in $L^2(Q)$. Define

$$
f_n(x) \doteq u_n(x)v_n(x), \quad x \in Q, \ n \in \mathbb{N}.
$$

Prove that f_n lies in $L^1(Q)$ for every $n \in \mathbb{N}$ and that the sequence (f_n) is relatively compact in $L^1(Q)$.

92. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be map of class C^1 such that $\varphi(0) = 0$ and $1 \leq \varphi'(t) \leq 2$ for every $t > 0$. Let $I = [0, 1]$ and (u_n) a sequence in $L^1(\mathbb{R})$.

- (i) Prove that the sequence (v_n) defined by $v_n(t) = u_n(\varphi(t))$ for $t \in I$ and $n \in \mathbb{N}$ lies in $L^1(I)$.
- (ii) Assuming that $u_n \to u$ strongly in $L^1(\mathbb{R})$, study the convergence of (v_n) in the strong and weak convergence of $L^1(I)$.
- (iii) Assuming that $u_n \rightharpoonup u$ weakly in $L^1(\mathbb{R})$, study the convergence of (v_n) in the strong and weak convergence of $L^1(I)$.

93. Let $Q = [0,1] \times [0,1]$ and X the Banach space $C^{0}(Q)$, endowed with the uniform norm. Set

$$
(T_n u) \doteq \int_0^1 n e^{-nx} u(x, x^2) dx, \quad u \in X.
$$

Prove that $T_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support. Study the convergence of (T_n) in the strong and weak* topology of X' .

Answer. We have the map $I: C^0(Q) \to C^0([0,1])$ and ne^{-nx} a sequence in $L^1([0,1])$. If this sequence was convergent to a $f \in L^1([0,1])$, then there would be a subsequence converging almost everywhere point wise to f. But then $f = 0$, impossible in view of the fact that $||n e^{-nx}||_{L^1([0,1])} \xrightarrow{n \to +\infty} 1$. This is equivalent to say that (T_n) is not strongly convergent. However we have $T_n u \xrightarrow{n \to +\infty} u(0,0)$, so there is weak* convergence in X' .

94. Let H be a Hilbert space, $T \in \mathcal{L}(H)$ and (T_n) a sequence in $\mathcal{L}(H)$.

- (*i*) Prove that $T_n \to T$ if and only if $T_n^* \to T^*$.
- (ii) Prove that the sequence $(T_n x)$ converges weakly to Tx for every $x \in H$ if and only if the sequence (T_n^*x) converges weakly to T^*x for every $x \in H$.

95. Let $I = [0, 1] \subseteq \mathbb{R}$ and $X = C^0(I)$. Given a map $m \in L^2(I)$, set

$$
Tu(x) \doteq \int_0^{x^2} m(y)u(y) \, dy.
$$

Prove that $T \in \mathcal{L}(X)$ and establish if T is compact in $\mathcal{L}(X)$, justifying the answer.

Answer. For any $x_1 < x_2$ we have

$$
|Tu(x_2) - Tu(x_1)| \le ||u||_{L^{\infty}(I)} \int_{x_1^2}^{x_2^2} |m(y)| dy \le ||u||_{L^{\infty}(I)} ||m||_{L^2(I)} \sqrt{x_2^2 - x_1^2}
$$

$$
\le \sqrt{2} ||u||_{L^{\infty}(I)} ||m||_{L^2(I)} \sqrt{x_2 - x_1}
$$

So $T\{u \in X : ||u||_{L^{\infty}(I)} \leq 1\}$ is a bounded equiconcontinuous family, and hence also a relatively compact one by Ascoli–Arzela.

96. Let $Q = [0, 1]^d \subseteq \mathbb{R}$. Consider two relatively compact families U and V in $C^0(Q)$ and define

$$
F \doteq \{ f : f(x) = \sin(u(x) \cdot v(x)), \ x \in Q, u \in U, v \in V \}.
$$

Prove that F is a relatively compact family in $C^0(Q)$.

97. Let $I = [0, 1] \subseteq \mathbb{R}, p > 1$ and $X = L^{\infty}(I)$. Given a map $m \in L^{p}(I)$, set

$$
Tu(x) \doteq \int_0^x m(y)u(y) \, dy.
$$

Prove that $T \in \mathcal{L}(X)$ and establish if T is compact in $\mathcal{L}(X)$, justifying the answer. Answer. We have that $T: L^{\infty}(I) \to C^{\frac{1}{p'}}(I)$ is bounded, by the formula below, and

hence the map from X into itself is compact. The formula is, for $x_1 < x_2$,

$$
|Tu(x_1)-Tu(x_2)|\leq \int_{x_1}^{x_2} |m(x)|dx||u||_{L^{\infty}(I)} \leq |x_1-x_2|^{\frac{1}{p'}}||m||_{L^p(I)}||u||_{L^{\infty}(I)}.
$$

98. Let X be the Banach space $C_0(\mathbb{R}^2)$, endowed with the uniform norm, and let (g_n) be a sequence in $C_b(\mathbb{R}^2)$ such that

$$
0 \le g_n(x, y) \le (1 + x^2 + y^2)^{-1} \quad \forall (x, y) \in \mathbb{R}^2, \forall n \in \mathbb{N}
$$

and

$$
g_n \longrightarrow g
$$
 in $C_b(\mathbb{R}^2)$.

Set

$$
(T_n u) \doteq \int_{\mathbb{R}} g_n(x, x) u(x, x) \, dx, \quad u \in X.
$$

Prove that $T_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support. Study the convergence of (T_n) in the strong and weak* topology of X' .

Answer. We are considering the continuous map $I : C_0(\mathbb{R}^2) \ni u(x, y) \hookrightarrow$ $u(x,x) \in C_0(\mathbb{R})$. Then, $T_n = S_n \circ I$ with S_n identifies with $L^1(\mathbb{R}) \ni v_n(x) =$ $g_n(x, x)$. Set also $v(x) = g(x, x)$. It is easy to see that $g(x, y)$ satisfies

$$
0 \le g(x, y) \le (1 + x^2 + y^2)^{-1} \quad \forall (x, y) \in \mathbb{R}^2.
$$

So, by dominated convergence,

$$
\lim_{n \to +\infty} \int_{\mathbb{R}} |v_n - v| dx = 0.
$$

Hence $T_n \xrightarrow{n \to +\infty} T$ strongly in X', with

$$
(Tu) \doteq \int_{\mathbb{R}} g(x, x) u(x, x) \, dx, \quad u \in X.
$$

99. Let $f \in L^2(\mathbb{R})$ and set

$$
(Tu)(x) \doteq \int_{\mathbb{R}} f(x - y)u(y) \, dy.
$$

Establish for which indices $p, q \in [1, +\infty]$ we have $T \in \mathcal{L}(L^p(\mathbb{R}), L^q(\mathbb{R}))$.

100. Let $I = [0, 1] \subseteq \mathbb{R}$, $X = C^{0}(I)$ and $Y = L^{1}(I)$. Set

$$
Tu(x) \doteq \int_0^x xyu(y) \, dy.
$$

- a) Prove that $T \in \mathcal{L}(X)$ and $T \in \mathcal{L}(Y)$.
- b) Establish if T is compact in $\mathcal{L}(X)$ and in $\mathcal{L}(Y)$, justifying the answer.