SISSA

Advanced Analysis - A

Academic year 2019-2020

Proposed problems

1. Let X be a separable Banach space and Y a subspace of X. Show that Y, endowed with the induced norm, is separable.

2. Let X be a Banach space and Y a finite-dimensional subspace of X. Show that Y is closed.

3. Let (M, d) be a compact metric space. Show that M is complete and separable.

4. Let (M,d) be a complete metric space and $\{A_n, n \in \mathbb{N}\}$ a countable family of open and dense subsets of M. Show that the set

$$A \doteq \bigcap_{n \in \mathbb{N}} A_n$$

is dense in M.

5. Let *H* be a real Hilbert space and $a \in H$ a nonzero vector. Show that for every $x \in H$, we have

dist
$$(x, \{a\}^{\perp}) = \frac{|(x, a)|}{\|a\|}.$$

6. Consider the Hilbert space ℓ^{∞} with its usual norm $\|\cdot\|_{\ell^{\infty}}$ and the sets $c_0 \doteq \{(a_n) \in \ell^{\infty} : a_n \to 0\}$ and $c \doteq \{(a_n) \in \ell^{\infty} : a_n \to a \in \mathbb{R}\}$. Show that c_0 and c are closed separable subspaces of ℓ^{∞} .

Answer. Let $c_c(\mathbb{N}, \mathbb{R})$ be the elements with compact support (recall, we are dealing with functions $\mathbb{N} \to \mathbb{R}$). Then it is easy to see that $c_0 = \overline{c_c(\mathbb{N}, \mathbb{R})}$ and that $c_c(\mathbb{N}, \mathbb{Q})$ is a countable dense subspace of $c_c(\mathbb{N}, \mathbb{R})$, and so also of c_0 . Since $c = \bigcup_{q \in \mathbb{Q}} (c_0 + q)$ we obtain that also c is separable.

7. Consider the Hilbert space ℓ^2 and a real sequence (a_n) such that $a_n > 0$ for every $n \in \mathbb{N}$ and $a_n \to +\infty$. Show that the set

$$A \doteq \left\{ u \in \ell^2 : \sum_{n \in \mathbb{N}} a_n |u_n|^2 \le 1 \right\}$$

is a precompact subset of ℓ^2 .

Answer. Let $T: D(T) \to \ell^2$ be the map $x \longrightarrow y = ax$ where $x, y, a: \mathbb{N} \to \mathbb{R}$ and

$$D(T) \doteq \left\{ u \in \ell^2 : \sum_{n \in \mathbb{N}} a_n |u_n|^2 < \infty \right\}.$$

Now, it is easy to see that the above map is invertible, and that $\ell^2 \ni y \longrightarrow x = T^{-1}y := \frac{y}{a} \in D(T) \subset \ell^2$ is in fact a compact operator. Then, since $A = T^{-1}\overline{D_{\ell^2}(0,1)}$ we conclude that A is relatively compact.

8. Let H be a Hilbert space and C_1 , C_2 two nonempty, closed and convex subsets such that $C_1 \subset C_2$. Given $x \in H$, call $P_{C_i}x$ the projection of x on C_i and $d(x, C_i)$ the distance of x from C_i (i = 1, 2). Show that

$$||P_{C_1}x - P_{C_2}x||^2 \le 2\left(d(x, C_1)^2 - d(x, C_2)^2\right), \quad \forall x \in H.$$

9. Let *H* be a complex Hilbert space and $T \in \mathcal{L}(H)$ an operator such that $||T|| \leq 1$. Show that

- (a) Tx = x if and only if $(Tx, x) = ||x||^2$;
- (b) $ker(I T) = ker(I T^*).$

Answer. In (a) the implication \Rightarrow is obvious. So let us consider \Leftarrow and let us consider a nonzero $x \in H$ s.t. $(Tx, x) = ||x||^2$. Then $||x||^2 \leq ||Tx|| ||x|| \leq ||x||^2$, where we used $||T|| \leq 1$, implies ||Tx|| = ||x||. Now, for $\hat{x} = x/||x||$ consider the orthogonal decomposition

$$Tx = (Tx, \hat{x})\hat{x} + (Tx - (Tx, \hat{x})\hat{x}) = x + (Tx - (Tx, \hat{x})\hat{x})$$

Then, by ||Tx|| = ||x|| *and*

$$||Tx||^{2} = ||x||^{2} + ||Tx - (Tx, \hat{x})\hat{x}||^{2},$$

we conclude that $Tx - (Tx, \hat{x})\hat{x} = 0$, and so Tx = x.

10. Find a Banach space X and a subset $S \subseteq X$ such that S is strongly closed but not weakly closed.

Answer. In infinite dimension, take $S = \{x \in X : ||x|| = 1\}$. In general, if $f \in C^0(X, \mathbb{R})$ is a continuous convex function with $\lim_{x\to\infty} f(x) = +\infty$, then for $S_r = \{x \in X : f(x) = r\}$ is strongly closed but, by repeating the proof in the special case f(x) := ||x||, the weak closure is $\{x \in X : f(x) \le r\}$.

11. Find a Banach space X, a bounded closed subset $S \subseteq X$ and a continuous function $f: S \to \mathbb{R}$ such that

$$\sup_{x \in S} f(x) = +\infty.$$

Answer. Recall that one of the exercises of Cuccagna's notes states the following: Let X be an infinite dimensional Banach space. Show that for any $r \in (0, 1/2)$ there exists a sequence $\{v_n\}$ in X such that $||v_n||_X = 1$ and the closed balls $\overline{D_X(v_n, r)}$ are pairwise disjoint. Show also that $\bigcup_{n=1}^{\infty} \overline{D_X(v_n, r)}$ is a closed set in X.

if we assume the above statement, let any $g \in C^0(X, \mathbb{R})$ with $g(0) \neq 0$ and g(x) = 0 for $||x|| \geq 1/2$. Then consider

$$f(x) = \sum_{n=1}^{\infty} ng\left(\frac{x - v_n}{r}\right)$$

Then each term of the sum is zero outside $D_X(v_n, r/2)$, so it is easy to conclude that $f \in C^0(X, \mathbb{R})$. Obviously we have $\bigcup_{n=1}^{\infty} \overline{D_X(v_n, r)} \subseteq \overline{D_X(0, r+1)} =: S$, so we have the desired result.

12. Let X be a Banach space and $K \subseteq X$ a compact subset. Show that any sequence in K which converges weakly, actually converges strongly.

Answer. If false, there would be an example of $x_n \rightharpoonup x$ which does not converge strongly to x. On the other hand, for any strongly convergence subsequence $\{x_{n_k}\}$, we have necessarily $x_{n_k} \xrightarrow{k \to +\infty} x$ (because of $x_{n_k} \rightharpoonup x$). But the fact that it is false that $x_n \xrightarrow{n \to +\infty} x$, implies that there exists an $\epsilon_0 >$ and a subsequence $\{x_{n_k}\}$ with $\|x_{n_k} - x\| \ge \epsilon_0$. By compactness, $\{x_{n_k}\}$ has a subsequence that converges strongly at a point $y \in K$ with $\|y - x\| \ge \epsilon_0$. But we have just discussed the fact that we must have y = x. So we get a contradiction.

13. Let (X, d) be a metric space. Given two subsets $A, B \subseteq X$, set

 $\operatorname{dist}(A,B) \doteq \inf\{d(x,y) : x \in A, y \in B\}.$

a) Given $x \in X$ and positive numbers $0 < \rho < r$, show that there exists $\delta > 0$ such that

$$\operatorname{dist}(B(x,\rho), B(x,r)^c) \ge \delta.$$

b) Given a proper, nonempty, closed subset $C \subseteq X$, show that there exists a ball B(x,r) in X such that dist(B(x,r), C) > 0.

14. Let X, Y be Banach spaces and $T \in \mathcal{L}(X, Y)$ a compact operator. Let (x_n) be a sequence in X weakly converging to x in X. Show that the sequence (Tx_n) converges strongly to Tx in Y.

Answer. We know that there is C > 0 such that $||x_n|| < C$ for all n. Then (Tx_n) is a sequence in $K := \overline{TD_X(0, C)}$, which is a compact subspace of Y. Since T is continuous for the weak topologies, we know $Tx_n \to Tx$. Then use the result in *Exercise 12*.

15. Let $\alpha > 0$ and consider the sequence of functions given by

$$u_n(x) \doteq \min\{1, |x|^{-\alpha}\}\chi_{B(0,n)}(x), \quad n \in \mathbb{N}, \ x \in \mathbb{R}^d.$$

Study the convergence of (u_n) in the strong and weak (weak^{*} if $p = \infty$) topology of $L^p(\mathbb{R}^d)$ for $p \in [1, \infty]$.

Answer. If we set $u(x) := \min\{1, |x|^{-\alpha}\}$, we have $u \in L^p(\mathbb{R}^d)$ for ap > d. Now $u(x) - u_n(x) = \chi_{\mathbb{R} \setminus B(0,n)}(x)u(x)$ which converges monotonically to 0 for any $x \in \mathbb{R}^d$. For $d/a , by dominated convergence, we obtain <math>u_n \xrightarrow{n \to \infty} u$ in $L^p(\mathbb{R}^d)$. If $p = \infty$, we have

$$0 \le u(x) - u_n(x) = \chi_{\mathbb{R} \setminus B(0,n)}(x)u(x) \le |n|^{-\alpha},$$

and so we get $u_n \xrightarrow{n \to \infty} u$ in $L^{\infty}(\mathbb{R}^d)$. Obviously, the above implies also weak convergence. For $p \leq d/a$, it is easy to check that $||u_n||_{L^p(\mathbb{R}^d)} \xrightarrow{n \to \infty} \infty$, and so the sequence in not weakly convergent.

16. Let *H* be a Hilbert space, $T \in \mathcal{L}(H)$ and T^* the adjoint of *T*.

- (a) Show that $||T^*T|| = ||TT^*|| = ||T||^2$.
- (b) Show that T^*T and TT^* are selfadjoint operators.

17. Let H be a Hilbert space and $\{M_k, k \in \mathbb{N}\}$ a countable collection of finitedimensional subspaces of H. Call P_k the orthogonal projector on M_k $(k \in \mathbb{N})$ and set

$$P \doteq \sum_{k=1}^{\infty} 2^{-k} P_k.$$

Show that P is a compact operator in $\mathcal{L}(H)$.

Answer. First of all, we have $||P_k|| \leq 1$ for all k. Then

$$||P - S_N|| \le \sum_{k=N+1}^{\infty} 2^{-k} = 2^{-N} \xrightarrow{N \to +\infty} 0, \text{ where } S_N := \sum_{k=1}^N 2^{-k} P_k.$$

Since S_N is finite rank for any N, we get that P is compact.

18. Consider the sequence of functions given by

 $u_n(x,y) = \left(\cos\left(\frac{x}{n}\right) + \sin\left(\frac{x}{n}\right)\right)(1+e^{-ny^2}), \quad (x,y) \in I \doteq [-1,1] \times [-1,1], \quad n \in \mathbb{N}.$ Study the convergence of (u_n) in the strong and weak topology of $L^p(I)$ (weak* if $p = \infty$).

Answer. First of all, we have

$$u_n(x,y) - v_n(x,y) = \left(\cos\left(\frac{x}{n}\right) + \sin\left(\frac{x}{n}\right)\right) e^{-ny^2} \text{ for}$$
$$v_n(x,y) := \cos\left(\frac{x}{n}\right) + \sin\left(\frac{x}{n}\right).$$

It is straightforward that for $p < \infty$ we have

$$\|u_n - v_n\|_{L^p(I)} \le 2\|e^{-ny^2}\|_{L^p(0,1)} \le 2n^{-\frac{1}{2p}}\|e^{-y^2}\|_{L^p(\mathbb{R})} \xrightarrow{n \to \infty} 0.$$

Since

$$||u_n - v_n||_{L^{\infty}(I)} \ge ||v_n(\cdot, 0)||_{L^{\infty}((0,1))} \ge |v_n(0, 0)| = 1,$$

we obviously do not have $u_n - v_n \xrightarrow{n \to \infty} 0$ strongly in $L^{\infty}(I)$. However, for $f \in L^1(I)$ we have

$$|\langle u_n - v_n, f \rangle| \le 2 \int_I e^{-ny^2} |f(x, y)| dx dy \xrightarrow{n \to \infty} 0$$

by dominated convergence, and so $u_n - v_n \rightharpoonup 0$ weakly* in $L^{\infty}(I)$. Since (use bounds of errors for alternating series)

$$|v_n(x,y) - 1| \le \left|\cos\left(\frac{x}{n}\right) - 1\right| + \left|\sin\left(\frac{x}{n}\right)\right| \le \frac{x^2}{2n^2} + \frac{x}{n} \le \frac{3}{2n}$$

we have $v_n \xrightarrow{n \to \infty} 1$ in $C^0(I)$, and so in particular also for all $L^p(I)$. So, summing $up, u_n \xrightarrow{n \to \infty} 1$ strongly in $L^p(I)$ for $p < \infty$ and $u_n \rightharpoonup 1$ weakly^{*}, but not strongly, if $p = \infty$.

19. Let *H* be a complex Hilber space, $T \in \mathcal{L}(H)$ and (x_n) a sequence in *H* weakly converging to $x \in H$. Show that the sequence (Tx_n) converges weakly to *Tx*. Answer. We have

$$(Tx_n, y) = (x_n, T^*y) \xrightarrow{n \to +\infty} (x, T^*y) = (Tx, y) \text{ for all } y \in H \Longrightarrow Tx_n \rightharpoonup Tx.$$

20. Given $x \in \mathbb{R}$, let B(x,1) be the open unit ball of center x in \mathbb{R} . Consider a sequence (x_n) in \mathbb{R} and define the sequence of functions $u_n \doteq \chi_{B(x_n,1)}$, where χ denotes the characteristic function. Study the strong and weak convergence of the sequence (u_n) in the space $L^2(\mathbb{R})$ (that is to say establish if the sequence is converging in such topologies and, in affirmative case, find the limit), in the following cases:

- (a) $x_n \to 0;$
- (b) $|x_n| \to +\infty$.

Answer. Notice that $u_n(x) = \chi_{B(0,1)}(x-x_n)$ and that in Cuccagna's notes it is shown that if $x_n \xrightarrow{n \to \infty} \infty$ then $\chi_{B(0,1)}(\cdot - x_n) \to 0$ in $L^2(\mathbb{R})$. In the case $x_n \xrightarrow{n \to \infty} 0$ we have, instead, $\chi_{B(0,1)}(\cdot - x_n) \xrightarrow{n \to \infty} \chi_{B(0,1)}$ strongly in $L^2(\mathbb{R})$, by the fact that the group \mathbb{R}^d is strongly continuous (but not continuous in the operator norm) in $L^2(\mathbb{R}).$

21. Let H be a Hilbert space endowed with the inner product $\langle \cdot, \cdot \rangle$ and D a subset of H such that lsp(D) is dense in H. Show that, given a bounded sequence (x_n) in *H*, such that $\langle x_n, y \rangle \to \langle x, y \rangle$ for any $y \in D$, then $x_n \rightharpoonup x$.

22. Let $I = [0,1] \subseteq \mathbb{R}$ and consider the Hilbert space $X = L^2(I,\mathbb{R})$. Set

$$(Tu)(x) \doteq \int_0^x u(t) \, dt.$$

Show that $T \in \mathcal{L}(X)$ and find the adjoint T^* of T. Answer. Continuity is very simple, since, in fact, T is a bounded operator from $L^2(I,\mathbb{R})$ into $C^{1/2}(I)$, by, for

x < y,

$$|Tu(x) - Tu(y)| \le \int_{x}^{y} |u(t)| dt \le |x - y|^{\frac{1}{2}} ||u||_{L^{2}(I)}$$

Notice that this implies that $TD_{L^{2}(I)}(0,1)$ is relatively compact in $C^{0}(I)$, and so also in $L^{2}(I)$, which implies that T is a compact operator. For the adjoint

$$\int_{0}^{1} Tu(x)v(x)dx = \int_{0}^{1} dxv(x) \int_{0}^{x} u(t)dt = \int_{0}^{1} dt \ u(t) \int_{t}^{1} v(x)dx \Longrightarrow T^{*}v(x) = \int_{x}^{1} v(t)dt$$

23. Consider the set $E \doteq \{e^n, n \in \mathbb{N}\}$ in ℓ^2 defined by

$$e^n(k) = \delta_{n,k}.$$

Show that E is a Hilbert basis in ℓ^2 .

24. Let \mathcal{U} be a bounded family in $L^1(\mathbb{R})$ and $\rho \in C_c^{\infty}(\mathbb{R})$. Show that the family $\{\rho \star u, u \in \mathcal{U}\}$ is equicontinuous.

Answer. Since $\rho \in C_c^{\infty}(\mathbb{R})$, ρ is uniformly continuous, and so

 $\forall \epsilon > 0 \quad \exists \delta_{\epsilon} > 0 \quad s.t. \quad |x_1 - x_2| < \delta_{\epsilon} \Longrightarrow |\rho(x_1) - \rho(x_2)| < \epsilon$

Since there exists C > 0 s.t. $||u||_{L^1(\mathbb{R})} < C$ for all $u \in \mathcal{U}$, for $|x_1 - x_2| < \delta_{\epsilon}$ we have

$$|\rho \star u(x_1) - \rho \star (x_2)| \le \int |\rho(x_1 - y) - \rho(x_2 - y)| \ |u(y)| dy < C\epsilon \text{ for all } u \in \mathcal{U}.$$

This implies that $\{\rho \star u, u \in \mathcal{U}\}$ is equicontinuous.

25. Let *H* be a Hilbert space and $T \in \mathcal{L}(H)$. Show that *T* is compact if and only if the adjoint T^* is compact.

Answer. T is compact if and only if for any $\epsilon > 0$ there exists a finite rank T_{ϵ} s.t. $||T - T_{\epsilon}|| < \epsilon$. Notice now, that $||T^* - T_{\epsilon}^*|| = ||T - T_{\epsilon}|| < \epsilon$. So, if T_{ϵ}^* is finite rank, then we conclude the exercise. So let S be finite rank. Then

$$S = \sum_{j=1}^{n} (\cdot, f_j) g_j.$$

In the special case $S = (\cdot, f_1)g_1$

$$(Su, v) = ((u, f_1)g_1, v) = (u, f_1)(g_1, v) = (u, \overline{(g_1, v)}f_1) = (u, S^*v)$$

So

$$S^*v = \overline{(g_1, v)}f_1 = (v, g_1)f_1.$$

So, more generally

$$S^* = \sum_{j=1}^n (\cdot, g_j) f_j,$$

which implies that T_{ϵ}^* is finite rank.

26. Let *H* be a Hilbert space on \mathbb{C} , $\{e_k, k \in \mathbb{N}\}$ an orthonormal system in *H* and (λ_k) an element of $\ell^1(\mathbb{C})$. Set

$$Tx \doteq \sum_{k=1}^{\infty} \lambda_k(x, e_k) e_k.$$

Show that T is a compact operator in $\mathcal{L}(H)$.

27. Consider the Hilbert space $E \doteq L^2(\mathbb{R}^n, \mathbb{C})$ and let $K \in L^2(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{C})$. Define

$$(T_K u)(x) \doteq \int_{\mathbb{R}^n} K(x, y) u(y) \, dy$$

Show that $T_K \in \mathcal{L}(E)$ and that T_K is selfadjoint if and only if $K(x,y) = \overline{K(y,x)}$ for any pair $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$.

Answer.
$$u, v \in C_c^0(\mathbb{R}^n)$$
 we have

$$\int_{\mathbb{R}^n} (T_K u)(x)\overline{v(x)}dx = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x,y)u(y)\,dy\overline{v(x)}dx = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x,y)\overline{v(x)}dxu(y)\,dy$$

$$= \int_{\mathbb{R}^n} \overline{\int_{\mathbb{R}^n} \overline{K(y,x)}v(y)dy}u(x)\,dx = \int_{\mathbb{R}^n} u(x)\overline{T_S v(x)}dx$$
with $S(x,y) = \overline{K(y,x)}$. If the operator is selfadjoint, we conclude that

$$\int_{\mathbb{R}^n} u(x)\overline{T_S v(x)} dx = \int_{\mathbb{R}^n \times \mathbb{R}^n} u(x)\overline{v(y)}K(y,x)dxdy = \int_{\mathbb{R}^n} u(x)\overline{T_K v(x)}dx$$
$$= \int_{\mathbb{R}^n \times \mathbb{R}^n} u(x)\overline{v(y)}K(x,y)dxdy \text{ for all } u, v \in C_c^0(\mathbb{R}^n).$$

Since $C^0_c(\mathbb{R}^n) \bigotimes C^0_c(\mathbb{R}^n)$ generates all $L^2(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{C})$, from the above we conclude

$$\begin{split} &\int_{\mathbb{R}^n\times\mathbb{R}^n} f(x,y)K(y,x)dxdy = \int_{\mathbb{R}^n\times\mathbb{R}^n} f(x,y)\overline{K(x,y)}dxdy \text{ for all } f\in L^2(\mathbb{R}^n\times\mathbb{R}^n,\mathbb{C}).\\ &\text{This implies } K(x,y) = \overline{K(y,x)} \text{ for a.a. } (x,y)\in\mathbb{R}^n\times\mathbb{R}^n. \end{split}$$

28. Let *H* be a Hilbert space and (u_n) an orthonormal sequence in *H*. Show that (u_n) converges weakly to zero. Answer. For any $f \in H$ we have

$$f = \sum_{n=1}^{\infty} (f, u_n) u_n \text{ with } ||f||^2 = \sum_{n=1}^{\infty} |(f, u_n)|^2.$$

Obviously the above implies $(u_n, f) \xrightarrow{n \to +\infty} 0$ for any $f \in H$. This is equivalent to $u_n \rightharpoonup 0$.

29. Let $p \in [1, \infty]$ and $f \in L^p(\mathbb{R})$. Show that for every $\delta > 0$ we have

meas
$$(\{x : |f(x)| > \delta\}) \le \delta^{-p} ||f||_p^p$$
.

Answer. This is the well known, and simple to prove, Chebyshev's inequality.

30. Let $E \subseteq \mathbb{R}$ be a measurable set with finite measure, $p \in [1, \infty]$, (u_n) a sequence in $L^p(E)$ and $u \in L^p(E)$ such that $u_n \rightharpoonup u$ for $p < \infty$ or $\stackrel{*}{\rightharpoonup}$ if $p = \infty$. Prove that the sequence (u_n) is equiintegrable.

31. Let *H* be a real Hilbert space, $M \subseteq X$ a closed subspace and *P* the orthogonal projector on *M*. Show that *P* is selfadjoint. Answer. Recall that $Px \in M$ with

$$(Px - x, y) = 0$$
 for all $x \in H$ and $y \in M$.

Notice that $H = M \oplus M^{\perp}$. Then, since

 $(x,(P^*-1)y)=0 \mbox{ for all } x\in H \mbox{ and } y\in M \implies P^*y=y \mbox{ for all } y\in M.$ So $P^*=P \mbox{ in } M.$ Next,

$$0 = (Px, y) = (x, P^*y)$$
 for all $x \in H$ and $y \in M^{\perp}$.

So $P^*y = 0$ for $y \in M^{\perp}$. Since we also have Py = 0 for $y \in M^{\perp}$, we conclude $P^* = P$ everywhere in H.

32. Consider the space $X = C_0(\mathbb{R}^d) \doteq \overline{C_c(\mathbb{R}^d)}^{\|\cdot\|_{\infty}}$. Given $S \in X'$ define $U \doteq \{O \in \mathbb{R}^d \text{ open: } S \in V\}$ and $v \in V$ with supply $G \in O$.

$$U = \{ O \subseteq \mathbb{R}^{u} \text{ open: } \langle S, u \rangle_{X', X} = 0 \ \forall u \in X \text{ with supp } u \subseteq O \}.$$

Then introduce

- $N \doteq \bigcup_{O \in U} O \text{ (domain of nullity of } S); \qquad \operatorname{supp} S \doteq \mathbb{R}^d \setminus N \text{ (support of } S).$
- (i) Given $a \in \mathbb{R}^d$, set

$$T_a(u) = u(a).$$

Show that $T_a \in X'$ and find its norm and support.

(ii) Let (a_n) be a sequence in \mathbb{R}^d , consider the sequence $(S_n) = (T_{a_n})$ and the series

$$S = \sum_{n=1}^{\infty} 3^{-n} S_n.$$

- (a) Show that $S \in X'$ and find its norm and support.
- (b) Show that there exists a subsequence (S_{n_k}) weakly^{*} converging in X'.

Answer. We have $||T_a|| = 1$ as can be seen that more generally considering

$$\sigma_N f = \sum_{n=1}^N 3^{-n} f(a_n) \text{ for } \sigma_N := \sum_{n=1}^N 3^{-n} S_n$$

and, since we can always find $f \in C_c(\mathbb{R}^d)$ of norm 1 and with $f(a_n) = 1$ for all n = 1, ..., N, we get

$$\|\sigma_N\| = \sum_{n=1}^{N} 3^{-n} = 3^{-1} \frac{1 - 3^{-N-1}}{1 - 3^{-1}} = 2^{-1} (1 - 3^{-N-1})$$

The implies that for all N < M we have

$$\|\sigma_N - \sigma_M\| = \sum_{n=N+1}^M 3^{-n} < \sum_{n=N+1}^\infty 3^{-n} = 3^{-N-1} \frac{3}{2}.$$

Hence, by completeness of X', there exists S limit of the above sum, with $\|\sigma_N\| \xrightarrow{N \to +\infty} 2^{-1} = \|S\|$. I skip the discussion of the support and go to the last question. Given any sequence (a_n) in \mathbb{R}^d there always exists a subsequence (a_{n_k}) which either a limit $a \in \mathbb{R}^d$ or which goes to infinity. In the first case, for any $f \in C_0(\mathbb{R}^d)$, we have

$$T_{a_{n_k}}f = f(a_{n_k}) \xrightarrow{k \to +\infty} f(a) = T_a f$$

while in the second case we have

$$T_{a_{n_k}}f = f(a_{n_k}) \xrightarrow{k \to +\infty} 0,$$

since it is easy to see that $C_0(\mathbb{R}^d) = \{f \in C^0(\mathbb{R}^d) : \lim_{x \to \infty} f(x) = 0\}$. In the first case $T_{a_{n_k}} \rightharpoonup T_a$ while in the second $T_{a_{n_k}} \rightharpoonup 0$.

33. Consider the sequence of functions given by $u_n(t) = \sin(nt)$, with $n \in \mathbb{N}$ and $t \in I \doteq [0, 2\pi]$. Study the convergence of (u_n) in the uniform topology of C(I), in the strong topology of $L^{\infty}(I)$ and in the weak* topology of $L^{\infty}(I)$ (that is to say establish if the sequence is converging in such topologies and, in affirmative case, find the limit). Answer. Clearly $(\sin(nt))$ is not convergent strongly, while for any

 $f \in L^1(I)$ we have

$$\int_{I} \sin(nt) f(t) dt \xrightarrow{n \to +\infty} 0$$

by the Riemann Lebesgue lemma, and so $\sin(nt) \rightarrow 0$ in the weak* topology of $L^{\infty}(I)$.

34. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$, endowed with the uniform norm, and (a_n) a sequence in \mathbb{R}^+ . Set

$$\langle f_n, u \rangle \doteq \int_0^{2\pi} u(a_n \cos \theta, a_n \sin \theta) \, d\theta, \quad \forall n \in \mathbb{N}, \ \forall u \in X.$$

Show that $f_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support.

Suppose $a_n \to 0+$ and study the convergence of the sequence (f_n) in the strong and weak^{*} topology of X' (that is to say establish if the sequence converges in such topologies and, in the affirmative case, find the limit).

Answer. We have $f_n = \frac{1}{a_n} dx_{|\partial D(0,a_n)}$, where $dx_{|\partial D(0,a_n)}$ is the restriction of the Lebesgue measure of \mathbb{R}^2 on the circle $\partial D(0,a_n)$ and with $||f_n||_{(C_0)'} = 2\pi$. It is elementary that for any u we have

$$\int_0^{2\pi} u(a_n \cos \theta, a_n \sin \theta) \, d\theta \xrightarrow{n \to +\infty} u(0),$$

and so $f_n \rightarrow \delta(x)$ *-weakly. But it is easy to show that $||f_n - f_m||_{(C_0)'} \ge 2\pi$ for $a_n \neq a_m$.

35. Given $\alpha \in \mathbb{R}$ and R > 0, consider the function u defined on \mathbb{R}^d by

$$u(x) = \begin{cases} |x|^{\alpha}, & x \neq 0\\ 0, & x = 0. \end{cases}$$

Establish for which $p \in [1, +\infty]$ we have $u \in L^p(B_{\mathbb{R}^d}(0, R))$.

Answer. We need $p\alpha > -d$. So, for example, if $p = \infty$, then $\alpha \ge 0$.

36. Let $E \subseteq \mathbb{R}^d$ be a measurable set, $p, q \in [1, \infty[$ and $u \in L^p(E) \cap L^q(E)$. Given $\alpha \in [0, 1]$, set

$$\frac{1}{r} \doteq \frac{1-\alpha}{p} + \frac{\alpha}{q}$$

Show that $u \in L^r(E)$ and that

$$||u||_{L^{r}(E)} \leq ||u||_{L^{p}(E)}^{1-\alpha} \cdot ||u||_{L^{q}(E)}^{\alpha}.$$

Answer. We have

$$\begin{split} \|u\|_{L^{r}(E)} &= \| \ |u| \ \|_{L^{r}(E)} = \| \ |u|^{1-\alpha} |u|^{\alpha} \ \|_{L^{r}(E)} \leq \| \ |u|^{1-\alpha} \ \|_{L^{\frac{p}{1-\alpha}}(E)} \||u|^{\alpha} \ \|_{L^{\frac{p}{\alpha}}(E)} \ by \ H\ddot{o}lder \\ &= \|u\|_{L^{p}(E)}^{1-\alpha} \cdot \|u\|_{L^{q}(E)}^{\alpha}, \end{split}$$

where we use the identity $|||f|^a||_{L^q} = ||f||^a_{L^{aq}}$.

37. Let $I \doteq [0, 1]$ and consider the sequence of functions given by

$$u_n(t) = e^{-nt}, \quad t \in I, \quad n \in \mathbb{N}.$$

Study the convergence of the sequence (u_n) in the following spaces:

- (i) $C^0(I)$ endowed with the uniform topology;
- (*ii*) $L^1(I)$ endowed with the strong topology;
- (*iii*) $L^1(I)$ endowed with the weak topology;
- (iv) $L^{\infty}(I)$ endowed with the strong topology;

(v) $L^{\infty}(I)$ endowed with the weak^{*} topology.

Answer. We have $\lim_{n\to+\infty} e^{-nt} = 0$ if t > 0 and 1 if t = 0. So, clearly the sequence is not convergent uniformly in [0,1] (since the limit function is not continuous). This also excludes convergence in $L^{\infty}(I)$ endowed with the strong topology. We have

$$0 < \int_0^1 e^{-nt} dt = n^{-1} \int_0^n e^{-t} dt < n^{-1} \xrightarrow{n \to +\infty} 0,$$

which implies that $e^{-nt} \xrightarrow{n \to +\infty} 0$ strongly, and so also weakly, in $L^1(I)$. Finally, if $f \in L^1(I)$

$$\int_0^1 e^{-nt} f(t) dt \xrightarrow{n \to +\infty} 0,$$

by dominated convergence, and shows $e^{-nt} \rightharpoonup 0$ in $L^{\infty}(I)$ endowed with the weak* topology.

38. Let $E \subseteq \mathbb{R}$ be a measurable set with finite measure and let $m \in L^{\infty}(E)$. Set

$$(Tu)(x) \doteq m(x) \cdot u(x)$$
 for a.e. $x \in E$.

Given $p, q \in [1, \infty[$, with $p \ge q$, show that $T \in \mathcal{L}(L^p(E), L^q(E))$ and provide an estimate of its norm.

Answer. We have

 $\|mu\|_{L^{q}(E)} \leq \|m\|_{L^{\infty}(E)} \|u\|_{L^{q}(E)} = \|m\|_{L^{\infty}(E)} \|1_{E}u\|_{L^{q}(E)} \leq \|m\|_{L^{\infty}(E)} |E|^{\frac{1}{r}} \|u\|_{L^{p}(E)},$ where |E| is the measure of E and $\frac{1}{p} = \frac{1}{r} + \frac{1}{q}.$

39. Let $X = C_c(\mathbb{R})$ and $T: X \to X$ be a linear application such that

$$||Tu||_{L^1} \le ||u||_{L^1}; \qquad ||Tu||_{L^2} \le ||u||_{L^1} \quad \forall u \in X.$$

Given $r \in [1,2]$, show that there exists $\tilde{T} \in \mathcal{L}(L^1, L^r)$ such that $\|\tilde{T}\|_{\mathcal{L}(L^1, L^r)} \leq 1$ and $\tilde{T}|_X = T$.

Answer. This is part of a more general result, called the Riestz interpolation Theorem. Here is just a consequence of Hölder's inequality, because for $u \in C_c(\mathbb{R})$, by exercise 36, using $\frac{1}{r} = \frac{1 - \frac{2}{r'}}{1} + \frac{\frac{2}{r'}}{2}$

$$\|Tu\|_{L^{r}} \leq \|Tu\|_{L^{1}}^{1-\frac{2}{r'}} \|Tu\|_{L^{2}}^{\frac{2}{r'}} \leq \|u\|_{L^{1}}^{1-\frac{2}{r'}} \|u\|_{L^{1}}^{\frac{2}{r'}} = \|u\|_{L^{1}}$$

Then, by the density of $C_c(\mathbb{R})$ in $L^1(\mathbb{R})$, we get the unique extension $\tilde{T} \in \mathcal{L}(L^1, L^r)$ with $\|\tilde{T}\|_{\mathcal{L}(L^1, L^r)} \leq 1$ and $\tilde{T}|_X = T$.

40. Consider the sequence of functions given by

$$u_n(x,y) = \cos(nx)e^{-ny}, \quad (x,y) \in I \doteq [0,2\pi] \times [0,2\pi], \quad n \in \mathbb{N}.$$

- (a) Study the equicontinuity of (u_n) on I.
- (b) Study the convergence of (u_n) in the uniform topology of C(I), in the strong topology of $L^{\infty}(I)$ and in the weak* topology of $L^{\infty}(I)$.

Answer. It is not equicontinuous. Indeed, for y = 0 and for fixed m and n = 2mkwe have

$$\cos(0) - \cos\left(2mk\frac{\pi}{2m}\right) = 1 - (-1)^k.$$

Since here $\frac{\pi}{2m}$ is arbitrarily close to 0 for $m \gg 1$, we see that equicontinuity in the origin is false. Since $u_n(x,y) \xrightarrow{n \to +\infty} 0$ pointwise for y > 0 and $u_n(0,0) \equiv 0$, there can be no uniform convergence in C(I), nor in the strong topology of $L^{\infty}(I)$ (which would imply uniform convergence in C(I)). But there is weak^{*} convergence in $L^{\infty}(I)$ to 0, like in exercise 37.

41. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$ endowed with the uniform topology and consider the family of subsets of \mathbb{R}^2 given by

$$A_{\alpha} \doteq \{(x,y) \in \mathbb{R}^2 : y > \alpha | x |, \ x^2 + y^2 < \alpha^{-2} \}, \ \alpha > 0.$$

Set

$$T_{\alpha}u \doteq \int_{A_{\alpha}} u(x,y) \, dx dy, \quad \alpha > 0.$$

- (a) Show that $T_{\alpha} \in X'$ for every $\alpha > 0$ and find its norm and support.
- (b) Study the convergence of the family $(T_{\alpha})_{\alpha>0}$ in the strong and weak* topology of X' when $\alpha \to 0+$ and when $\alpha \to +\infty$.

Answer. We have

$$|T_{\alpha}u| \leq \int_{A_{\alpha}} |u(x,y)| dx dy \leq \int_{A_{\alpha}} dx dy \|u\|_{L^{\infty}} = |A_{\alpha}| \|u\|_{L^{\infty}}.$$

So $||T_{\alpha}|| \leq |A_{\alpha}|$ and it is easy to show that there is equality. Finally,

$$|A_{\alpha}| = 2\left(\frac{\pi}{2} - \arctan\alpha\right)\frac{1}{\alpha^2}.$$

We obviously have $T_{\alpha} \xrightarrow{\alpha \to +\infty} 0$ strongly, while we cannot have weak* convergence for $\alpha \searrow 0$ because $||T_{\alpha}|| \xrightarrow{\alpha \to 0^+} +\infty$.

42. Let $I = [0, 1], X = C(I, \mathbb{R})$ and $Y = L^2(I)$. Set

$$(Tu)(x) \doteq \int_{x^2}^x u(t) dt.$$

(a) Show that $T \in \mathcal{L}(X)$ and establish if $T(B_1^X)$ is relatively compact in X. (b) Show that $T \in \mathcal{L}(Y)$ and establish if $T(B_1^Y)$ is relatively compact in Y.

Answer. One can write T = A - B with

$$Au(x) = \int_0^x u(t) dt$$
$$Bu(x) = \int_0^{x^2} u(t) dt$$

Using Hölder inequality, for $x_1 < x_2$,

$$|Au(x_1) - Au(x_2)| \le \int_{x_1}^{x_2} |u(t)| dt \le |x_1 - x_2|^{\frac{1}{2}} ||u||_{L^2(I)}$$

$$|Bu(x_1) - Bu(x_2)| \le \int_{x_1^2}^{x_2^2} |u(t)| dt \le |x_1^2 - x_2^2|^{\frac{1}{2}} ||u||_{L^2(I)} \le \sqrt{2} |x_1 - x_2|^{\frac{1}{2}} ||u||_{L^2(I)}.$$

Then $T: Y \to C^{\frac{1}{2}}(I)$ is bounded, and hence $T(B_1^Y)$ is bounded in X and equicontinuous. This means that $T: Y \to X$ is compact and, a fortiori, also the other maps $T: Y \to Y$ and $T: X \to X$.

43. Consider the sequence of functions given by

$$u_n(x,y) = \sin\left(\frac{n^2x}{n+1}\right)e^{y/n}, \quad (x,y) \in I \doteq [0,2\pi] \times [0,2\pi], \quad n \in \mathbb{N}.$$

- (a) Study the equicontinuity of (u_n) on I.
- (b) Study the convergence of (u_n) in the uniform topology of C(I); in the strong and in the weak* topology of $L^{\infty}(I)$.

Answer. Using

$$\frac{1}{1+\frac{1}{n}} = 1 - \frac{1}{n} + O\left(\frac{1}{n^2}\right)$$

we have

$$u_n(\pi/2,0) = \sin\left(n\frac{\frac{\pi}{2}}{1+\frac{1}{n}}\right) = \sin\left(n\frac{\pi}{2} - \frac{\pi}{2} + O\left(\frac{1}{n}\right)\right)$$
$$= -\cos\left(n\frac{\pi}{2} + O\left(\frac{1}{n}\right)\right)\sin\left(\frac{\pi}{2}\right) = -\cos\left(n\frac{\pi}{2} + O\left(\frac{1}{n}\right)\right)$$
$$= -\cos\left(n\frac{\pi}{2}\right)\cos\left(O\left(\frac{1}{n}\right)\right) + \sin\left(n\frac{\pi}{2}\right)\left(O\left(\frac{1}{n}\right)\right) = -\cos\left(n\frac{\pi}{2}\right) + O\left(\frac{1}{n}\right)$$

and

$$u_n(\pi/2 - \pi/(2n), 0) = \sin\left(n\frac{\left(\frac{\pi}{2} - \frac{\pi}{2n}\right)}{1 + \frac{1}{n}}\right) = \sin\left(n\frac{\pi}{2} - \pi + O\left(\frac{1}{n}\right)\right)$$
$$= -\sin\left(n\frac{\pi}{2} + O\left(\frac{1}{n}\right)\right).$$

For n = 2k we have

$$u_n(\pi/2 - \pi/(2n), 0) - u_n(\pi/2, 0) = \cos(k\pi) - \sin\left(k\pi + O\left(\frac{1}{k}\right)\right) + O\left(\frac{1}{k}\right)$$
$$= \cos(k\pi) - \sin(k\pi) + O\left(\frac{1}{k}\right) = (-1)^k + O\left(\frac{1}{k}\right).$$

This excludes equicontinuity in $(\pi/2, 0)$, which would require that for any $\epsilon > 0$ there exists $\delta > 0$ such that

$$\left|x - \frac{\pi}{2}\right| < \delta \Longrightarrow |u_n(x,0) - u_n(\pi/2,0)| < \epsilon \text{ for all } n.$$

There is no strong convergence since otherwise we would have equicontinuity, which we have just excluded. On the other hand, for any $f \in C^0(I)$ we have

$$\begin{split} &\int_{I} u_n(x,y) f(x,y) dx dy = \int_{0}^{2\pi} dy e^{y/n} \int_{0}^{2\pi} \sin\left(\frac{n^2 x}{n+1}\right) f(x,y) dx \\ &= \int_{0}^{2\pi} dy e^{y/n} \int_{0}^{2\pi} \sin\left(nx \left(1 - \frac{1}{n} + O\left(\frac{1}{n^2}\right)\right)\right) f(x,y) dx \\ &= \int_{0}^{2\pi} dy e^{y/n} \int_{0}^{2\pi} \sin\left(nx - x + O\left(\frac{1}{n}\right)\right) f(x,y) dx \\ &= \int_{0}^{2\pi} dy e^{y/n} \int_{0}^{2\pi} \sin\left(nx\right) \cos\left(x + O\left(\frac{1}{n}\right)\right) f(x,y) dx \\ &- \int_{0}^{2\pi} dy e^{y/n} \int_{0}^{2\pi} \cos\left(nx\right) \sin\left(x + O\left(\frac{1}{n}\right)\right) f(x,y) dx =: I_n + II_n. \end{split}$$

We claim that $I_n \xrightarrow{n \to +\infty} 0$ and $II_n \xrightarrow{n \to +\infty} 0$. We will prove only the first limit, since the second is similar. We have

$$I_n = \int_0^{2\pi} dy e^{y/n} \int_0^{2\pi} \sin(nx) \cos(x) f(x,y) dx + O\left(\frac{1}{n}\right).$$

Then, for f(x, y) = a(x)b(y)

$$I_n \le \int_0^{2\pi} dy e^{2\pi} |b(y)| \left| \int_0^{2\pi} \sin(nx) \cos(x) a(x) dx \right| + O\left(\frac{1}{n}\right).$$

 $Since \ by \ Riemann-Lebesgue$

$$\int_0^{2\pi} \sin\left(nx\right) \cos\left(x\right) a(x) dx \xrightarrow{n \to +\infty} 0$$

we get $I_n \xrightarrow{n \to +\infty} 0$ by dominated convergence. This extends by linearity for all $f \in L^1(0, 2\pi) \bigotimes L^1(0, 2\pi)$ and, since the u_n are uniformly bounded in n, by density, to all $f \in L^1(I)$.

44. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$ endowed with the uniform norm and consider the family of subsets of \mathbb{R}^2 given by

$$A_{\alpha} \doteq \{(x, y) \in \mathbb{R}^2 : x > 0, \ y > \alpha |x|, \ x^2 + y^2 < \alpha^2\}, \quad \alpha > 0$$

 Set

$$T_{\alpha}u\doteq\frac{1}{\alpha^2}\int_{A_{\alpha}}u(x,y)\,dxdy,\quad \alpha>0.$$

- (a) Show that $T_{\alpha} \in X'$ for any $\alpha > 0$ and find its norm and support.
- (b) Establish if the family $(T_{\alpha})_{\alpha>0}$ converges in the strong and weak* topology of X' when $\alpha \to 0+$ and, in affirmative case, determine the limit T_0 .
- (c) Find norm and support of T_0 .

45. Let $I = [0, 1], X = C(I, \mathbb{R})$ and $\alpha(x) \doteq \min\{1, 2x\}$. Set

$$(Tu)(x) \doteq \int_0^{\alpha(x)} |u(t)|^2 dt.$$

Establish if $T \in \mathcal{L}(X)$ and if $T(B_1^X)$ is relatively compact in X.

46. Consider the following family of Cauchy problems:

$$\begin{cases} y' = \frac{1}{1+ty} & t > 0\\ y(0) = 1 + \frac{1}{n} & n \in \mathbb{N}. \end{cases}$$

- (a) Show that for every $n \in \mathbb{N}$ there exists a solution $y_n(\cdot)$ defined on the whole \mathbb{R}^+ .
- (b) Show that the sequence (y_n) amdits a subsequence uniformly converging on each compact subinterval of \mathbb{R}^+ .

Answer. First of all, for y(0) > 0 the corresponding solution is positive and strictly growing. Suppose that one of these solutions, with initial value $y_0 > 0$, has maximum forward time of existence $[0, t_1)$. We need to show that $t_0 = +\infty$. If not and $t_1 < +\infty$, then, by monotonicity, the limit $\lim_{t \to t_1^-} y(t)$ exists. If this limit is finite and equals to y_1 , by $0 < y_0 < y_1$ we have $y_1 \in \mathbb{R}_+$. but then, considering

$$\begin{cases} y' = \frac{1}{1+ty} & t > 0\\ y(t_1) = y_1 \end{cases}$$

it is easy to see that we can extend the previous equation beyond $[0, t_1)$. So we get a contradiction, and $\lim_{t \to t_1^-} y(t) = +\infty$. Let us show that also this is impossible. Let $0 < t_2 < t_1$ with $u(t_2) \ge 1$. Then, for $t_2 < t < t_1$ we have $u(t) > u(t_2)$

$$y(t) - y(t_2) = \int_{t_2}^t y'(s)ds = \int_{t_2}^t \frac{1}{1 + sy(s)}ds \le \int_{t_2}^t \frac{1}{1 + t_2}dt = \frac{t - t_2}{1 + t_2} \xrightarrow{t \to t_1^-} \frac{t_1 - t_2}{1 + t_2}.$$

Hence $+\infty = \lim_{t \to t_1^-} (y(t) - y(t_2)) \leq \frac{t_1 - t_2}{1 + t_2}$, which obviously is a contradiction. So we conclude that if $y(0) = y_0 > 0$, the corresponding solution is defined in $[0, +\infty)$. The uniform convergence on compact intervals, is a consequence of the "well posedness" of solutions of the Cauchy problem for ODE's, which is a very general fact. Suppose that (y_{0n}) is a sequence in \mathbb{R}_+ with $y_{0n} \xrightarrow{n \to +\infty} y_0$ with $y_0 \in \mathbb{R}_+$. Then we can prove that the $y_n \xrightarrow{n \to +\infty} y$ in $C^0([0,T])$ for any T > 0, where $y_n(t) = y_{0n}$ and $y(0) = y_0$ using the Growall inequality. From

$$y' - y'_n = f(t, y) - f(t, y_n)$$

we get, after some elementary computations,

$$\begin{aligned} |y(t) - y_n(t)| &\leq \left(1 + \int_0^t A_n(s)ds\right) |y_0 - y_{0n}| + \int_0^t A_n(s)|y(s) - y_n(s)|ds\\ with \ A_n(s) &:= \frac{|f(s, y(s)) - f(s, y_n(s))|}{|y(s) - y_n(s)|}. \end{aligned}$$

Notice now that

 $A_n(s) \le \int_0^1 |\partial_y f(s, y_n(s) + \tau(y(s) - y_n(s)))| d\tau \le \sup \{ |\partial_y f(s, y)| : s \in [0, T] \text{ and } y \ge 0 \} \le T$ So we get

$$|y(t) - y_n(t)| \le (1 + T^2) |y_0 - y_{0n}| + T \int_0^t |y(s) - y_n(s)| ds$$

Now, Gronwall's inequality yields

$$|y(t) - y_n(t)| \le e^{Tt} (1 + T^2) |y_0 - y_{0n}|$$

which yields $y_n \xrightarrow{n \to +\infty} y$ in $C^0([0,T])$.

47. Consider the sequence of functions given by

$$u_n(x,y) = \sin\left(\frac{nx}{n+1}\right)(1+e^{-n|y|}), \quad (x,y) \in I \doteq [-1,1] \times [-1,1], \quad n \in \mathbb{N}.$$

- (a) Study the equicontinuity of (u_n) on I.
- (b) Study the convergence of (u_n) in the uniform topology of C(I), in the strong topology of $L^{\infty}(I)$ and in the weak* topology of $L^{\infty}(I)$.

48. Let $I = [0, 1], X = C^0(I)$ and $m \in X$. Set

$$(T_m u)(x) \doteq m(x)u(x), \quad u \in X, \ x \in I.$$

Show that $T_m \in \mathcal{L}(X)$ and that it is compact if and only if m(x) = 0 for every $x \in I$.

Answer. We have $\sigma(T_m) = m(I)$. We must have $0 \in m(I)$ and $m(I) \setminus \{0\}$ must be discrete and m(I) must be connected. So, summing up, $m(I) = \{0\}$, which implies $m \equiv 0$ and $T_m = 0$.

49. Let \overline{B} the closed unit ball in \mathbb{R} , endowed with the euclidean norm $\|\cdot\|$. Define

 $u_n(x) \doteq |\sin(||x||)|^{\frac{1}{n}} \quad n \in \mathbb{N}.$

Study the equicontinuity of the family $\{u_n, n \in \mathbb{N}\}$ on \overline{B} . Answer. Recall that the

condition of the Ascoli Arzela Theorem are both sufficient and necessary. Obviously the above sequence is is bounded in $C^{0}(B)$. Notice that pointwise we have

$$|\sin(|x|)|^{\frac{1}{n}} \xrightarrow{n \to +\infty} \begin{cases} 1 & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

and this excludes the existence of a subsequence converging uniformly. So the sequence is not equicontinuous.

50. Consider the sequence of functions given by

$$u_n(x,y) = \frac{e^{-\frac{ny}{n+1}}}{(1+e^{-nx^2})}, \quad (x,y) \in I \doteq [-1,1] \times [-1,1], \quad n \in \mathbb{N}.$$

Study the convergence of (u_n) in the uniform topology of C(I), in the strong topology and in the weak* topology of $L^{\infty}(I)$.

51. Let $\varphi \in C_c(\mathbb{R})$ and (a_n) a sequence in \mathbb{R} . Define

$$u_n(x) \doteq \varphi(x - a_n), \qquad x \in \mathbb{R}, \quad n \in \mathbb{N}.$$

a) Show that $u_n \in L^p(\mathbb{R})$ for every $p \in [1, \infty]$.

b) Study the relative compactness of the sequence (u_n) in the strong and in the weak topology of L^p (weak* if $p = \infty$). That is to say: establish if and for which $p \in [1,\infty]$ there exists a converging subsequence in such topologies.

52. Let $I = [0,1] \subset \mathbb{R}$ and $B \doteq \{ u \in C^1(I) : ||u'||_{L^2(I)} \le 1 \}.$

a) Show that *B* is an equicontinuous family.

b) Given a sequence (u_n) in $\{u \in B : u(0) = 0, u(1) = 1\}$, show that there exist $u \in C^0(I)$ and a subsequence (u_{n_k}) which converges uniformly to u.

c) Show by a counterexample that property b) does not hold in B.

53. Let \overline{B} the closed unit ball in \mathbb{R}^d , endowed with the euclidean norm $\|\cdot\|$. Set $u_n(x) \doteq e^{-n\|x\|} \quad n \in \mathbb{N}.$

Study the equicontinuity of the family $\{u_n, n \in \mathbb{N}\}$ on \overline{B} .

54. Consider the sequence of functions given by

$$u_n(x,y) = \min\left\{n, |x|^{-\frac{1}{2}}\right\} \sin\left(\frac{ny}{n+1}\right), \quad (x,y) \in I \doteq [-1,1] \times [-1,1], \quad n \in \mathbb{N}.$$

Study the convergence of (u_n) in the strong and weak topology (weak^{*} if $p = \infty$) of $L^p(I)$.

55. Let $\varphi \in C_c(\mathbb{R})$ with supp $\varphi \subseteq [-1,1], \varphi \ge 0$ e $\int_{\mathbb{R}} \varphi \, dt = 1$. Consider the Dirac sequence given by

$$\rho_n(t) \doteq n\varphi(nt) \quad \forall t \in \mathbb{R} \quad \forall n \in \mathbb{N}$$

and let (a_n) be a sequence in \mathbb{R} . Set

$$u_n(t) \doteq \rho_n(x - a_n) \qquad \forall t \in \mathbb{R} \quad \forall n \in \mathbb{N}.$$

a) Show that $u_n \in L^p(\mathbb{R})$ for every $p \in [1, \infty]$ and for every $n \in \mathbb{N}$.

b) Considering the cases $a_n = n$ and $a_n = n^{-2}$, study the convergence of the sequence (u_n) in the strong and weak topology of L^p (weak* if $p = \infty$).

56. Let $I = [0, 1] \subset \mathbb{R}$, $X = C^0(I)$ and $Y = L^1(I)$. Set

$$Tu(x) \doteq \int_0^x xyu(y) \, dy.$$

- **a)** Show that $T \in \mathcal{L}(X)$ and $T \in \mathcal{L}(Y)$.
- **b**) Establish if T is compact in $\mathcal{L}(X)$ and in $\mathcal{L}(Y)$, explaining the reasons.

57. Let $(\rho_n)_{n \in \mathbb{N}}$ be a regularizing sequence in \mathbb{R} . Study the equiintegrability of the following families:

- a) $f_n = \rho_n, \quad n \in \mathbb{N};$ b) $g_n = \rho'_n, \quad n \in \mathbb{N};$ c) $h_n \doteq \rho_1 \star \rho_n, \quad n \in \mathbb{N}.$

58. Let $\alpha > 0$ and consider the sequence of functions given by

$$u_n(x) \doteq \min\{1, |x|^{-\alpha}\}\chi_{B(0,n)}(x), \quad n \in \mathbb{N}, \ x \in \mathbb{R}^d.$$

Study the strong and weak (weak* if $p = \infty$) convergence of (u_n) in the spaces $L^p(\mathbb{R}^d)$ for $p \in [1, \infty]$.

59. Let $Q \doteq [-1, 1]^3 \subseteq \mathbb{R}^3$ and set

$$f(x_1, x_2, x_3) = \begin{cases} \left(x_1 \, x_2^2 \, x_3^3\right)^{-1}, & x_1 \, x_2 \, x_3 \neq 0\\ 0, & x_1 \, x_2 \, x_3 = 0. \end{cases}$$

- Establish for which $p \in [1, \infty]$ we have $f \in L^p(\mathbb{R}^3)$;
- establish for which $p \in [1, \infty]$ we have $f \in L^p(Q)$;

- establish for which $p \in [1, \infty]$ we have $f \in L^p(\mathbb{R}^3 \setminus Q)$.

60. Let $E \subseteq \mathbb{R}$ be a measurable set, $p_i \in [1, \infty]$, $f_i \in L^{p_i}(E)$ for $i = 1, \ldots, n$, and $r \in [1, \infty]$ given by

$$\frac{1}{r} \doteq \sum_{i=1}^{n} \frac{1}{p_i}$$

Show that

$$\prod_{i=1}^{n} f_i \in L^r(E)$$

and that the following inequality holds:

$$\left\|\prod_{i=1}^{n} f_{i}\right\|_{L^{r}(E)} \leq \prod_{i=1}^{n} \|f_{i}\|_{L^{p_{i}}(E)}.$$

61. Let $(\rho_n)_{n \in \mathbb{N}}$ be a regularizing family in \mathbb{R} and $f \in C^0(\mathbb{R})$. Set

$$f_n(x) \doteq (\rho_n \star f)(x), \quad x \in \mathbb{R}.$$

Show that the definition is well posed and that the sequence (f_n) converges uniformly to f on any compact subset $K \subseteq \mathbb{R}$.

62. Let $I = [-1, 1] \subseteq \mathbb{R}$ and (u_n) a sequence in $C^2(\mathbb{R})$ such that

- (a) u_n is convex on \mathbb{R} for every $n \in \mathbb{N}$;
- (b) There exists $K \ge 0$ such that $|u_n(0)| + |u'_n(t)| \le K$ for every $t \in I$ and for every $n \in \mathbb{N}$.
- (1) Show that the sequence (u'_n) is relatively compact in $L^1(I)$.
- (2) Show that there exists a subsequence (u_{n_k}) and a map $u \in C^0(I)$ such that (u_{n_k}) converges uniformly to u on I.

63. Let $I = [0,1] \subseteq \mathbb{R}$ and $\{e_n, n \in \mathbb{N}\}$ a Hilber basis $L^2(I)$. Set

$$(e_m \otimes e_n)(x, y) \doteq e_m(x)e_n(y); \quad m, n \in \mathbb{N}, \ (x, y) \in I \times I.$$

Show that the family $\{e_m \otimes e_n; m, n \in \mathbb{N}\}$ is a Hilbert basis in $L^2(I \times I)$.

Answer. It is an orthonormal family. Now, for $u, v \in L^2(I)$, we have

$$\sum_{\substack{n,m\in\mathbb{N}\\ n,m\in\mathbb{N}}} |(u\otimes v, e_m\otimes e_n)|^2 = \sum_{\substack{n,m\in\mathbb{N}\\ n,m\in\mathbb{N}}} |(u, e_m)|^2 |(v, e_n)|^2 = \sum_{m\in\mathbb{N}} |(u, e_m)|^2 \sum_{n\in\mathbb{N}} |(v, e_n)|^2$$
$$= \|u\|_{L^2(I)}^2 \|v\|_{L^2(I)}^2 = \|u\otimes v\|_{L^2(I\times I)}^2$$

This means that each $u \otimes v$ is in the closed space spanned by the above orthonormal family, hence also the linear combinations of these elements. Since the latter are dense in $L^2(I \times I)$, it follows that the space generated by the orthonormal family is $L^2(I \times I)$, and thus the orthonormal family is a Hilbert basis.

64. Let $I \doteq [-1, 1] \subseteq \mathbb{R}$ and consider the sequence of functions given by:

$$u_n(t) = e^{-n} \cdot e^{nt^2}; \quad t \in I, \quad n \in \mathbb{N}.$$

Study the convergence of the sequence (u_n) in the following spaces:

(i) $C^0(I)$ with uniform topology;

- (*ii*) $L^1(I)$ with strong topology;
- (*iii*) $L^1(I)$ with weak topology;
- (*iv*) $L^{\infty}(I)$ with strong topology;
- (v) $L^{\infty}(I)$ with weak* topology.

65. For every $n \in \mathbb{N}$ set

$$f_n(x) = \sin\left(\frac{x}{n}\right); \quad g_n(x) = \sin\left(n^2 x\right); \quad h_n(x) = \sin\left(\frac{nx}{n+1}\right); \quad x \in [0, 2\pi].$$

Study the equicontinuity of the sequences $\{f_n, n \in \mathbb{N}\}, \{g_n, n \in \mathbb{N}\} \in \{h_n, n \in \mathbb{N}\}$ on $[0, 2\pi]$.

66. Let $I = [0, 1] \subset \mathbb{R}$ and, for every $n \in \mathbb{N}$, consider the subintervals of the form

$$I_n^m \doteq \left[\frac{m}{n}, \frac{m+1}{n}\right], \quad m = 0, 1, \dots, n-1.$$

Then set

 $u_n(t) \doteq (-1)^m$ for $t \in I_n^m$.

Study the strong and weak convergence of the sequence (u_n) in $L^2(I)$.

67. Let D be te unit disk in \mathbb{C} . Study the equicontinuity of the following families of functions in C(D):

 $\begin{array}{ll} \text{(i)} & \{f_a(z)=e^{iaz}, a\in \mathbb{R}\};\\ \text{(ii)} & \{f_a(z)=e^{i\frac{z}{a}}, a\in \mathbb{R} \ a\neq 0\}; \end{array}$ (iii) $\{f_a(z) = e^{iaz}, a \in \mathbb{R}, |a| > 1\};$ (iv) $\{f_a(z) = e^{iaz}, a \in \mathbb{R}, |a| < 1\}.$

68. Let $X = C([0,1], \mathbb{R})$ and (a_n) a sequence in [0,1]. Set

$$\langle f_n, u \rangle \doteq u(a_n), \ \forall n \in \mathbb{N}, \ \forall u \in X.$$

Show that $f_n \in X'$ for every $n \in \mathbb{N}$ and that there exists a subsequence (f_{n_k}) which converges in the topology $\sigma(X', X)$.

69. Study the equicontinuity of the following families in C(I) $(I \subseteq \mathbb{R})$.

- (i) $\{f_a(x) = e^{ax}, a \in \mathbb{R}\}, I = \mathbb{R};$
- (i) $\{f_a(x) = a(1-x)^2, a \in \mathbb{R}^+\}, I = [-1,1];$ (ii) $\{f_a(x) = a^{-a}, a \in \mathbb{R}^+\}, I =]1, +\infty[;$ (iv) $\{f_a(x) = x^{-a}, a \in \mathbb{R}^+\}, I =]0, +\infty[.$

70. Let $p \in [1, \infty]$. Consider the space $X = L^p([0, 1])$ and set

$$(Tu)(x) = \int_0^x u(t) \, dt.$$

- (i) Show that $T \in \mathcal{L}(X)$ and that $||T||_{\mathcal{L}(X)} \leq \left(p^{\frac{1}{p}}\right)^{-1}$.
- (ii) Given a sequence (u_n) in X weakly converging to u in X, show that the sequence (Tu_n) converges strongly to Tu in X.

Answer. The bound follows from

$$|Tu(x)| \le \int_0^x |u(t)| dt \le x^{\frac{1}{p'}} ||u||_{L^p([0,1])}$$

and from

$$\|x^{\frac{1}{p'}}\|_{L^{p}([0,1])} = \left(\int_{0}^{1} x^{\frac{p}{p'}} dx\right)^{\frac{1}{p}} = \left(\frac{1}{\frac{p}{p'}+1} dx\right)^{\frac{1}{p}} = \left(p^{\frac{1}{p}}\right)^{-1} \left(\frac{1}{\frac{1}{p'}+\frac{1}{p}} dx\right)^{\frac{1}{p}} = \left(p^{\frac{1}{p}}\right)^{-1}$$

For part (ii), the result follows from the fact that $T : L^p([0,1]) \to L^p([0,1])$ is compact. The case p = 1 is discussed in Cuccagna's notes. The case p > 1 is easier because we have for any $x_1 < x_2$

$$|Tu(x_1) - Tu(x_2)| \le \int_{x_1}^{x_2} |u(x)| dx \le \sqrt[p']{|x_1 - x_2|} ||u||_{L^p([0,1])}$$

From this and Ascoli Arzela we conclude that $T: L^p([0,1]) \to C^0([0,1])$ is compact for p > 1 and so, at fortiori, also $T: L^p([0,1]) \to L^p([0,1])$ is compact.

71. Let
$$C > 0$$
, $p \in [1, \infty[, \alpha \in]0, 1[$ and $B \doteq \{x \in \mathbb{R}^d : ||x|| \le 1\}$. Consider the set $U \doteq \{u \in C(B) : u(0) = 0, |u(x) - u(y)| \le C|x - y|^{\alpha} \ \forall x, y \in B\}$.

Show that U is relatively compact in $L^p(B)$.

Answer. It is immediate that U is bounded and equicontinuous and so relatively compact in $C^{0}(B)$, and hence also in $L^{p}(B)$.

72. Let $I \doteq [0,1]$ and (u_n) a sequence in $C^1([0,1])$ such that

$$|u_n(0)| + \int_I |u'_n(t)| \, dt \le 1 \quad \forall n \in \mathbb{N}.$$

Show that there exist a subsequence (u_{n_k}) and a map $u \in L^1(I)$ such that $u_{n_k} \to u$ strongly in $L^1(I)$.

73. Let $E \subseteq \mathbb{R}^d$ be a measurable set such that $0 < m(E) < +\infty$. For every $p \in [1, +\infty[$ and for every $f \in L^p(E)$ set

$$N_p[f] \doteq \left(\frac{1}{m(E)} \int_E |f(x)|^p\right)^{\frac{1}{p}}$$

Show that $N_p[\cdot]$ is a norm on $L^p(E)$ and that, if $1 \le p \le q < +\infty$, we have

$$N_p[f] \le N_q[f] \qquad \forall f \in L^q(E).$$

74. Let X be a Banach space and set $\mathcal{K}(X) \doteq \{T \in \mathcal{L}(X) : T \text{ is compact}\}$. Show that $\mathcal{K}(X)$ is closed in $\mathcal{L}(X)$.

75. Let $X = C_0(\mathbb{R}^2)$ and (a_n) a sequence in \mathbb{R}^+ . For every $n \in \mathbb{N}$ and for every $u \in X$ set

$$T_n(u) = \int_{-a_n}^{+a_n} u(x, nx) \, dx.$$

Show that $T_n \in X'$ for every $n \in \mathbb{N}$ a find its norm and support. Study the convergence of the sequence (T_n) in the strong and weak* topology of X' in the cases $a_n = 1 + n^2$ and $a_n = e^{-\frac{1}{n}}$.

76. Let I = [0,1] and H an equicontinuous subset of $C^0(I)$. Show that \overline{H} is equicontinuous.

77. Let $I = [0, 1], B_r = B(0, r)$ the ball in \mathbb{R}^d of center zero and radius $r, p \in [1, \infty]$, $X_p \doteq L^p(B_1)$ and $Y \doteq C^0(I, \mathbb{R})$. Given $u \in X_p$ and $t \in I$, set

$$(Tu)(t) \doteq \int_{B_t} u(y) \, dy$$

Show that $T \in \mathcal{L}(X_p, Y)$ for every p and establish for which p it is compact.

78. For $(x, y) \in I \doteq [-1, 1] \times [-1, 1]$, consider the sequence of functions given by

$$u_n(x,y) = \left(\cos\left(\frac{nx^2}{n+1}\right)\sin\left(nx\right)\right)(1+e^{-ny^2}), \quad n \in \mathbb{N}.$$

Study the convergence of (u_n) in the strong and weak topology (weak* if $p = \infty$) of $L^p(I)$.

79. Let (a_n) and (b_n) sequence in \mathbb{R}^+ and set $R_n \doteq [-a_n, a_n] \times [-b_n, b_n] \subseteq \mathbb{R}^2$ and

$$u_n(x,y) \doteq \chi_{R_n}(x,y), \quad (x,y) \in \mathbb{R}^2.$$

Study the convergence of (u_n) in the strong and weak topology of $L^1(\mathbb{R}^2)$ and in the strong and weak^{*} topology of $L^{\infty}(\mathbb{R}^2)$ in the following cases:

1. $a_n = n, b_n = n^{-1};$ 1. $a_n = n, b_n = n^{-\frac{1}{2}};$ 2. $a_n = n, b_n = n^{-\frac{1}{2}};$ 3. $a_n = \frac{n}{n+1}, b_n = n^{-1};$ 4. $a_n = \frac{n}{n+1}, b_n = \frac{n}{n+1}.$

80. Let $X = C_0(\mathbb{R}^2, \mathbb{R})$, endowed with the uniform norm, and $(a_n), (b_n)$ sequences in \mathbb{R}^+ . Define

$$\langle f_n, u \rangle \doteq \int_0^{2\pi} u(a_n \cos \theta, b_n \sin \theta) \, d\theta, \quad n \in \mathbb{N}, \ u \in X.$$

Show that $f_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support.

Suppose $a_n \to 1, b_n \to 0$ and study the convergence of the sequence (f_n) in the strong and weak^{*} topology of X'.

81. Let I = [0, 1], M > 0 and (u_n) a sequence in $C^1(I)$ such that

 $\begin{array}{ll} 1. \ \int_{I} |u_n(t)|^2 \leq M \ \forall n \in \mathbb{N}; \\ 2. \ u'_n(t) + t \geq 0 \ \forall t \in I, \forall n \in \mathbb{N}. \end{array}$

Show that the sequence (u_n) is relatively compact in $L^1(I)$. Answer. Here too,

like in exercise 86 below, it is possible to restrict to case $u_n(0) \equiv 0$. Next, let $u_{n}^{'+} = \max\{u_{n}^{'}, 0\} \text{ and } u_{n}^{'-} = \max\{-u_{n}^{'}, 0\}.$ Then

$$u_n = u'_n^+ - u'_n^-$$
 and $u_n = v_n - w_n$ with
 $v_n(x) := \int_0^x u'_n^+(t) dt$ and
 $w_n(x) := \int_0^x u'_n^-(t) dt.$

Form $u_n^{'-}(t) \leq t \leq 1$ we have for any $x_1 < x_2$

$$|w_n(x_1) - w_n(x_2)| \le \int_{x_1}^{x_2} dt = |x_2 - x_1|.$$

So (w_n) is relatively compact in $C^0(I)$ by Ascoli–Arzelá, and hence also in $L^2(I)$ (where, hence, it is bounded) and $L^1(I)$. Also (v_n) is relatively compact in $L^1(I)$, by Exercise 86 below.

82. Let (x_n) be a sequence in a Hilbert space H endowed with the inner product $\langle \cdot, \cdot \rangle$. Show that, if the sequence $(\langle x_n, y \rangle)$ converges for every $y \in H$, then the sequence (x_n) converges weakly.

83. Let I = [0, 1] and call X the Banach space C(I), endowed with the uniform norm. Introduce the space

$$Y \doteq \{u \in X, u \text{ differentiable on } I \text{ with } u' \in X\}$$

and set

$$||u||_Y \doteq ||u||_{\infty} + ||u'||_{\infty}, \ u \in Y$$

Prove that $(Y, \|\cdot\|_Y)$ is a Banach space.

Let α be a nonzero element of X and set

 $(Tu)(x) \doteq \alpha(x)u'(x) \quad u \in Y, \ x \in I.$

- (i) Prove that $T \in \mathcal{L}(Y, X)$ and find its norm.
- (ii) Establish if T is compact and justify the answer.

Answer. $(Y, \|\cdot\|_Y)$ is a Banach space. Indeed, let $(u_n, u'_n) \xrightarrow{n \to +\infty} (u, v)$ in $C(I) \times C(I)$. Then, since for any $x \in I$ we have

$$u_n(x) = \int_0^x u'_n(t)dt,$$

it follows, taking the limit in n, that

$$u(x) = \int_0^x v(t)dt,$$

and so by the Fundamental Theorem of calculus, v = u'. We have $T \in \mathcal{L}(Y, X)$ with a bound

$$||Tu|| \le ||\alpha||_{L^{\infty}(I)} ||u'||_{L^{\infty}(I)} \Longrightarrow ||T|| \le ||\alpha||_{L^{\infty}(I)}.$$

Consider now that map $X \hookrightarrow Y$ given by $v \to (u, v)$, with u' = v with u(0) = 0. Then, if T is compact, also the multiplier map $X \ni v \to Sv := \alpha v \in X$, is compact. Recall that $\sigma(S) = \alpha(I)$. It is clear, from the Spectral Theorem of compact operators, that $\alpha(I)$ must contain 0, be at most countable, and have 0 as unique accumulation point. Since $\alpha(I)$ is connected, it follows that we must have $\alpha(I) = \{0\}$, that is $\alpha \equiv 0$, hence T, if compact, is the 0 operator.

84. Let *H* be a Hilbert space. For $T \in \mathcal{L}(H)$ denote by R(T) and N(T), respectively, the range and the kernel of *T*. Calling T^* the adjoint of *T*, prove that $N(T) = (R(T^*))^{\perp}$ and $\overline{(R(T))} = (N(T^*))^{\perp}$.

85. Let $B_r = B(0, r)$ be the ball in \mathbb{R}^d of center zero and radius r and $X \doteq C_0(\mathbb{R})$. Let m be a map in $C(\mathbb{R})$, with $m(x) \ge 0$ for every $x \in \mathbb{R}$, and, for every t > 0, set

$$T_t(u) \doteq t^{-d} \int_{B_t} m(y) u(y) \, dy.$$

Prove that $T_t \in X'$ for every t > 0 and find its norm and support. Study the convergence of T_t as $t \to 0+$ in the strong and weak* topology of X'. Answer. It

is obvious that

$$|T_t(u)| \le t^{-d} \int_{B_t} m(y) \, dy ||u||_{L^{\infty}(\mathbb{R}^d)}$$

so that this yields an element in $(L^{\infty}(\mathbb{R}^d))'$, in fact $t^{-d}1_{B_1}\left(\frac{x}{t}\right)m(x) \in L^1(\mathbb{R}^d)$. As an element in X', we have $t^{-d}1_{B_1}\left(\frac{x}{t}\right)m(x) \rightharpoonup m(0)\delta(x)$ in the weak* topology of X'. If we have strong convergence in X', this implies strong convergence in $L^1(\mathbb{R}^d)$ to an element $u \in L^1(\mathbb{R}^d)$. It is easy to see that u = 0 a.e. in \mathbb{R}^d , which implies u = 0. So we conclude that strong convergence in X' is necessarily to 0 and implies m(0) = 0. Viceversa, if m(0) = 0, we know that for any $\epsilon > 0$ there exists $\delta_{\epsilon} > 0$ such that $|x| < \delta_{\epsilon}$ implies $|m(x)| < \epsilon$. Then, for $0 < t < \delta_{\epsilon}$ we have

$$\|t^{-d}1_{B_1}\left(\frac{x}{t}\right)m\|_{L^1(\mathbb{R}^d)} = \|t^{-d}1_{B_1}\left(\frac{x}{t}\right)m\|_{L^1(B_t)} \le \|t^{-d}1_{B_1}\left(\frac{x}{t}\right)m\|_{L^1(B_{\delta_{\epsilon}})} \le \epsilon$$

and so, indeed, we conclude $t^{-d}1_{B_1}\left(\frac{\cdot}{t}\right)m \xrightarrow{t \to 0^+} 0$ in $L^1(\mathbb{R}^d)$.

86. Let I = [0, 1] and (u_n) , (v_n) be two bounded sequences in $L^2(I)$. Assume in addition that the maps $I \ni x \mapsto u_n(x)$ and $I \ni x \mapsto v_n(x)$ are continuous and monotone non decreasing for every $n \in \mathbb{N}$; then define

$$f_n(x,y) \doteq u_n(x)v_n(y), \quad (x,y) \in Q \doteq I \times I.$$

Prove that f_n lies in $L^2(Q)$ for every $n \in \mathbb{N}$ and that the sequence (f_n) is relatively compact in $L^1(Q)$. Answer. First of all, it is sufficient to show that

 (u_n) is relatively compact in $L^1(I)$. The argument which follows is rather complicated. Notice, incidentally, that here it is crucial that relative compactness is in $L^1(I)$, since it is easy to obtain a non relatively compact set $L^2(I)$ using for example $n^{\frac{1}{2}}\chi_{[0,1]}(n(1-x))$ (notice that $n^{\frac{1}{2}}\chi_{[0,1]}(n(1-x)) \xrightarrow{n \to +\infty} 0$ in $L^1(I)$). I will also assume that $u_n(0) \equiv 0$, since it is easy to see that we can reduce to this case and I will also assume $||u_n||_{L^2(I)} \leq 1$ for all n. Next, for any M > 0 let $x_M^{(n)} = \inf\{x : u_n(x) \geq M\}$. Then $1 - x_M^{(n)} \leq M^{-1/2} ||u_n||_{L^2(I)} \leq M^{-1/2}$ follows from the Chebyshev inequality. So $x_M^{(n)} \geq 1 - M^{-1/2}$. Next, split

$$u_n = v_n + w_n$$
 where
 $v_n := \chi_{[0,1-M^{-1/2}]} u_n$
 $w_n = \chi_{[1-M^{-1/2},1]} u_n$

Notice that

$$||w_n||_{L^1(I)} \le ||\chi_{[1-M^{-1/2},1]}||_{L^1(I)} ||u_n||_{L^2(I)} \le M^{-1/4}$$

Now, we have $v_n(0) \equiv 0$ and $v_n(1 - M^{-1/2}) \leq M$. Then, see

 $https://math.stackexchange.com/questions/1003580/a-bounded-monotonic-function\\-on-an-closed-interval-has-fourier-coefficient-decay$

it is easy to see that there exists a fixed C > 0 such that the Fourier series

$$v_n(x) \sim \sum_{j \in \mathbb{Z}} \widehat{v}_n(j) e^{i \frac{2\pi}{1-M^{-1/2}} jx} \text{ satisfies}$$
$$|\widehat{v}_n(j)| \le \frac{C}{\langle j \rangle} \text{ for all } n \in \mathbb{N}.$$

Notice that this implies that (v_n) defines a bounded sequence in $H^s(\mathbb{T}_M)$ where $\mathbb{T}_M = \frac{\mathbb{R}}{(1-M^{-1/2})\mathbb{Z}}$ for any $s \in (0, 1/2)$. Since the immersion $H^s(\mathbb{T}_M) \hookrightarrow L^2(0, 1-M^{-1/2})$ is compact, we conclude that (v_n) is relatively compact in $L^2(0, 1-M^{-1/2})$, and so also in $L^1(0, 1-M^{-1/2})$. So for any $\epsilon > 0$ we conclude that there is a finite covering of (v_n) in $L^1(0, 1-M^{-1/2})$ with balls of radius $\epsilon/2$. Now, choosing $M^{-1/4} < \epsilon/2$ we conclude that there exists a finite covering of (u_n) in $L^1(0, 1)$ with balls of radius ϵ . This yields the desired result.

87. Let I = [0, 1], $Q \doteq I \times I$ and (a_n) , (b_n) sequences in]0, 1]. Define the family of sets $R_n \doteq [0, a_n] \times [0, b_n] \subseteq Q$ and set

$$u_n(x,y) \doteq (1 + \sin(nx))(1 + e^{-ny})\chi_{R_n}(x,y), \quad (x,y) \in Q.$$

Study the convergence of (u_n) in the strong and weak topology of $L^1(Q)$ and in the strong and weak* topology of $L^{\infty}(Q)$ in the following cases:

1. $a_n = n^{-2}, b_n = 1 - n^{-1};$ 2. $a_n = 1 - n^{-2}, b_n = 1 - n^{-1}.$

Answer. In the first case, we have

$$|u_n(x,y)| \le 4\chi_{[0,n^{-2}]}(x)\chi_{[I]}(y) \xrightarrow{n \to +\infty} 0$$
 in $L^1(Q)$ by Dominated Convergence.

We have $||u_n||_{L^{\infty}(Q)} = 2$ and this and the above imply that u_n is not strongly convergent in $L^{\infty}(Q)$, however $u_n \rightarrow 0$ in the weak* topology of $L^{\infty}(Q)$. In the second case, set

$$v_n(x,y) := (1 + \sin(nx))(1 + e^{-ny})\chi_{[0,b_n]}(y)$$

Then

$$v_n(x,y) - u_n(x,y) = (1 + \sin(nx))(1 + e^{-ny})\chi_{[1-n^{-2},1]}(x)\chi_{[0,b_n]}(y) \xrightarrow{n \to +\infty} 0$$

in $L^1(Q)$ by Dominated Convergence.

Next,

$$v_n(x,y) = (1 + \sin(nx)) + w_n(x,y) \text{ for}$$
$$w_n(x,y) := -(1 + \sin(nx))\chi_{[b_n,1]}(y) + (1 + \sin(nx))e^{-ny}\chi_{[0,b_n]}(y)$$
$$where w_n \xrightarrow{n \to +\infty} 0 \text{ in } L^1(Q) \text{ by Dominated Convergence.}$$

We have $1+\sin(nx) \rightarrow 1$ in $L^1(Q)$ in the weak* topology of $L^{\infty}(Q)$ by the Riemann–Lebesgue Lemma. On the other hand

$$\|1 + \sin(nx) - 1\|_{L^1(Q)} = \int_0^1 |\sin(nx)| dx \xrightarrow{n \to +\infty} \frac{2}{\pi}$$

which implies that $1 + \sin(nx)$ does not converge to 1 in $L^1(Q)$. We also have

$$v_n - u_n \rightharpoonup 0$$
 in the weak* topology of $L^{\infty}(Q)$ and
 $w_n \rightharpoonup 0$ in the weak* topology of $L^{\infty}(Q)$.

There is no strong convergence of u_n in $L^{\infty}(Q)$, since this would imply strong convergence to 1, in particular also in $L^1(Q)$, which has just been excluded.

88. Let H be a complex Hilbert space with inner product (\cdot, \cdot) . Prove that we have $4(x, y) = (\|x + y\|^2 - \|x - y\|^2) - i(\|x + iy\|^2 - \|x - iy\|^2) \quad \forall x, y \in H.$

89. Let I = [0,1] and call X the Banach space C(I), endowed with the uniform norm. Let $g \in C(I \times I)$ and set

$$(Tu)(x) \doteq \int_I g(x, y)u(y) \, dy \quad u \in X, \ x \in I.$$

- (i) Prove that $T \in \mathcal{L}(X)$ and estimate its norm.
- (ii) Establish if T is compact and justify the answer.
- (iii) Compute the norm of T in the case $g(x, y) = e^{x+y}$.

Answer. We have

$$|(Tu)(x)| \le \int_{I} |g(x,y)u(y)| dy \le \int_{I} |g(x,y)| dy ||u||_{L^{\infty}(I)}.$$

So we have the bound

$$||T|| \le \sup_{x \in I} \int_{I} |g(x,y)u(y)| dy.$$

Using the fact that $g: I \times I \to \mathbb{R}$ is uniformly continuous, it is easy to show that $TD_{C(I)}(0,1)$ is bounded and equicontinuous, and so relatively compact by Ascoli Arzela.

90. Let $X = C_0(\mathbb{R}^2)$ and, for every $n \in \mathbb{N}$, consider the set

$$R_n \doteq] - n, n[\times] - n^{-1}, n^{-1}[\subseteq \mathbb{R}^2.$$

Given $u \in X$ and $n \in \mathbb{N}$ set

$$(T_n u)(x) = \frac{1}{n} \int_{R_n} e^{-(x^2 + y^2)} u(x, y) \, dx \, dy.$$

Prove that $T_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support. Study the convergence of the sequence (T_n) in the strong and weak* topology of X'.

Answer. It is pretty straightforward that

$$||T_n|| = \frac{1}{n} \int_{R_n} e^{-(x^2 + y^2)} dx dy \le \frac{1}{n} \int_{R_n} dx dy = \frac{1}{n} \operatorname{Area}(R_n) = \frac{4}{n} \xrightarrow[n \to +\infty]{4} 0.$$

91. Let $Q = [0,1]^d \subseteq \mathbb{R}$ and consider (u_n) , (v_n) , two relatively compact sequences in $L^2(Q)$. Define

$$f_n(x) \doteq u_n(x)v_n(x), \quad x \in Q, \ n \in \mathbb{N}.$$

Prove that f_n lies in $L^1(Q)$ for every $n \in \mathbb{N}$ and that the sequence (f_n) is relatively compact in $L^1(Q)$.

92. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be map of class C^1 such that $\varphi(0) = 0$ and $1 \leq \varphi'(t) \leq 2$ for every t > 0. Let I = [0, 1] and (u_n) a sequence in $L^1(\mathbb{R})$.

- (i) Prove that the sequence (v_n) defined by $v_n(t) \doteq u_n(\varphi(t))$ for $t \in I$ and $n \in \mathbb{N}$ lies in $L^1(I)$.
- (ii) Assuming that $u_n \to u$ strongly in $L^1(\mathbb{R})$, study the convergence of (v_n) in the strong and weak convergence of $L^1(I)$.
- (iii) Assuming that $u_n \rightharpoonup u$ weakly in $L^1(\mathbb{R})$, study the convergence of (v_n) in the strong and weak convergence of $L^1(I)$.

93. Let $Q = [0,1] \times [0,1]$ and X the Banach space $C^0(Q)$, endowed with the uniform norm. Set

$$(T_n u) \doteq \int_0^1 n \, e^{-nx} \, u(x, x^2) \, dx, \quad u \in X.$$

Prove that $T_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support. Study the convergence of (T_n) in the strong and weak^{*} topology of X'.

Answer. We have the map $I : C^0(Q) \to C^0([0,1])$ and $n e^{-nx}$ a sequence in $L^1([0,1])$. If this sequence was convergent to a $f \in L^1([0,1])$, then there would be a subsequence converging almost everywhere point wise to f. But then f = 0, impossible in view of the fact that $||n e^{-nx}||_{L^1([0,1])} \xrightarrow{n \to +\infty} 1$. This is equivalent to say that (T_n) is not strongly convergent. However we have $T_n u \xrightarrow{n \to +\infty} u(0,0)$, so there is weak* convergence in X'.

94. Let *H* be a Hilbert space, $T \in \mathcal{L}(H)$ and (T_n) a sequence in $\mathcal{L}(H)$.

- (i) Prove that $T_n \to T$ if and only if $T_n^* \to T^*$.
- (ii) Prove that the sequence $(T_n x)$ converges weakly to Tx for every $x \in H$ if and only if the sequence $(T_n^* x)$ converges weakly to $T^* x$ for every $x \in H$.

95. Let $I = [0,1] \subseteq \mathbb{R}$ and $X = C^0(I)$. Given a map $m \in L^2(I)$, set

$$Tu(x) \doteq \int_0^{x^2} m(y)u(y) \, dy.$$

Prove that $T \in \mathcal{L}(X)$ and establish if T is compact in $\mathcal{L}(X)$, justifying the answer.

Answer. For any $x_1 < x_2$ we have

$$\begin{aligned} |Tu(x_2) - Tu(x_1)| &\leq \|u\|_{L^{\infty}(I)} \int_{x_1^2}^{x_2^2} |m(y)| dy \leq \|u\|_{L^{\infty}(I)} \|m\|_{L^2(I)} \sqrt{x_2^2 - x_1^2} \\ &\leq \sqrt{2} \|u\|_{L^{\infty}(I)} \|m\|_{L^2(I)} \sqrt{x_2 - x_1} \end{aligned}$$

So $T\{u \in X : ||u||_{L^{\infty}(I)} \leq 1\}$ is a bounded equiconcontinuous family, and hence also a relatively compact one by Ascoli–Arzela. **96.** Let $Q = [0,1]^d \subseteq \mathbb{R}$. Consider two relatively compact families U and V in $C^0(Q)$ and define

$$F \doteq \left\{ f: f(x) = \sin(u(x) \cdot v(x)), \ x \in Q, u \in U, v \in V \right\}.$$

Prove that F is a relatively compact family in $C^0(Q)$.

97. Let $I = [0,1] \subseteq \mathbb{R}$, p > 1 and $X = L^{\infty}(I)$. Given a map $m \in L^p(I)$, set ℓ^x

$$Tu(x) \doteq \int_0^x m(y)u(y) \, dy.$$

Prove that $T \in \mathcal{L}(X)$ and establish if T is compact in $\mathcal{L}(X)$, justifying the answer. Answer. We have that $T: L^{\infty}(I) \to C^{\frac{1}{p'}}(I)$ is bounded, by the formula below, and

hence the map from X into itself is compact. The formula is, for $x_1 < x_2$,

$$|Tu(x_1) - Tu(x_2)| \le \int_{x_1}^{x_2} |m(x)| dx ||u||_{L^{\infty}(I)} \le |x_1 - x_2|^{\frac{1}{p'}} ||m||_{L^p(I)} ||u||_{L^{\infty}(I)}.$$

98. Let X be the Banach space $C_0(\mathbb{R}^2)$, endowed with the uniform norm, and let (g_n) be a sequence in $C_b(\mathbb{R}^2)$ such that

$$0 \le g_n(x,y) \le (1+x^2+y^2)^{-1} \quad \forall (x,y) \in \mathbb{R}^2, \forall n \in \mathbb{N}$$

and

$$g_n \longrightarrow g$$
 in $C_b(\mathbb{R}^2)$.

 Set

$$(T_n u) \doteq \int_{\mathbb{R}} g_n(x, x) u(x, x) \, dx, \quad u \in X.$$

Prove that $T_n \in X'$ for every $n \in \mathbb{N}$ and find its norm and support. Study the convergence of (T_n) in the strong and weak^{*} topology of X'.

Answer. We are considering the continuous map $I : C_0(\mathbb{R}^2) \ni u(x,y) \hookrightarrow u(x,x) \in C_0(\mathbb{R})$. Then, $T_n = S_n \circ I$ with S_n identifies with $L^1(\mathbb{R}) \ni v_n(x) = g_n(x,x)$. Set also v(x) = g(x,x). It is easy to see that g(x,y) satisfies

$$0 \le g(x,y) \le (1+x^2+y^2)^{-1} \quad \forall (x,y) \in \mathbb{R}^2.$$

So, by dominated convergence,

$$\lim_{n \to +\infty} \int_{\mathbb{R}} |v_n - v| dx = 0$$

Hence $T_n \xrightarrow{n \to +\infty} T$ strongly in X', with

$$(Tu) \doteq \int_{\mathbb{R}} g(x, x) u(x, x) \, dx, \quad u \in X.$$

99. Let $f \in L^2(\mathbb{R})$ and set

$$(Tu)(x) \doteq \int_{\mathbb{R}} f(x-y)u(y) \, dy.$$

Establish for which indices $p, q \in [1, +\infty]$ we have $T \in \mathcal{L}(L^p(\mathbb{R}), L^q(\mathbb{R}))$.

100. Let $I = [0,1] \subseteq \mathbb{R}$, $X = C^0(I)$ and $Y = L^1(I)$. Set

$$Tu(x) \doteq \int_0^x xyu(y) \, dy.$$

- a) Prove that $T \in \mathcal{L}(X)$ and $T \in \mathcal{L}(Y)$. b) Establish if T is compact in $\mathcal{L}(X)$ and in $\mathcal{L}(Y)$, justifying the answer.