Dynamics of EW & Strong Interactions

Part 4 - Dr. Michele Pinamonti (INFN Trieste) Lecture 4 - Trieste, 09/01/2023

MC simulation (continued)

Where we left

- Parton shower:
 - simulation of (QCD) radiation by partons from hard scattering
 - evolution to lower-and-lower virtuality / alternative evolution variable ρ (e.g. p₁):

• emission probability from real emission expression + Sudakov form factor:

$$d\mathcal{P}_{first}(\rho) = \frac{\alpha_s}{2\pi} \frac{d\rho}{\rho} \int_{z_{min}}^{z_{max}} \hat{P}_{a \to bc}(z) dz \cdot \underbrace{\Delta(\rho_0, \rho)}_{\checkmark}$$
$$\Delta(\rho_0, \rho) = \exp\left(-\sum_{b'} \int_{\rho}^{\rho_0} \frac{\alpha_s}{2\pi} \frac{d\rho'}{\rho'} d\rho' \int_{z_{min}}^{z_{max}} \hat{P}_{a \to b'c'}(z') dz'\right)$$

ISR parton shower - Forward evolution

• Idea:

- pick parton in incoming hadron from PDF at certain low Q² and mom. fraction x
- evolve event by event (with splitting + Sudakov) to obtain parton(s) at higher Q²

ence with FSR:
tion to larger-and-larger scales ρ
tion to larger-and-larger scales ρ

- Disadvantages:
 - o cannot "control" parton shower to get certain x' needed to initiate h.p. of interest (e.g. resonance production)
 - o will need to evolve for all possible fluctuations, but at most one parton will enter h.p.
 ⇒ INEFFICIENT!

Backward evolution

- Change of paradigm:
 - consider PDF at large scale Q², giving distribution of partons *after* ISR
 - this implicitly means <u>summing over</u> all possible emissions from lower scale to collision scale Q²

- then pick one exclusive ISR history
- \circ ~ use dP_{a \rightarrow bc} and apply Sudakov factors as for FSR
 - Sudakov factor again = exp(-JdP)

can write DGLAP equation as:

$$\frac{\mathrm{d}f_b(x,Q^2)}{\mathrm{d}(\ln Q^2)} = \sum_a \int_x^1 \frac{\mathrm{d}z}{z} f_a(x',Q^2) \frac{\alpha_s}{2\pi} P_{a\to bc}(z=\frac{x}{x'})$$

Now "evolution" to smaller-and-smaller scales ρ

Backward evolution

- Procedure:
 - hard scattering selected, with PDF at final scale Q²
 - with *hp* as upper maxim scale, succession of ISR branching simulated at lower and lower scales, going "backwards in time"
 - cutoff introduced when non-perturbative regime reached

Backward evolution

- Procedure:
 - hard scattering selected, with PDF at final scale Q²
 - with *hp* as upper maxim scale, succession of ISR branching simulated at lower and lower scales, going "backwards in time"
 - cutoff introduced when non-perturbative regime reached

Additional details in PS

- 4-momentum conservation at each vertex
- Color flow
- Each vertex is LO
 - $\circ~$ using "effective $\alpha_{_S}$ " (> $\alpha_{_S}$) at earache vertex to account for missing higher orders
- Large-angle radiation not modelled correctly
- Interference not necessarily included
 - but some effects are,
 - e.g. angular ordering / coherence

Energy-momentum conservation and recoil

- Different choices:
 - global vs. local recoil
 - colour-connected third parton to absorb recoil ("dipole")
 - don't distinguish emitter and spectator, do $2 \rightarrow 3$ splitting instead ("antenna")

Colour flow and coherence

- Angular ordering implies
 "color coherence"
 - color-connected partons produced
 "closer" to each other
- Small caveat:
 - possible "color reconnection" (see later)

0 0

Different PS algorithms

MC code	Evolution variable	Splitting variable	Coherence
Ariadne	dipole p_{\perp}^2	Rapidity	$2 \rightarrow 3 \text{ kernel}$
Herwig	$E^2 \theta^2$	Energy fraction	Ang. ord.
Herwig++ / H7	$(t-m^2)/(z(1-z))$	LC mom. frac.	Ang. ord.
	dipole $p_{\perp}^{2\prime}$	LC mom. frac.	$2 \rightarrow 3 \text{ kernel}$
Pythia 6	t	Energy fraction	Enforced
Pythia 8	p_{\perp}^2	Energy fraction	Enforced
Sherpa 1.1	t	Energy fraction	Enforced
Sherpa ≥ 1.2	dipole- $p_{\perp}^{2\prime\prime}$	LC mom. frac.	$2 \rightarrow 3 \text{ kernel}$
Vincia	dipole- $p_{\perp}^{\overline{2}'''}$	LC mom. frac.	$2 \rightarrow 3 \text{ kernel}$
Dire	dipole- $p_{\perp}^{\overline{2}///}$	LC mom. frac.	$2 \rightarrow 3 \text{ kernel}$

Matrix Element (ME) generators

- Event generation simple at LO in 2 → 2 hard processes
 - general-purpose MC simulation programs
 (Pythia, Herwig...) already fully able to do the job
- More tricky when moving to $\mathcal{O}(\alpha_s^3)$:
 - $\circ \quad 2 \rightarrow 3 \text{ processes}$
 - $\circ \quad \text{ virtual corrections to } 2 \to 2 \text{ process}$
 - (Note: remember the cancellation of IR divergences!)

Matrix Element (ME) generators

- Two approaches in MC simulation programs:
 - NLO (or NNLO, ...) MC simulation full description of real and virtual emission in ME

- "Multi-leg" MC simulation
 - no loop diagrams
 - only real emission of additional partons
 - need to apply kinematic cuts: well-separated and high-energy partons to avoid IR div.

MEs vs. PSs

- ME Matrix Elements:
 - + systematic expansion in α_s ('exact')
 - + can include additional partons (at Born level)
 - + flexible phase space cuts (can generate what we want \Rightarrow efficient)
 - loop calculations very tough (R-V cancellation becomes difficult)
 - failing in collinear regions (at Born level) ⇒ unpredictive jet/event structure
 - no easy match to hadronization
- PS Parton showers:
 - approximate description, not precise prediction of well-separated jets
 - main topology not predetermined \Rightarrow inefficient for exclusive states
 - + process-generic / universal \Rightarrow simple multi-parton
 - + Sudakov form factors ⇒ sensible jet/event structure
 - + easy match to hadronization

Combining ME with PS

- Want to take advantage of both ME and PS approach
- To be useful in the real life, ME generators need to be interfaced with parton shower generators:
 - generated events need to be "showered", to produce soft and collinear radiation
- Complication:
 - possible double-counting of additional parton emission with $\mathcal{O}(\alpha_s^3)$ MEs:
 - 2 → 3 events can be obtained by "showering" 2 → 2 events or via 2 → 3 at ME level
 - additional parton can have same kinematics \Rightarrow double counting!

Z+parton

shower Z+parton

Combining ME with PS - "MLM" matching

- Example of technique to remove double-counting
- Consider (LO) ME generation of:
 - hp+0 partons
 - hp+1 parton
 - hp+2 partons
 - 0 ...
 - hp+N partons
- Allow each category of events to develop parton shower
- Kill all events where number of "jets" ≠ number of nominal partons
 - need to define "jets" with a certain jet algorithm
 - o in last category will not kill events with too many jets, only those with too few jets

Combining ME with PS - "MLM" matching

NLO matching

- Similar idea to MLM matching (or in general "vetoed" parton showers) but want to keep full NLO description (with real emission and virtual corrections) for ME part
- Two main methods:
 - MC@NLO
 - Powheg

NLO matching - MC@NLO method

- Simplified receipt:
 - calculate NLO correction to n-body process
 - split into n-body and (n+1)-body phase-spaces
 - calculate analytically (no Sudakov) how first emission from n-body would populate (n+1)body phase-space
 → "shower expression" for n+1
 - subtract this shower expression for n+1 from the full NLO in (n+1)-body phase-space
 - apply shower to both kind of events (double-counting avoided by subtraction *before* showering)
 - NB: total cross-section enforced to be the NLO one
 - o side effect: when [n-body + shower] in (n+1) phase space > NLO
 ⇒ events with negative weights!

NLO matching - Powheg method

- Basic idea:
 - \circ generate *first emission* (largest p₁, p₁⁰) with NLO ME
 - subsequent emissions (i.e. from p_{\perp}^{0} to 0) with PS
 - no negative weight events

Intermezzo - Resummation and "log terms"

• Neglecting Sudakovs, rate of one (gluon) emission is:

$$\mathcal{P}_{q \to qg} \approx \int \frac{\mathrm{d}Q^2}{Q^2} \int \mathrm{d}z \, \frac{\alpha_s}{2\pi 3} \frac{4}{3} \frac{1+z^2}{1-z} \\ \approx \alpha_s \, \ln\left(\frac{Q_{\max}^2}{Q_{\min}^2}\right) \frac{8}{3} \ln\left(\frac{1-z_{\min}}{1-z_{\max}}\right) \sim \alpha_s \, \ln^2$$

• rate of n gluon emissions:

$$\mathcal{P}_{\mathsf{q} \to \mathsf{q}n\mathsf{g}} \sim (\mathcal{P}_{\mathsf{q} \to \mathsf{q}\mathfrak{g}})^n \sim \alpha_{\mathsf{s}}^n \, \mathsf{In}^{2n}$$

"Resummation" means including all these log terms in a calculation (with n → ∞)
 "next-to-leading log" (NLL) means including also sub-leading log terms: αⁿ_s In²ⁿ⁻¹

References

- Gavin Salam:
 - <u>https://gsalam.web.cern.ch/gsalam/repository/talks/2009-Bautzen-lecture4.pdf</u>
- Leif Gellersen:
 - https://indico.cern.ch/event/829653/contributions/3568527/attachments/1946887/3230236/ps.pdf