Dynamics of EW & Strong Interactions

Part 4 - Dr. Michele Pinamonti (INFN Trieste) Lecture 5 - Trieste, 10/01/2023

MC simulation (continued)

Hadronization models

- Reminder:
 - Evolution of parton shower to lower and lower energies brings to non-perturbative regime
 - transition between perturbative regime (quark and gluon showers) and non-perturbative regime (hadrons) regulated by "hadronization" process

String Model

• Remind feature of QCD potential:

QCD

(for "large" r)

 $\kappa pprox 1~{
m GeV}/{
m fm}$

String Model

• Large $r \Rightarrow$ field lines compressed to tubelike region(s) \Rightarrow string(s)

String Model

- What happens when distance becomes larger and larger?
 - string breaks into $q\overline{q}$ pair (more convenient energetically)

- Repeating for large system → Lund string model (neglects Coulomb part)
- Motion of quarks and antiquarks in a qq system:

 simple but powerful picture of hadron production (with extensions to massive quarks, baryons...)

• String breaks by tunneling:

$$\overline{\mathbf{q}} \qquad \mathbf{q}' \longleftrightarrow \overline{\mathbf{q}}' \qquad \mathbf{q} \qquad \overline{\mathbf{q}} \qquad \mathbf{q}' \longleftrightarrow \overline{\mathbf{q}}' \qquad \mathbf{q}$$

$$d = m_{\perp \mathbf{q}}/\kappa$$

$$m_{\perp \mathbf{q}'} = 0 \qquad \qquad m_{\perp \mathbf{q}'} > 0$$

 $(m_{\perp} = m + p_{\perp})$

$$\mathcal{P} \propto \exp\left(-\frac{\pi m_{\perp q}^2}{\kappa}\right) = \exp\left(-\frac{\pi p_{\perp q}^2}{\kappa}\right) \exp\left(-\frac{\pi m_q^2}{\kappa}\right)$$

- What about baryons?
 - \circ can replace \overline{q} by qq' pair!

• What about gluons?

Cluster Model

- Based on production of clusters, i.e. colour-neutral pseudo-particles that decay to ordinary hadrons
 - made possible by pre-confinement
 (i.e. colour flow local in coherent shower evolution)
- Basic steps:
 - $\circ \quad \text{force } g \to q \overline{q} \text{ splitting}$
 - form colour singlet clusters
 - decay clusters isotropically to 2 hadrons

Cluster Model

- Problems & corrections:
 - very large-mass clusters tend to be produced (e.g. no emission in shower...)
 - split big clusters into 2 along "string" direction, iterate if required
 ⇒ ~ 15% of primary clusters split, giving raise to ~ 50% of total hadrons
 - baryons: clusters from $q\overline{q}$ always B=0?
 - **s**plitting $g \rightarrow qq + \overline{qq}$ introduced
 - too soft charm/bottom spectra
 - anisotropic leading-cluster decay

0 ...

String vs. Cluster

	program	PYTHIA	HERWIG
	model	string	cluster
	energy-momentum picture	powerful	simple
	narameters	few	many
8	flavour composition	messy	simple
		unpredictive	in-between
	parameters	many	few

"There ain't no such thing as a parameter-free good description"

• Usually parton showers work in $N_c \rightarrow \infty$ approximation:

• Moving away from $N_c \rightarrow \infty$ approximation, colour flow can connect partons from different vertices

- Colour reconnection = ad-hoc mechanism to describe:
 - sub-leading color effects in the perturbative part of the calculation
 - interactions between color fields during the hadronization transition

• Another way to see colour reconnection - at the string level:

- Implementation in MC:
 - certain probability assigned for recombination
 - following different possible models
- Effect on final-state particles:

Uncertainties in MC simulation

- Typical systematic uncertainties affecting a NLO+PS MC prediction:
 - ME:
 - scale variations (see later)
 - PDF uncertainties
 - ME+PS:
 - matching scheme / matching scale
 - **PS**:
 - choice of algorithm ordering, recoil...
 - scale variations / effective α_s
 - Hadronization:
 - choice of hadronization model
 - uncertainties on hadronization parameters (e.g. in fragmentation functions)
 - All:
 - colour reconnection model
 - theory parameters: masses and couplings (such as α_s)

- Consider $e^+e^- \rightarrow hadrons$
 - start with first order that contains QCD (NLO)
 - \circ coupling $\alpha_{_S}$ needs to be evaluated for a certain renormalization scale, $\mu_{_R}$

 $\sigma^{\text{NLO}} = \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{s}(\mu_R) \right)$

- the result (at fixed order, NLO) depends on choice of μ_R ⇒ "scale" uncertainty
- Typically:
 - μ_R chosen as = Q (m_z in this case)
 - \circ "renorm. scale uncertainty" accessed by varying μ_R between Q/2 and 2Q

 σ

- Scale variations interpreted as "missing higher orders" uncertainty why?
- Let's express results for arbitrary μ_R in terms of $\alpha_s(Q)$:

$$\begin{aligned} {}^{\mathrm{NLO}}(\mu_R) &= \sigma_{q\bar{q}} \left(1 + c_1 \,\alpha_{\mathsf{s}}(\mu_R) \right) \\ &= \alpha_s(Q) - 2\beta_0 \alpha_s^2(Q) \log \frac{\mu_R}{Q} \\ &= \alpha_s(Q) - 2\beta_0 \alpha_s^2(Q) \log \frac{\mu_R}{Q} + \mathcal{O}(\alpha_s^3) \end{aligned} \\ &= \sigma_{q\bar{q}} \left(1 + c_1 \,\alpha_{\mathsf{s}}(Q) - 2c_1 b_0 \ln \frac{\mu_R}{Q} \,\alpha_{\mathsf{s}}^2(Q) + \mathcal{O}\left(\alpha_{\mathsf{s}}^3\right) \right) \end{aligned}$$

o if μ_R ≠ Q ⇒ α_s² terms introduced
 o i.e. some set of NNLO terms (!!)

• If we then calculate full NNLO correction $\Rightarrow \text{ will cancel the } \mathscr{O}(\alpha_s^{\ 2}) \text{ scale variation:}$ $\sigma^{\text{NNLO}}(\mu_R) = \sigma_{q\bar{q}} \left[1 + c_1 \alpha_s(\mu_R) + \left(c_2 + 2c_1 b_0 \ln \frac{\mu_R}{Q} \right) \alpha_s^2(\mu_R) \right]$

• and remaining scale uncertainty will be $\mathcal{O}(\alpha_s^3)$

NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear 22

HEP data analysis

LHC data analysis

• What does it mean "analyse ATLAS/CMS data"?

The Large Hadron Collider

Selection of 1 event in 10,000,000,000,000

What is interesting out of what LHC produces?

- Hadron colliders produce mostly quarks and gluons
 - and mostly "soft" (small transverse momentum)
- Typically considered as "interesting":
 - heavy gauge boson production (W, Z)
 - Higgs boson production
 - \circ heavy quarks (especially top: t \rightarrow Wb)
 - jets with (very) large transverse momentum
 - invisible particles (e.g. dark matter candidates)

Seeing the interesting particles

• The Higgs/W/Z bosons can only be seen via decay products

Seeing the interesting particles

- The Higgs/W/Z bosons can only be seen via decay products
 - "Stable" and "unstable" particles:

References

- Gavin Salam:
 - <u>https://gsalam.web.cern.ch/gsalam/repository/talks/2009-Bautzen-lecture4.pdf</u>
 - <u>https://gsalam.web.cern.ch/gsalam/repository/talks/2009-Bautzen-lecture3.pdf</u>
- Leif Gellersen:
 - https://indico.cern.ch/event/829653/contributions/3568527/attachments/1946887/3230236/ps.pdf
- Torbjorn Sjostrand:
 - <u>https://conference.ippp.dur.ac.uk/event/277/contributions/792/attachments/764/847/20090818_04</u>
 <u>Sjoestrand_MC.pdf</u>
 - <u>https://conference.ippp.dur.ac.uk/event/277/contributions/793/attachments/768/852/20090819_07</u>
 <u>Sjoestrand_MC.pdf</u>
- Spyros Argyropoulos:
 - https://agenda.infn.it/event/9202/contributions/77787/attachments/56453/66655/CRFrascati.pdf