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Introduction



Control theory

According to the Merriam-Webster’s Dictionary, “to control” means “to exercise directing influence over”
(synonyms: “to regulate”, “to keep”, “to restrain”).

Control theory [is a] field of applied mathematics that is relevant to the control of certain physical pro-
cesses and systems. Although control theory has deep connections with classical areas of mathematics,
such as the calculus of variations and the theory of differential equations, it did not become a field in
its own right until the late 1950s and early 1960s. At that time, problems arising in engineering and
economics were recognized as variants of problems in differential equations and in the calculus of vari-
ations, though they were not covered by existing theories. At first, special modifications of classical
techniques and theories were devised to solve individual problems. It was then recognized that these
seemingly diverse problems all had the same mathematical structure, and control theory emerged.

(Rudolf E. Kalman for the Encyclopædia Britannica)

The “physical processes and systems” mentioned by Kalman are dynamical systems, thus “control theory” is a
shorthand for “theory of the control of dynamical systems”.
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Control theory (cont.)

There is nothing more practical than a good theory. (Ludwig Boltzmann)

The control theory is of paramount practical importance. It led to the design and construction of control
systems in

• aerospace,

• robotics,

• manufacturing,

• power industry,

• automotive,

• electronics and communications,

• …
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Control theory (cont.)
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A map
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A map (cont.)
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Systems

With the expression “dynamical system”, or “dynamic system”, we refer to any entity that evolves over time,
interacting with the environment according to the cause-effect principle.

Inputs (“causes”)

u(t)

Outputs (“effects”)

y(t)
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Examples

Typically, but not exclusively, dynamic systems are described by ordinary differential or difference equations
(ODE) where time is the independent variable.

i(t)

R

C v(t)

Circuit.

i(t) = C
dv(t)

dt

Reservoir.

q(t) = A0
dh(t)

dt

Body moving on a straight line.

f(t) = M
dv(t)

dt

€
Bank deposits.

y(k+1) = (1+i)y(k)+b(k)

Note. For convenience, in the following we will often employ ḟ(t) and f̈(t) as a shorthand for df(t)

dt
and

d2f(t)

dt2
, respectively.
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Abstraction

• In control theory, we manipulate models (mathematical descriptions of real phenomena).
• Modelling is an entire subject1 in itself (Ljung and Glad (1994)).
• Abstraction is essential to control theory, because models are abstractions.
• Advantage of operating at an abstract level: different phenomena may be described by the same model,

e.g.:

i(t) = C
dv(t)

dt
, q(t) = A0

dh(t)

dt
, f(t) = M

dv(t)

dt
.

1and, to some extent, an art.
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Initial conditions and state

Generally, to determine uniquely the output y(t) in a certain time interval [t0, t1], the knowledge of the sole
input u(t) in the same interval, in not sufficient. Some initial conditions must be known.

u(t)

R

C y(t)

The initial condition y(t0) is required to determine
y(t), t ∈ [t0, t1].

u(t)
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y(t)
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k
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β
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m
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

The initial conditions y(t0) and ẏ(t0) are required to
determine y(t), t ∈ [t0, t1]
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Initial conditions and state (cont.)

Often the initial conditions are the value of y(t) and, possibly, its derivatives ẏ(t), ÿ(t) . . . at a certain initial
time t0 . Other times, the initial conditions involve other variables that the output and its derivatives.

+

−

u(t)

R
i(t)

L y(t)

The circuit is described by:

u(t) = Ri(t) + L
di(t)

dt

The output is:

y(t) = u(t)−Ri(t)

The initial condition is the value i(t0) of the current i(t)
at time t0 .

Generally, the initial conditions depend on the past history of the system, that determines its current “state”.
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State variables

State variables
Variables to be known at time t = t0 in order to be able to determine the output y(t), t ≥ t0 from the
knowledge of the input u(t), t ≥ t0 :

xi(t), i = 1, 2, . . . , n (state variables)

The concept of state leads to the state-space representation of dynamical systems (as opposite to the
input-output representation).
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Dynamic systems: formal definition

Dynamic systems are a rather general concept, that extends far beyond the systems described by ODE.

Indeed, a dynamic system is an abstract entity defined in axiomatic way:

S = {T, U,Ω, X, Y,Γ, ϕ, η}

• T : a set of times, which is totally ordered (i.e. if t1 6= t2 then either t1 < t2 or t1 > t2). Possible choices
are T = R and T = Z.

• U : set of input values. It may be finite or not; frequently U = R
m .

• Ω : set of admissible input functions, Ω = {u(·) : T −→ U |condition}.
• X : set of states. It may be finite or not; frequently X = R

n .
• Y : set of output values; frequently Y = R

p .
• Γ : set of admissible output functions, Γ = {y(·) : T −→ Y |condition}.
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Dynamic systems: formal definition (cont.)

Let define the state transition function:

ϕ : T × T ×X × Ω 7→ X =⇒ x(t) = ϕ(t, t0, x0, u(·))

where t0 is the initial time and x0 = x(t0) is the initial state. The state transition function must satisfy the
following axioms:

1. Consistency: ϕ(t0, t0, x0, u(·)) = x0 , ∀ (t0, x0, u(·)) ∈ T ×X × Ω

2. Forward definition: ϕ is defined ∀ t ≥ t0, t ∈ T

3. Composition:

ϕ(t2, t0, x0, u(·)) = ϕ(t2, t1, ϕ(t1, t0, x0, u(·)), u(·))

∀ (t0, u(·)) ∈ T × Ω , ∀ t0, t1, t2 ∈ T : t0 ≤ t1 ≤ t2

4. Causality: given two (possibly different) input functions u′(·) and u′′(·)

u′

[t0,t)
(·) = u′′

[t0,t)
(·) =⇒ ϕ(t, t0, x0, u

′(·)) = ϕ(t, t0, x0, u
′′(·)),

∀(t, t0, x0) ∈ T × T ×X, t ≥ t0

Felice Andrea Pellegrino 322MI –Spring 2023 L1 –p13



Dynamic systems: formal definition (cont.)

Referring to the output, we can define a function

y(t) = η(t, x(t), u(t))

where
η : T ×X × U 7→ Y

In the particular case of no explicit dependence of the output on u(t), i.e.

y(t) = η(t, x(t))

the system is said strictly proper:
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Dynamic systems: formal definition (cont.)

(x, t) ∈ X × T is defined as event

Given:
• (x0, t0) initial event
• u(·) input function

the system evolves in time along a trajectory (set of crossed states). The whole function of time describing the
evolution is called the movement.

ϕ(·, t0, x0, u(·)) state movement

ϕ(t, t0, x0, u(·)), t ≥ t0 state trajectory

η(·, ϕ(·, t0, x0, u(·))) output movement

η(t, ϕ(·, t0, x0, u(·))) output trajectory
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Dynamic systems: formal definition (cont.)

x̄ ∈ X is an equilibrium state if ∀ t0 ∈ T, ∃u(·) ∈ Ω such that

ϕ(t, t0, x̄, u(·)) = x̄ , ∀ t ≥ t0, t ∈ T

ȳ ∈ Y is an equilibrium output if ∀ t0 ∈ T, ∃x̄ ∈ X, ∃u(·) ∈ Ω such that

η(t, ϕ(t, t0, x̄, u(·))) = ȳ , ∀ t ≥ t0, t ∈ T

Notice that, in general:

• the specific input function u(·) ∈ Ω depends on the choice of the initial time-instant t0 ∈ T

• the state of a dynamic system being is at equilibrium does not imply that the output is at equilibrium as
well, unless η(t, x(t)) does not depend explicitly on time (in which case, the output function takes on the
form η(x(t)) )
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Dynamic systems: formal definition (cont.)

• A dynamic system is time-invariant if T is an additive algebraic group and ∀u(·) ∈ Ω , ∀ τ ∈ T , letting
uτ (t)

.
= u(t− τ) ∈ Ω , it follows that

{
ϕ(t, t0, x0, u(·)) = ϕ(t+ τ, t0 + τ, x0, u

τ (·)) , ∀ t, τ ∈ T

y(t) = η(t, x(t))

• A dynamic system is discrete-time if T is isomorphic to Z

• A dynamic system is continuous-time if T is isomorphic to R

• A dynamic system is finite-dimensional (lumped-parameter) if U,X, Y are finite-dimensional vector
spaces

• A dynamic system is infinite-dimensional (distributed-parameter) if U and/or X and/or Y are
infinite-dimensional vector spaces
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Example of infinite-dimensional system

The model of heat conduction in a rod leads to an infinite dimensional dynamic system.

The heat conduction is governed by
∂x(t, s)

∂t
= α

∂2x(t, s)

∂s2

where x(t, s) is temperature at time t of the section having abscissa s.

Here, the state at time t is the whole temperature profile x(t, s), s ∈ [0, l].
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Automata as dynamical systems

A class of dynamical systems of interest are the finite automata, in which the sets U , Y , X are finite:

U = {u1, u2, ..., um}

Y = {y1, y2, ..., yp}

X = {x1, x2, ..., xn}

An automaton is defined by a function:

x(k + 1) = F (k, x(k), u(k)), (1)

that, in case of time-invariant automata, becomes:

x(k + 1) = F (x(k), u(k)). (2)
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Representation

Two possible ways to represent an automaton are:

• a transition table: an m× n table in which the rows denote the inputs and the columns the states. Each
entry Fij represents the future state of the system when the input i is applied while the system is in state j.

• a flow graph: in which each possible state is represented by a circle. Each transition from a state to
another is described by an arc whose label denotes the input that determines that transition.

x1 x2 · · · xn

u1 F11 F12 · · · F1n

u2 F21 F22 · · · F2n

...
...

...
. . .

...
um Fm1 Fm2 · · · Fmn

Transition table

x1 x2 x3

u0

u1

u1

u0

u0 , u1

Flow graph

l

x1 x2 x3

u0 x1 x3 x2

u1 x2 x2 x2

Transition table
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Mealy and Moore Automata

Two classes of automata are the following:

• Moore automaton: whose output is function only of the state. In this case the circle that represents the
state is divided in two parts; the upper part denotes the state index and the lower part the output
associated to it.

y = g(x) (strictly proper system) (3)

• Mealy automaton: whose output is function of both the state and the input. In this case, an arc is assigned
two values; the first represents the input, and the second the output.

y = g(x, u) (4)
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Mealy and Moore Automata (cont.)

x1

y1

x2

y2

x3

y2

x4

y3

u1

u2

u1

u2

u1

u2

u1, u2

Moore automaton

x1 x2 x3 x4

u1 x2 x2 x3 x4

u2 x3 x4 x4 x4

x1

x2

x3

x4

u1 (y1)

u2 (y1)

u1 (y2)

u2 (y3)

u2 (y1)

u1 (y3)

u1 (y3), u2 (y2)

Mealy automaton

x1 x2 x3 x4

x∗ y x∗ y∗ x∗ y x∗ y

u1 x2 y1 x2 y2 x4 y3 x4 y3

u2 x3 y1 x4 y3 x3 y1 x4 y2
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Example: recognition of a string

Goal: Design a finite state machine that recognises the string “358” within a longer string. The sets U , Y , X are:

U = {0, 1, 2, ...., 9}

Y = {0, 1}

X = {x1, x2, x3, x4}

where the output is 0 if the string is not recognised and 1 otherwise. The flow graph is:

x1

0

x2

0

x3

0

x4

1

3

U \ {3} 3

5

U \ {5, 3}

U \ {3, 8}

8

3

3

U \ {3}

Example: recognition of the string “358”
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Regular dynamic systems

In the following we will mainly consider the class of regular dynamic systems i.e. systems that can be
represented by differential of difference equations.

Regular finite-dimensional continuous-time dynamical systems can be represented as




ẋ(t) = f(x(t), u(t), t)

x(t0) = x0

y(t) = g(x(t), u(t), t)

In the following we will assume that for any t0 , x(t0), u(·), the solution x(t) = ϕ(t, t0, x0, u(·)) t ≥ t0 exists and
is unique. This is true if the function f has some regularity property (for instance, it is a Lipschitz function) and
u is sufficiently regular (e.g., piecewise-continuous).
For discrete-time systems, we have





x(k + 1) = f(x(k), u(k), k)

x(k0) = x0

y(k) = g(x(k), u(k), k)

In the latter case, the solution x(k) = ϕ(k, k0, x0, u(·)) k ≥ k0 does always exist and is unique.
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Sampled-data systems

Sampled-data systems are discrete-time dynamic systems obtained by sampling a continuous-time regular
system. The figure above represents a continuous-time system connected to a digital-analog converter (D-A)
and an analog-digital converter (A-D).

• U,X, Y finite-dimensional normed vector spaces

• Ω = {u(·) : piecewise constantui(·) , i = 1, . . . ,m}

• Let the sampling time be ∆T . Then, denoting (with slight abuse of notation) by u(k) and y(k), respectively,
the input and the output of the sampled-data system, we have:

u(k) = u(t) , t0 + k∆T ≤ t < t0 + (k + 1)∆T, k = 0, 1, . . .

y(k) = y(t0 + k∆T ), k = 0, 1, . . .
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Sampled-data systems (cont.)

Then we can write the following state-space representation of a discrete-time system:
{

x(k + 1) = fd(x(k), u(k), k)

y(k) = gd(x(k), u(k), k)

where, letting ū(t) = u(k), ∀t ≥ t0k +∆T , and recalling the composition property of the state transition
function ϕ :

fd(x(k), u(k), k) = ϕ(t0 + (k + 1)∆T, t0 + k∆T, x(k), ū(·))

gd(x(k), u(k), k) = η(x(k), u(k), t0 + k∆T )
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Continuous-time state equations

S
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

u1(t), . . . , um(t) 2 R
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y1(t), . . . , yp(t) 2 R
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x1(t), . . . , xn(t) 2 R
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

State equations
(differential)

Output equations
(algebraic)





ẋ1(t) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)

...
ẋn(t) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)





y1(t) = g1(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)

...
yp(t) = gp(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)
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Continuous-time state equations (cont.)

u(t) =




u1(t)

...
um(t)


 ∈ R

m , y(t) =




y1(t)

...
yp(t)


 ∈ R

p

x(t) =




x1(t)

...
xn(t)


 ∈ R

n S
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x(t) 2 R
n
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y(t) 2 R
p
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u(t) 2 R
m
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f(x, u, t) =




f1(x, u, t)

...
fn(x, u, t)


 ∈ R

n

g(x, u, t) =




g1(x, u, t)

...
gp(x, u, t)


 ∈ R

p

Compact form

{
ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)
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Discrete-time state equations

S
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u1(k), . . . , um(k) 2 R
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x1(k), . . . , xn(k) 2 R
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y1(k), . . . , yp(k) 2 R
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State equations
(difference)

Output equations
(algebraic)





x1(k + 1) = f1(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)

...
xn(k + 1) = fn(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)





y1(k) = g1(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)

...
yp(k) = gp(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)
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Discrete-time state equations (cont.)

u(k) =




u1(k)

...
um(k)


 ∈ R

m , y(k) =




y1(k)

...
yp(k)


 ∈ R

p

x(k) =




x1(k)

...
xn(k)


 ∈ R

n S
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x(k) 2 R
n
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y(k) 2 R
p
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u(k) 2 R
m
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f(x, u, k) =




f1(x, u, k)

...
fn(x, u, k)


 ∈ R

n

g(x, u, k) =




g1(x, u, k)

...
gp(x, u, k)


 ∈ R

p

Compact form

{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)
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More definitions and properties

• When u(t) ∈ R, the system is called single-input (SI), otherwise it is called multiple-input (MI);
• When y(t) ∈ R, the system is called single-output (SO), otherwise it is called multiple-output (MO);
• The acronyms can be combined: for instance, SISO denotes a single-input, single-output system;
• When the state and output equations do not depend explicitly on time, the system is called time-invariant:

{
ẋ(t) = f(x(t), u(t), t )

y(t) = g(x(t), u(t), t )
=⇒

{
ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t)){
x(k + 1) = f(x(k), u(k), k )

y(k) = g(x(k), u(k), k )
=⇒

{
x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))

• When the output equation does not depend explicitly on the input, the system is called strictly proper:




ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t) , t)
=⇒

{
ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), t)



x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k) , k)
=⇒

{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), k)
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More definitions and properties (cont.)

• When there is no input, the system is called unforced:




ẋ(t) = f(x(t), u(t) , t)

y(t) = g(x(t), u(t) , t)
=⇒

{
ẋ(t) = f(x(t), t)

y(t) = g(x(t), t)





x(k + 1) = f(x(k), u(k) , k)

y(k) = g(x(k), u(k) , k)
=⇒

{
x(k + 1) = f(x(k), k)

y(k) = g(x(k), k)

It is worth noting that in case the input function u(t), ∀ t or input sequence u(k), ∀ k are known
beforehand, the dynamic system can be re-written as an unforced one:

{
ẋ(t) = f(x(t), u(t), t) = f̃(x(t), t)

y(t) = g(x(t), u(t), t) = g̃(x(t), t)

{
x(k + 1) = f(x(k), u(k), k) = f̃(x(k), k)

y(k) = g(x(k), u(k), k) = g̃(x(k), k)
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More definitions and properties (cont.)

• Natural response (the response to zero input):

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

with:
x(t0) = x0 ; u(t) = 0 , ∀ t

=⇒
xN (t), t ≥ t0

natural response

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

with:
x(k0) = x0 ; u(k) = 0 , ∀ k

=⇒
xN (k), k ≥ k0

natural response
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More definitions and properties (cont.)

• Forced response (the response from zero initial state):

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

with:
x(t0) = 0

=⇒
xF (t), t ≥ t0

forced response

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

with:
x(k0) = 0

=⇒
xF (k), k ∈≥ k0

forced response
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Time-invariant continuous-time systems

Consider the system ẋ(t) = f(x(t), u(t)), and apply the input ua(·):

x(t0) = x0

ua(t) = u(t), t ∈ [t0, t1)
=⇒ xa(t), t ∈ [t0, t1)

Now shift the initial time by τ , and the input as well:

x(t0 + τ) = x0

ub(t) = ua(t− τ), t ∈ [t0 + τ, t1 + τ)
=⇒

xb(t) = xa(t− τ),

t ∈ [t0 + τ, t1 + τ)

Since the state movement is shifted as well, without loss of generality, we set t0 = 0 .
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Time-invariant discrete-time systems

Consider the system x(k + 1) = f(x(k), u(k)), and apply the input ua(·):

x(k0) = x0

ua(k) = u(k), k ∈ {k0, . . . , k1}
=⇒ xa(k), k ∈ {k0, . . . , k1}

Now shift the initial time by k̄ and the input sequence as well:

x(k0 + k̄) = x0

ub(k) = ua(k − k̄), k ∈ {k0 + k̄, . . . , k1 + k̄}
=⇒

xb(k) = xa(k − k̄),

k ∈ {k0 + k̄, . . . , k1 + k̄}

Since the state movement is shifted as well, without loss of generality, we set k0 = 0 .
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Equilibrium states and outputs, continuous-time

• A state x̄ ∈ R
n is an equilibrium state if ∀ t0 , ∃ ū(·) such that

x(t0) = x̄

u(t) = ū(t), ∀ t ≥ t0
=⇒ x(t) = x̄, ∀ t > t0

• An output ȳ ∈ R
p is an equilibrium output if ∀ t0 , ∃x0, ū(·) such that

x(t0) = x0

u(t) = ū(t), ∀ t ≥ t0
=⇒ y(t) = ȳ, ∀ t > t0

In general:

• the input function depends on the initial time t0 ;
• the system being in an equilibrium state does not imply that the output is at equilibrium too.
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Equilibrium states and outputs, continuous-time (cont.)

In the time-invariant case, all equilibrium states are obtained by imposing constant input.

A state x̄ ∈ R
n is an equilibrium state if ∃ ū such that

x(t0) = x̄

u(t) = ū, ∀ t ≥ t0
=⇒ x(t) = x̄, ∀ t > t0

All equilibrium states x̄ ∈ R
n can thus be obtained by solving the equations

f(x̄, ū) = 0 , ∀ ū ∈ R
m

The following sets can also be defined:

X̄ū = {x̄ ∈ R
n : 0 = f(x̄, ū)}

X̄ = {x̄ ∈ R
n : ∃ ū ∈ R

m such that 0 = f(x̄, ū)}

which are, respectively, the set of all the equilibrium states corresponding to the constant input ū, and the set
of the equilibrium states corresponding to at least one constant input.
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Equilibrium states and outputs, discrete-time

• A state x̄ ∈ R
n is an equilibrium state if ∀ k0 , ∃ {ū(k) ∈ R

m, k ≥ k0} such that

x(k0) = x̄

u(k) = ū(k), ∀ k ≥ k0
=⇒ x(k) = x̄, ∀ k > k0

• An output ȳ ∈ R
p is an equilibrium output if ∀ k0 , ∃ {ū(k) ∈ R

m, k ≥ k0} such that

x(k0) = x̄

u(k) = ū(k), ∀ k ≥ k0
=⇒ y(k) = ȳ, ∀ k > k0

In general:

• the input sequence {ū(k) ∈ R
m, k ≥ k0} depends on the initial time k0 ;

• the system being in an equilibrium state does not imply that the output is at equilibrium too.
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Equilibrium states and outputs, discrete-time (cont.)

In the time-invariant case, all equilibrium states are obtained by imposing constant input sequences.

A state x̄ ∈ R
n is an equilibrium state if ∃ ū ∈ R

m such that

x(k0) = x̄

u(k) = ū, ∀ k ≥ k0
=⇒ x(k) = x̄, ∀ k > k0

All equilibrium states x̄ ∈ R
n can thus be obtained by solving the equations

x̄ = f(x̄, ū) , ∀ ū ∈ R
m

The following sets can also be defined:

X̄ū = {x̄ ∈ R
n : x̄ = f(x̄, ū)}

X̄ = {x̄ ∈ R
n : ∃ ū ∈ R

m such that x̄ = f(x̄, ū)}

which are, respectively, the set of all the equilibrium states corresponding to the constant input ū, and the set
of the equilibrium states corresponding to at least one constant input.
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State-space descriptions

State-space descriptions are often derived from first principles.

In that case, choosing the state variables is part of the modeling process.

State variables should be chosen as quantities associated with storage of mass, energy, momentum…. . .

For example:

• Passive electrical systems: voltage on capacitors, current on inductors
• Translational mechanical systems: linear displacement and velocity of each moving body
• Rotational mechanical systems: angular displacement and velocity of each rotating body
• Hydraulic systems: pressure or level of fluids in tanks
• Thermal systems: temperature and enthalpy
• . . .
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State-space descriptions: Example 1 (continuous-time)

A mechanical system

k
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

β
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

m
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

q
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

f
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

mq̈(t)+βq̇(t)+kq(t) = f(t)

x1(t)
.
= q(t)

x2(t)
.
= q̇(t)

=⇒ x(t) =

[
x1(t)

x2(t)

]





ẋ1(t) = x2(t)

ẋ2(t) = q̈(t) = −
k

m
x1(t)−

β

m
x2(t) +

1

m
f(t)
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State-space descriptions: Example 2 (continuous-time)

Electrical systems

+

−

v(t)

R L
iL(t)

C vC(t) i(t) R L

iL(t)

C vC(t)

L
diL(t)

dt
= v −RiL(t)− vC(t)

C
dvC(t)

dt
= iL(t)

C
dvC

dt
= i(t)−

1

R
vC(t)− iL(t)

L
diL(t)

dt
= vC(t)

x1(t)
.
= iL(t) ; x2(t)

.
= vC(t)





ẋ1(t) = −
R

L
x1(t)−

1

L
x2(t) +

1

L
v(t)

ẋ2(t) =
1

C
x1(t)





ẋ1(t) =
1

L
x2(t)

ẋ2(t) = −
1

C
x1(t)−

1

RC
x2(t) +

1

C
i(t)v(t)
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State-space description from input-output description

If an input-output description is available (irrespective of how it has been derived), the state-space description
can be obtained directly from the ODE, as shown in the following examples.

The basic idea is to choose the state variables in such a way to obtain a first order differential or difference
equation.

Note that the state variables, in that case, do not necessarily have a physical meaning.
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State-space description from input-output description (cont.)

Continuous-time case:

dny

dtn
= ϕ

(
dn−1y

dtn−1
, . . . ,

dy

dt
, y, u, t

)

Letting: 



x1(t)
.
= y(t)

x2(t)
.
=

dy

dt
...

xn(t)
.
=

dn−1y

dtn−1

=⇒ x
.
=




x1

x2

...
xn




we get: 



ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

...
ẋn(t) = ϕ(x(t), u(t), t)

y(t) = x1(t)
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State-space description from input-output description (cont.)

Discrete-time case:

y(k + n) = ϕ (y(k + n− 1), y(k + n− 2), . . . , y(k), u(k), k)

Letting: 



x1(k)
.
= y(k)

x2(k)
.
= y(k + 1)

...
xn(k)

.
= y(k + n− 1)

=⇒ x
.
=




x1

x2

...
xn




we get: 



x1(k + 1) = x2(k)

x2(k + 1) = x3(k)

...
xn(k) = ϕ(x(k), u(k), k)

y(k) = x1(k)
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State-space description from input-output description (cont.)

Example (discrete-time):

w(k)− 3w(k − 1) + 2w(k − 2)− w(k − 3) = 6u(k)

Letting: 



x1(k)
.
= w(k − 3)

x2(k)
.
= w(k − 2)

x3(k)
.
= w(k − 1)

=⇒ x
.
=




x1

x2

x3




we get: 



x1(k + 1) = x2(k)

x2(k + 1) = x3(k)

x3(k + 1) = 3x3(k)− 2x2(k) + x1(k) + 6u(k)

y(k) = x3(k)
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Equivalent state-space representations

The state-space description is not unique. Equivalent descriptions can be obtained by change of basis in the
space X .

Consider the continuous-time dynamic system:
{

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

Let
x̂

.
= T−1x

where T ∈ R
n×n is a generic non-singular n× n matrix ( det(T ) 6= 0 ).

Then, an equivalent state-space description is given by:
{

˙̂x(t) = T−1ẋ(t) = T−1f(T x̂(t), u(t), t) = f̂(x̂(t), u(t), t)

y(t) = g(T x̂(t), u(t), t) = ĝ(x̂(t), u(t), t)

where f̂ and ĝ are suitably defined functions.
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Equivalent state-space representations

Similarly, consider the discrete-time dynamic system:
{

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

Let
x̂

.
= T−1x

where T ∈ R
n×n is a generic non-singular n× n matrix ( det(T ) 6= 0 ).

Then, an equivalent state-space description is given by:
{

x̂(k + 1) = T−1x(k + 1) = T−1f(T x̂(k), u(k), k) = f̂(x̂(k), u(k), k)

y(k) = g(T x̂(k), u(k), k) = ĝ(x̂(k), u(k), k)

where f̂ and ĝ are suitably defined functions.
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Linear systems



Linear continuous-time dynamic systems

Consider the continuous-time dynamic system state-space representation:
{

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

The system is said linear if the functions f and g are linear with respect to x(t) and u(t).

In that case, the state-space representation can be written as:





ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

where A(t), B(t), C(t), D(t), are matrices of suitable dimensions, possibly depending on t.

Felice Andrea Pellegrino 322MI –Spring 2023 L1 –p50



Linear continuous-time dynamic systems (cont.)

In particular:

A(t) =




a11(t) · · · a1n(t)

...
. . .

...
an1(t) · · · ann(t)


 B(t) =




b11(t) · · · b1m(t)

...
...

...
bn1(t) · · · bnm(t)




C(t) =




c11(t) · · · c1n(t)

...
. . .

...
cp1(t) · · · cpn(t)


 D(t) =




d11(t) · · · d1m(t)

...
...

...
dp1(t) · · · dpm(t)



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Linear time-invariant continuous-time dynamic systems

In the time-invariant case, the matrices A(t), B(t), C(t), D(t) do not depend on t, i.e., they are constant
matrices A,B,C,D :

A =




a11 · · · a1n

...
. . .

...
an1 · · · ann


 B =




b11 · · · b1m

...
...

...
bn1 · · · bnm




C =




c11 · · · c1n

...
. . .

...
cp1 · · · cpn


 D =




d11 · · · d1m

...
...

...
dp1 · · · dpm




thus, the state-space representation takes the form:




ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
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Equilibrium states

Given the time-invariant dynamic system:




ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

let u(t) = ū, t ≥ 0 be a constant input.
The equilibrium states (if any) corresponding to ū are the solutions of the linear equation:

0 = Ax+Bū

which is equivalent to
Ax = −Bū.

The following two cases have to be considered:

• det(A) 6= 0

• det(A) = 0
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Equilibrium states (cont.)

• det(A) 6= 0. In this case, we get:

x̄ = −A−1Bū =⇒ x̄ is unique ∀ ū ∈ R
m

Accordingly, the equilibrium output is given by:

ȳ = Cx̄+Dū =
[
−CA−1B +D

]
ū

The matrix
[
−CA−1B +D

]
is defined as the static gain.

• det(A) = 0 . In this case, depending on the rank of the block matrix [A −Bū ], either there are infinite
solutions:

rank [A −Bū ] = rank [A] =⇒ ∃∞ x̄, ∃∞ ȳ

or there is no solution:
rank [A −Bū ] 6= rank [A] =⇒ 6 ∃ x̄, 6 ∃ ȳ
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Equivalent state-space representations

Consider the continuous-time linear time-invariant (LTI) dynamic system:
{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Let x̂
.
= T−1x , where T ∈ R

n×n is a generic non-singular n× n matrix ( det(T ) 6= 0 ). Then, an equivalent
state-space description is given by:

{
˙̂x(t) = T−1ẋ(t) = T−1ATx̂(t) + T−1Bu(t) = Âx̂(t) + B̂u(t)

y(t) = CT x̂(t) +Du(t) = Ĉx̂(t) +Du(t)

Hence, for non-singular T , the following tuples are equivalent, meaning that they describe the same linear
dynamic system:

(A,B,C,D) ⇐⇒
(
T−1AT, T−1B,CT,D

)
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Linear discrete-time dynamic systems

Consider the discrete-time dynamic system state-space representation:
{

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

The system is said linear if the functions f and g are linear with respect to x(k) and u(k).

In that case, the state-space representation can be written as:





x(k + 1) = A(k)x(k) +B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k)

where A(k), B(k), C(k), D(k), are matrices of suitable dimensions, possibly depending on k.
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Linear discrete-time dynamic systems (cont.)

In particular:

A(k) =




a11(k) · · · a1n(k)

...
. . .

...
an1(k) · · · ann(k)


 B(k) =




b11(k) · · · b1m(k)

...
...

...
bn1(k) · · · bnm(k)




C(k) =




c11(k) · · · c1n(k)

...
. . .

...
cp1(k) · · · cpn(k)


 D(k) =




d11(k) · · · d1m(k)

...
...

...
dp1(k) · · · dpm(k)



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Linear time-invariant discrete-time dynamic systems

In the time-invariant case, the matrices A(k), B(k), C(k), D(k) do not depend on k, i.e., they are constant
matrices A,B,C,D :

A =




a11 · · · a1n

...
. . .

...
an1 · · · ann


 B =




b11 · · · b1m

...
...

...
bn1 · · · bnm




C =




c11 · · · c1n

...
. . .

...
cp1 · · · cpn


 D =




d11 · · · d1m

...
...

...
dp1 · · · dpm




thus, the state-space representation takes the form:




x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
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Equilibrium states

Given the linear time-invariant dynamic system:




x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

let u(k) = ū, k ≥ 0 be a constant input. The equilibrium states (if any) corresponding to ū are the solutions of
the following linear equation:

x = Ax+Bū

which is equivalent to
(I −A)x = Bū

The following two cases have to be considered:

• det (I −A) 6= 0

• det (I −A) = 0

Felice Andrea Pellegrino 322MI –Spring 2023 L1 –p59



Equilibrium states (cont.)

• det (I −A) 6= 0 . In this case, we get:

x̄ = (I −A)−1Bū =⇒ x̄ is unique ∀ ū ∈ R
m

Accordingly, the equilibrium output is given by:

ȳ = Cx̄+Dū =
[
C(I −A)−1B +D

]
ū

Matrix
[
C(I −A)−1B +D

]
is defined as static gain.

• det(I −A) = 0 . In this case, depending on the rank of the block matrix [ I −A Bū ], either there are
infinite solutions:

rank [ I −A Bū ] = rank [I −A] =⇒ ∃∞ x̄, ∃∞ ȳ

or there is no solution:

rank [ I −A Bū ] 6= rank [I −A] =⇒ 6 ∃ x̄, 6 ∃ ȳ
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Equivalent state-space representations

Consider the discrete-time linear time-invariant (LTI) dynamic system state-space representation:
{

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

Let x̂
.
= T−1x , where T ∈ R

n×n is a generic non-singular n× n matrix ( det(T ) 6= 0 ). Then, the equivalent
state-space description is given by:

{
x̂(k + 1) = T−1x(k + 1) = T−1ATx̂(k) + T−1Bu(k) = Âx̂(k) + B̂u(k)

y(k) = CT x̂(k) +Du(k) = Ĉx̂(k) +Du(k)

Hence, for non-singular T , the following tuples are equivalent, meaning that they describe the same linear
dynamic system:

(A,B,C,D) ⇐⇒
(
T−1AT, T−1B,CT,D

)
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Linearization

Important fact

• Linear systems are provided with powerful analytical tools that are not available for nonlinear systems
• Approximating nonlinear systems by linear ones in a neighborhood of a state movement may result very

useful in practice
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Local linearization around an equilibrium

Consider the nonlinear time-invariant system:
{

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

Let f(x̄, ū) = 0, meaning that x̄ is an equilibrium state associated to the constant input u(t) = ū.

Let us perturb the initial state and the input, thus getting a perturbed state movement:

x(0) = x̄+ δx̄

u(t) = ū+ δu(t)
=⇒ x(t) = x̄+ δx(t)

where δx(t) and δu(t) represent the difference between the nominal and the perturbed state and input,
respectively.

Hence:
˙δx(t) = ẋ(t) = f(x(t), u(t))) = f(x̄+ δx(t), ū+ δu(t))

≃ f(x̄, ū) +
∂f(x̄, ū)

∂x
δx(t) +

∂f(x̄, ū)

∂u
δu(t)
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Local linearization around an equilibrium (cont.)

Since f(x̄, ū) = 0, it follows that

˙δx(t) ≃
∂f(x̄, ū)

∂x
δx(t) +

∂f(x̄, ū)

∂u
δu(t)

= Aδx(t) +Bδu(t)

where A ∈ R
n×n, B ∈ R

n×m are constant matrices defined as:

A =
∂f(x̄, ū)

∂x
=




∂f1

∂x1
· · ·

∂f1

∂xn
...

...
∂fn

∂x1
· · ·

∂fn

∂xn




x=x̄,u=ū

B =
∂f(x̄, ū)

∂u
=




∂f1

∂u1
· · ·

∂f1

∂um
...

...
∂fn

∂u1
· · ·

∂fn

∂um




x=x̄,u=ū
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Local linearization around an equilibrium (cont.)

Concerning the perturbed output, we have:

ȳ = g(x̄, ū) and δy(t)
.
= y(t)− ȳ

Hence
y(t) = g(x(t), u(t)) = g(x̄+ δx(t), ū+ δu(t))

≃ g(x̄, ū) +
∂g(x̄, ū)

∂x
δx(t) +

∂g(x̄, ū)

∂u
δu(t)

and then
δy(t) ≃

∂g(x̄, ū)

∂x
δx(t) +

∂g(x̄, ū)

∂u
δu(t)

= Cδx(t) +Dδu(t)

where C ∈ R
p×n, D ∈ R

p×m are constant matrices defined as follows.
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Local linearization around an equilibrium (cont.)

C =
∂g(x̄, ū)

∂x
=




∂g1

∂x1
· · ·

∂g1

∂xn
...

...
∂gp

∂x1
· · ·

∂gp

∂xn




x=x̄,u=ū

D =
∂g(x̄, ū)

∂u
=




∂g1

∂u1
· · ·

∂g1

∂um
...

...
∂gp

∂u1
· · ·

∂gp

∂um




x=x̄,u=ū

In summary, the linear time-invariant system obtained by linearization in the neighborhood of the equilibrium
state x̄ corresponding to the constant input u(t) = ū, t ≥ 0 is

{
˙δx(t) = Aδx(t) +Bδu(t)

δy(t) = Cδx(t) +Dδu(t)
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Local linearization around an equilibrium (cont.)

Nonlinear system. Local approximation obtained from a local linearization.

Note that the linearized system describes the behavior of the nonlinear system in terms of perturbations. The
input, output and state of the local linearization system are the perturbations with respect to ū, ȳ, and x̄.
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Example

Consider the pendulum: by taking x1 = ϑ, x2 = ϑ̇, y = ϑ and J = ml2 , we get:




ẋ1(t) = x2(t)

ẋ2(t) = −
mgl

J
sin(x1(t))−

h

J
x2(t) +

1

J
u(t)

y(t) = x1(t)

To find the equilibrium states corresponding to u(t) = ū = 0 we solve




0 = x2

0 = −
mgl

J
sin(x1)

obtaining x̄ =

[
kπ

0

]
, k ∈ Z.
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Example (cont.)

By computing the partial derivatives we get

∂f(x̄, ū)

∂x
=




∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2




x̄,ū

=




0 1

−
mgl

J
cos(x1) −

h

J




x̄,ū

and by substituting the pair x̄, ū we obtain

A(e) =




0 1

−
mgl

J
−

h

J




for k even, and

A(o) =




0 1
mgl

J
−

h

J




for k odd.
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Example (cont.)

The other matrices do not depend on x̄:

B =
∂f(x̄, ū)

∂u
=




∂f1

∂u

∂f2

∂u




x̄,ū

=




0
1

J




C =
∂g(x̄, ū)

∂x
=

[
∂g

∂x1

∂g

∂x2

]

x̄,ū

=
[

1 0
]

x̄,ū
=
[

1 0
]

D =
∂g(x̄, ū)

∂u
=

∂g

∂u

∣∣∣∣
x̄,ū

= 0
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Local linearization around a state movement

Often it is convenient to consider perturbations around arbitrary state movements. Given the nonlinear system:
{

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

let x̄(t), t ≥ 0 be an arbitrary state movement, obtained from the initial state x(0) = x̄0 by applying the input
u(t) = ū(t), t ≥ 0.

Let us perturb the initial state and the input, thus obtaining a perturbed state movement:

x(0) = x̄0 + δx0

u(t) = ū(t) + δu(t)
=⇒ x(t) = x̄(t) + δx(t)

where δx(t) and δu(t) represent the difference between the nominal and the perturbed state and input,
respectively.

Hence:
˙δx(t) = ẋ(t)− ˙̄x(t) = f(x(t), u(t))− f(x̄(t), ū(t)).
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Local linearization around a state movement (cont.)

On the other hand, by using Taylor’s approximation:

f(x(t), u(t)) ≈ f(x̄(t), ū(t)) +
∂f(x̄(t), ū(t))

∂x
δx(t) +

∂f(x̄(t), ū(t))

∂u
δu(t)

By substituting, we obtain

˙δx(t) ≈
∂f(x̄(t), ū(t))

∂x
δx(t) +

∂f(x̄(t), ū(t))

∂u
δu(t).

The main difference with respect to the linearization around an equilibrium, is that the partial derivatives are
now computed along x̄(t) and ū(t). As a consequence, the linearization leads, in general, to a time variant
system:

˙δx(t) ≈
∂f(x̄(t), ū(t))

∂x
δx(t) +

∂f(x̄(t), ū(t))

∂u
δu(t)

= A(t)δx(t) +B(t)δu(t)

Felice Andrea Pellegrino 322MI –Spring 2023 L1 –p71



Local linearization around a state movement (cont.)

where A(t) ∈ R
n×n, B(t) ∈ R

n×m are matrices defined as:

A(t) =
∂f(x̄(t), ū(t))

∂x
=




∂f1

∂x1
· · ·

∂f1

∂xn
...

...
∂fn

∂x1
· · ·

∂fn

∂xn




x=x̄(t),u=ū(t)

B(t) =
∂f(x̄(t), ū(t))

∂u
=




∂f1

∂u1
· · ·

∂f1

∂um
...

...
∂fn

∂u1
· · ·

∂fn

∂um




x=x̄(t),u=ū(t)
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Local linearization around a state movement (cont.)

Concerning the perturbed output, we have:

ȳ(t) = g(x̄(t), ū(t)) and δy(t)
.
= y(t)− ȳ(t)

Hence
y(t) = g(x(t), u(t)) = g(x̄(t) + δx(t), ū(t) + δu(t))

≃ g(x̄(t), ū(t)) +
∂g(x̄(t), ū(t))

∂x
δx(t) +

∂g(x̄(t), ū(t))

∂u
δu(t)

and then
δy(t) ≃

∂g(x̄(t), ū(t))

∂x
δx(t) +

∂g(x̄(t), ū(t))

∂u
δu(t)

= C(t)δx(t) +D(t)δu(t)

where C(t) ∈ R
p×n, D(t) ∈ R

p×m are matrices defined as follows.
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Local linearization around a state movement (cont.)

C(t) =
∂g(x̄(t), ū(t))

∂x
=




∂g1

∂x1
· · ·

∂g1

∂xn
...

...
∂gp

∂x1
· · ·

∂gp

∂xn




x=x̄(t),u=ū(t)

D(t) =
∂g(x̄(t), ū(t))

∂u
=




∂g1

∂u1
· · ·

∂g1

∂um
...

...
∂gp

∂u1
· · ·

∂gp

∂um




x=x̄(t),u=ū(t)

In summary, the linear system obtained by linearization around a state movement x̄(t) corresponding to the
input u(t) = ū(t), t ≥ 0 is {

˙δx(t) = A(t)δx(t) +B(t)δu(t)

δy(t) = C(t)δx(t) +D(t)δu(t)
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Local linearization around an equilibrium (discrete-time case)

Consider the nonlinear time-invariant system:
{

x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))

Let x̄ = f(x̄, ū), meaning that x̄ is an equilibrium state associated to the constant input u(k) = ū, k ≥ 0.

Let us perturb the initial state and the input, thus getting a perturbed state movement:

x(0) = x̄+ δx̄ ; u(k) = ū+ δu(k) =⇒ x(k) = x̄+ δx(k)

Hence:
x(k + 1) = x̄+ δx(k + 1) = f(x̄+ δx(k), ū+ δu(k))

≃ f(x̄, ū) +
∂f(x̄, ū)

∂x
δx(k) +

∂f(x̄, ū)

∂u
δu(k)
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Local linearization around an equilibrium (discrete-time case) (cont.)

Since x̄ = f(x̄, ū) , it follows that

δx(k + 1) ≃
∂f(x̄, ū)

∂x
δx(k) +

∂f(x̄, ū)

∂u
δu(k)

= Aδx(k) +Bδu(k)

where A ∈ R
n×n, B ∈ R

n×m are constant matrices defined as:

A =
∂f(x̄, ū)

∂x
=




∂f1

∂x1
· · ·

∂f1

∂xn
...

...
∂fn

∂x1
· · ·

∂fn

∂xn




x=x̄,u=ū

B =
∂f(x̄, ū)

∂u
=




∂f1

∂u1
· · ·

∂f1

∂um
...

...
∂fn

∂u1
· · ·

∂fn

∂um




x=x̄,u=ū

Felice Andrea Pellegrino 322MI –Spring 2023 L1 –p76



Local linearization around an equilibrium (discrete-time case) (cont.)

Concerning the perturbed output we have:

ȳ = g(x̄, ū) ; y(k) = ȳ + δy(k)

Hence
y(k) = g(x(k), u(k)) = g(x̄+ δx(k), ū+ δu(k))

≃ g(x̄, ū) + gx(x̄, ū)δx(k) + gu(x̄, ū)δu(k)

and then
δy(k) ≃

∂g(x̄, ū)

∂x
δx(k) +

∂g(x̄, ū)

∂u
δu(k)

= Cδx(k) +Dδu(k)

where C ∈ R
p×n, D ∈ R

p×m are constant matrices defined as follows.
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Local linearization around an equilibrium (discrete-time case) (cont.)

C =
∂g(x̄, ū)

∂x
=




∂g1

∂x1
· · ·

∂g1

∂xn
...

...
∂gp

∂x1
· · ·

∂gp

∂xn




x=x̄,u=ū

D =
∂g(x̄, ū)

∂u
=




∂g1

∂u1
· · ·

∂g1

∂um
...

...
∂gp

∂u1
· · ·

∂gp

∂um




x=x̄,u=ū

In summary, the linear time-invariant system obtained by linearization in the neighborhood of a given
equilibrium state x̄ corresponding to the constant input u(k) = ū is

{
δx(k + 1) = Aδx(k) +Bδu(k)

δy(k) = Cδx(k) +Dδu(k)
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Example

Consider the nonlinear discrete-time system:




x1(k + 1) = x1(k) + α(1− βx1(k))x1(k)− γx1(k)x2(k) + u(k)

x2(k + 1) = x2(k)− ζx2(k) + ηx1(k)x2(k)

y(k) = x2(k)

By imposing the constant input sequence ū(k) = 0 the following equilibrium states are obtained:

x̄(1) =

[
0

0

]
; x̄(2) =




1

β

0


 ; x̄(3) =




ζ

η
α

γ

(
1−

βζ

η

)



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Example (cont.)

The general expression for matrix A of the linearized system is:

fx(x̄, ū) =




∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2




x̄,ū

=

=

[
(1 + α− 2αβx1 − γx2) −γx1

ηx2 1− ζ + ηx1

]

x̄,ū

Substituting the expressions of the specific equilibrium states we get:

x̄(1) =

[
0

0

]
=⇒ A(1) =

[
(1 + α) 0

0 1− ζ

]
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Example (cont.)

x̄(2) =




1

β

0


 =⇒ A(2) =




(1− α) −
γ

β

0 1− ζ +
η

β




x̄(3) =




ζ

η
α

γ

(
1−

βζ

η

)


 =⇒ A(3) =




(
1−

αβζ

η

)
−
γζ

η

αη

γ

(
1−

βζ

η

)
1



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Example (cont.)

Finally, the other matrices B, C , and D of the linearized systems are given by (their values do not depend on
the specific equilibrium states):

B = fu(x̄, ū) =




∂f1

∂u

∂f2

∂u




x̄,ū

=

[
1

0

]

C = gx(x̄, ū) =

[
∂g

∂x1

∂g

∂x2

]

x̄,ū

=
[

0 1
]

x̄,ū
=
[

0 1
]

D = gu(x̄, ū) =
∂g

∂u

∣∣∣∣
x̄,ū

= 0x̄,ū = 0
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Feedback linearization

Linearizing around an equilibrium or a movement is not the only way to get a linear system out of a nonlinear
one.

A remarkable alternative is the feedback linearization, based on the idea of employing the input to cancel out
the nonlinearities.

In the following, we present the approach by restricting our attention to mechanical systems.

Felice Andrea Pellegrino 322MI –Spring 2023 L1 –p84



Feedback linearization (cont.)

The equations of motions of many mechanical systems can be written as follows (for simplicity we drop the
dependence of q and F on time):

M(q)q̈ +B(q, q̇)q̇ +G(q) = F, (5)

where:

• q ∈ R
k is the generalized coordinate vector,

• M(q) ∈ R
k×k is the mass matrix (symmetric and positive definite),

• F ∈ R
k is the applied forces vector,

• G(q) ∈ R
k is the conservative forces vector,

• B(q, q̇) ∈ R
k×k is the centrifugal/Coriolis/friction matrix

The equation of motion (5) is valid of systems that follow the classical Newton-Euler mechanics or Lagrangian
mechanics with a kinetic energy that is quadratic in the derivative of the generalized coordinates and a
potential energy that may depend on the generalized coordinates but not on their derivative. Such systems
include robot arms, mobile robots, airplanes, helicopters, underwater vehicles and many more.
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Feedback linearization (cont.)

Example: inverted pendulum

The equation:
ml2ϑ̈(t) = mgl sinϑ(t)− bϑ̇(t) + τ(t)

(where b is a friction coefficient, g is the gravitational acceleration, and τ denotes a
torque) can be written as (5) provided that we define:

q
.
= ϑ, F

.
= τ, M(q)

.
= ml2, B(q)

.
= b, G(q)

.
= −mgl sinϑ
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Feedback linearization (cont.)

Example: two-link robot manipulator

The dynamics of the robot arm having two revolute joints shown in figure can be written
as (5) provided that we define:

q
.
=

[
ϑ1

ϑ2

]
, F

.
=

[
τ1

τ2

]

where τ1 and τ2 denote the torques applied at the joints. We have (see Craig (1989),
Example 6.3):

M(q) =

[
m2l

2
2 + 2m2l1l2 cosϑ2 + (m1 +m2)l21 m2l

2
2 +m2l1l2 cosϑ2

m2l
2
2 +m2l1l2 cosϑ2 m2l

2
2

]

B(q, q̇) =

[
−2m2l1l2ϑ̇2 sinϑ2 −m2l1l2ϑ̇2 sinϑ2

m2l1l2ϑ̇1 sinϑ2 0

]

G(q) =

[
m2gl2 cos(ϑ1 + ϑ2) + (m1 +m2)gl1 cosϑ1

m2gl2 cos(ϑ1 + ϑ2)

]
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Feedback linearization (cont.)

Back to the equation of motion:
M(q)q̈ +B(q, q̇)q̇ +G(q) = F,

assume that the system is fully actuated, meaning that one has the control over the whole vector of
generalized coordinates. In other words, all the components of F (t) can be manipulated. In that case F can be
regarded as the input. Let F be chosen as:

F = B(q, q̇)q̇ +G(q)
︸ ︷︷ ︸

.
=unl(q,q̇)

+M(q)v,

where v is a newly introduced auxiliary variable and unl(q, q̇) is a feedback signal whose purpose is to cancel
the nonlinear terms. By substituting, we obtain

M(q)q̈ +B(q, q̇)q̇ +G(q) = B(q, q̇)q̇ +G(q) +M(q)v ⇔ M(q)q̈ = M(q)v ⇔ q̈ = v,

where the last equivalence follows from the non-singularity of M .
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Feedback linearization (cont.)

In practice, the nonlinear process has been transformed into a (linear) double integrator:

q̈(t) = v(t).

To get a state-space representation we define x(t)
.
=

[
q(t)

q̇(t)

]
∈ R

2k, thus obtaining (choosing the generalized

coordinates as the output):

ẋ(t) =

[
0 I

0 0

]
x(t) +

[
0

I

]
v, y(t) =

[
I 0

]
x(t).
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Feedback linearization (cont.)

Now, linear methods can be employed to find a controller for v that results in adequate closed-loop
performance for y = q. For example, we can employ a proportional-derivative (PD) controller:

v(t) = −KP q(t)−KD q̇(t) = −
[

KP KD

]
x(t),

leading to the closed-loop dynamics:

ẋ(t) =

([
0 I

0 0

]
−

[
0

I

] [
KP KD

])
x(t) =

[
0 I

−KP −KD

]
x(t), y(t) =

[
I 0

]
x(t).
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