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Continuous-time linear systems



Homogeneous systems

Consider a homogeneous (i.e. having no input) continuous-time linear time-invariant system:

i(t) = Az(t), =(0) = o, (1)

where z € R™ and the initial time is 0 with no loss of generality.
We want to find the solution x(¢), t > 0. To this aim, let's consider the scalar case (i.e, n = 1) first:

z(t) = az(t), =(0)==z0, =z,a€R. (2)

The solution is easily proven to be:

z(t) = etxy.

In the general case (i.e, n > 1), the solution takes the same form, as shown in the following.
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Homogeneous systems (cont.)

Motivated by the analogy with the scalar

The above is a convergent series, since the factorial dominates the exponential for & — oco. Now, it is easy to
prove that

z(t) = etag

is the solution of (1).
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Homogeneous systems (cont.)

Indeed, it satisfies the initial condition:

z(0) = eA0zy = Izg = z0;

moreover, by taking the derivative, we get:

5 (o) = 5 (DA = Sl — 4 (),
k=0

k=1

thus it satisfies the differential equation.
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Nonhomogeneous systems

Consider a nonhomogeneous continuous-time linear time-invariant system:
z(t) = Az(t) + Bu(t), x(0) =zo (3)
It can be verified that the solution of (3) is:

t
z(t) = etag +/ A=) Bu(r)dr.
0

Indeed, by taking the Laplace transform of (3), we get

sX(s) —xzo=AX(s)+ BU(s) = (sI —A)X(s)==xz0+ BU(s),

and, solving for X (s):
X(s) = (sI — A)"tzg + (sI — A)"LBU(s),

which is the solution in terms of Laplace transforms.
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Nonhomogeneous systems (cont.)

Now, recalling that £ (eAt) = (sI — A)_l, and that the Laplace transform of the convolution of two functions is
the product of the individual Laplace transforms, we have

z(t) = 21 [X(s)] = =1 [(s[ — A)flxo] +L71 [(s] — A)leU(s)] =eAlyg + ‘ eA(tf'r)Bu(T)dT.
0

We can thus state the following (where the initial time is now ¢g)

Theorem
The solution of

z(t) = Az(t) + Bu(t), z(to) = zo
takes the form:

t
o(t) = @ (t, to, mo, u()) = eAl—t0) gy 4 eAt=7) Bu(r)dr.
to
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Nonhomogeneous systems (cont.)

In the right side of the expression

t
o(t) = At g 4 A7) Bu(r)dr
to

the first term depends on the initial state =g, but not on the input, while the second depends on the input u(-),
but not on the initial state. Thus, the whole solution can be decomposed as follows:

- Natural (state) response, i.e. the solution when the input is zero:
ut) =0,Vt >ty = apn(t) =eAl )y,

- Forced (state) response, i.e. the solution when the initial state is zero:

t
z0=0 = xF(t):/ €A(t7T)Bu(T)d’T
t

0

The whole solution is indeed
z(t) =zn(t) + zp(t).

Felice Andrea Pellegrino 322MI -Spring 2023 L2 -p4



Output response

Taking into account the output equation, we have:

{ @(t) = Ax(t) + Bu(t), z(to) = o
y(t) = Cz(t) + Du(t)

and by substituting the state response z(t) in the output equation, we get:

t
y(t) = CeAlt=to) gy 4 Ce*=7) Bu(r)dr + Du(t)

to

- Natural response. By setting u(t) = 0, t > to we get:
y(t) =yn(t) = CeAt—t0) gg
- Forced response. By setting o = 0 we get:
t
y(t) =yrt) = [ Ce* @7 Bu(r)dr + Du(t)
to
The whole output response is thus given by:

y(t) =yn (@) +yr(t).
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Input-output representation

u(t) y(t)

u(-) y(-)
A continuous-time linear system can be represented as linear operator ¢ mapping input signals to output
signals. That representation is the input-output representation of linear systems:

$:U—Y

where U is a vector space of input signals

u(-) : R — R™
and Y is a vector space of output signals

y(-) : R— RP
The operator (and thus, the system) can be characterized by the impulse response, i.e. the response of the
system to a particular input called the impulse. Although the concept is far more general, in the following we
consider only the case of causal linear time-invariant systems.
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The Dirac delta

An impulse is a phenomenon with high intensity and very short
duration. To represent it mathematically, we can consider a

function éc(t) defined as de(t —to) i
0 if t<-g %
— 1 8 € €
de(t) = . if —5<t<3§
0 if t>35 1
The support of the function (namely, the interval where the €
function is non-zero) is [—¢/2, ¢/2]. For decreasing e, the interval to t
becomes increasingly small, while the value taken by the function,
i.e. 1/¢, becomes increasingly large. Note that the integral of the €

function remains equal to 1.
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The Dirac delta (cont.)

Let top be a point in the interior of [a, b] and e be such that

[to — €/2,t0 + €/2] C [a,b]. The impulse in to, §(t — to), can be ()
seen as the the “limit” for e — 0 of the function é¢ (¢t — ¢o).
Intuitively (a formal treatment can be found in Antsaklis and |

Michel (2006)), consider the integral ‘
b A
/ f(t) de(t — to)dt, ) ‘

where f is a continuous function. Then

tot+5
/t F(8) 8c(t — to)dt =

13
0= 32

/b F() 8 (t — to)dt

to+5
/t £ Lat = Lpr)e = £

=

where 7 (which exists for the mean value theorem) belongs to the
interval [to — §,t0 + 5]
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The Dirac delta (cont.)

Being f continuous, when € — 0 we have

b t
/ F(#) 8e(t — to)dt — f(to). \_Af ()

The Dirac delta distribution §(t — to) is defined as the
“function” such that for every continuous function f I
defined in [a, b] containing to, we have that

/b F() 8(¢ — to)dt = f(to). ()

Eq. (4) is called the sifting property of the impulse (or
the sampling property of the impulse).
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Impulse response of continuous-time LTI systems

Consider the SISO system
{ @(t) Ax(t) + Bu(t)
y(t) = Cz(t) + Du(t)

and assume that z(0) = 0. By applying the unit impulse §(¢), we get

©
y(t) = / CeAt=") B§(r)dr + Do(t) = CeALB + D(1)
0

where the second equality follows from the sifting property. The function
W (t) = Cet B + D5(t)

is called the impulse response of the system.
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Impulse response of continuous-time LTI systems (cont.)

1 — —1
22— —> 2
J —— W(t) —1

In the MIMO case, W (t) is a p x m matrix: each element w;;(t) represents the ensuing response of the ith
output at time ¢, due to an impulse applied at time 0 to the jth input, for zero initial condition.
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Discrete-time linear systems



Homogeneous systems

Consider a homogeneous discrete-time linear time-invariant system:
z(k+1) = Az(k), xz(ko) =xo

where z € R™.
Clearly, z(k), k > ko can be determined by iterating the state equation:

z(ko) = xo
z(ko+1) = Az(ko)
(ko +2) = Ax(ko+1) = A%z(ko)
x(k) = AF—Fog(kg)

thus we have:
z(k) = AF—Fog,
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Nonhomogeneous systems

Now, consider a nonhomogeneous linear discrete-time system:

z(k + 1) = Az(k) + Bu(k), (ko) =xo

Clearly:
z(ko) = mo
z(ko+1) = Az(ko)+ Bu(ko)
z(ko+2) = Ax(ko+1)+ Bu(ko+1)

A[Az(ko) + Bu(ko)] + Bu(ko + 1)
A2z(ko) + ABu(ko) + Bu(ko + 1)

.’E(ko + 3) = A:E(ko + 2) + B(ko + Q)U(ko + 2)
= A3x(ko) + A2Bu(ko) + ABu(ko + 1) + Bu(ko + 2)
z(k) = At—ko)g(ko) + 371 A=1=9) Bu(j)
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Nonhomogeneous systems (cont.)

We can thus state the following

Theorem
The solution of
z(k + 1) = Az(k) + Bu(k), (ko) =zo

takes the form:

k—1
a(k) = ¢ (k, ko, zo, u(+)) = A®=F0) g + 3~ A=179) By(j)
j=ko
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Output response

Taking into account the output equation, we have:

{ o(k+1) = Az(k) + Bu(k), (ko) = zo
y(k) = Cx(k) + Du(k)

By substituting the state response z(k) in the output equation we get:

y(k) = CAG—klgo 4 3570 CAF=1=I Bu(j) + Du(k), k> ko

- Natural response. By setting u(k) =0, Vk > ko, we get:
y(k) = yn (k) = CAE=F0) g o > ko

- Forced response. By setting zg = 0, we get:

k—1
y(k) = yr(k) = > CA*"'I Bu(j) + Du(k), k > ko
Jj=ko

The whole response is thus given by:
y(k) = yn (k) + yr (k).
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Input-output representation

A discrete-time linear system can be represented as linear operator ¢ mapping input signals to output signals.
That representation is the input-output representation of linear systems:

¢:U—Y

where U is a vector space of input signals
u(-) : Z — R™

and Y is a vector space of output signals
y(-):Z — RP

The operator (and thus, the system) can be characterized by the impulse response, i.e. the response of the
system to a particular input called the impulse.

Although the concept is far more general, in the following we consider only the case of causal linear
time-invariant systems.
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Impulse response of discrete-time LTI systems

0(k — ko)

ko k
In the discrete-time case, the unit impulse at time kg is simply:

0, k#ko, ke

M_kO):{l k=k
) = RO
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Impulse response of discrete-time LTI systems (cont.)

Consider the SISO system
z(k+1) = Ax(k)+ Bu(k)
y(k) = Cz(k)+ Du(k)

and assume that z(0) = 0. By applying the unit impulse §(k) we get
k—1 _
y(k) = > CA*17IB5(5) + Dé(k)
=0
where the summation is assumed to be zero for k = 0. The function

CAF=IB, k>0
W(k) =< D, k=0
0, k<0

is called the impulse response of the system.
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Impulse response of discrete-time LTI systems (cont.)

1 — —1
22— —> 2
J —— W) ——i

In the MIMO case, W (k) is a p x m matrix: each element w;; (k) represents the ensuing response of the ith
output at time k, due to an impulse applied at time 0 to the jth input, for zero initial condition.
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Modal analysis (continuous-time)




State response

We have seen that the state response of the system
z(t) = Az(t) + Bu(t)
takes the form:

t
o(t) = eAt—t0) g + A=) Bu(r)dr
to

Without loss of generality, we can take tp = 0 thus obtaining

t
z(t) = eftzg +/ A=) Bu(r)dr
0

The matrix A plays a fundamental role and is responsible of the qualitative behavior of the response. In the
following we will analyze the qualitative behavior, starting with the simple case of A being diagonalizable.
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Modal analysis, diagonalizable A
If A'is diagonalizable by a similarity transformation we can write:

A=TAT™ 1
A=T"1AT
., An}, where )\; is the ith eigenvalue of A.

where A is a diagonal matrix having diagonal elements {\1, Az,
The columns of the matrix 7" are eigenvectors t; of matrix A. The inverse of 7', S = T~ can be partitioned

row-wise
s{
S5
T=tite ... tp], T '=8=] °
Sn
Thus, A may be rewritten as:
A1 0
s
A2 0 =
&bl
A=T[t1ta ... tn) 0 Az , (5)
T
S
0 0 0 ... An "
322MI -Spring 2023 L2 -p23
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Modal analysis, diagonalizable A (cont.)

As a consequence, et can be written as:

At = Ak Z(TAT Z (TAT 'TAT' .. . TAT~ 1) =
k=0 k=0 k times
= Y TAPT = =7() AP )T
k! k!
k=0 k=0
thus
t _ peltp—1
By expliciting the columns ¢; of T e the rows s,/ of S = T~ we get:
At
e 0 0 0
Azt s1
0 e 0 0 .. =4
82 n
eAt=T[tity ... tn] | O 0 e 0 ’ D tis] et
: 0 . i=1
: oT
0 0 0 ernt
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Modal analysis, diagonalizable A (cont.)

By defining n matrices of size n x n

we can state the following

Property

If A is diagonalizable, the state transition matrix e4? can be written as the sum of constant matrices Z;, each
multiplied by the function e?i?

n
eAt — Z Zi e)‘it. (6)
i=1

The natural state response can thus be expressed as

n n n
an(t) =Y Zi itz(0) =Y t; (5] 2(0))eMit =" t; ai(w(0)ei? @)
=1 =1 i=1
where a;(z(0)) = s, z(0), ¢ = 1,2,...,n are scalars obtained as the dot product of each left eigenvector and
the initial condition zo. The functions
Ait
eNi

are the modes of the system.
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Modal analysis, diagonalizable A (cont.)

A>0

If A € R, the mode e is an exponential mode that, for increasing ¢, has the following behavior:

- if A > 0 the mode diverges;
- if A < 0 the mode vanishes;

- if A = 0 the mode is constant.
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Modal analysis, diagonalizable A (cont.)

In general, A may have complex eigenvalues (i.e. eigenvalues whose imaginary part is non zero). It is
well-known that if A\, v is an eigenpair of A, the complex conjugate pair A*, v* is an eigenpair of A too.

Without loss of generality, assume that Aq, A2, ..., Ar, where r < n, are real numbers and Ay41, ..., Ap are
complex numbers, ordered pairwise X;y1 = A}, or
U(A) = { A1, A2, A, )\r+17 )\:F-Jrla >\'r+3a >\:<-+31 s An—1, )\Z,l }
— T —— — — N———
real conjugate conjugate conjugate
Then it follows that Z; e Z; 11 are conjugate if A; and X\;+1 are. As a consequence:

P n—1
eAt — Z Ziekit + Z (Zie)\it + Z:E/\it)
i=1 r+1 (step 2)

Decomposing \; and Z; in real and imaginary part we get:

Ai = pgtjwi
Z; M; + jN;.
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Modal analysis, diagonalizable A (cont.)

From Euler's formula
etit = etitlcos(wit) + j sin(w;t)]

and its simple to check that the imaginary contributions cancel each other thus
T
oAt — Zzie,uit_i_
=1

n—1
+ Z 2eMit[M; cos(w;t) — Ny sin(w;t)].
r+1 (step 2)

The following fundamental property holds.

Property

Each conjugate pair of eigenvalues A = p + jw and A* = u — jw produces the complex modes e** and eN't,
that result in real modes of the form:

et cos(wt) and eMtsin(wt).
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Modal analysis, diagonalizable A (cont.)

el sin(wt) for u > 0. el sin(wt) for u < 0. el sin(wt) for p = 0.

The state transition matrix is thus governed by real exponential terms associated to real eigenvalues and
oscillating (“pseudo-periodic”) modes associated to the conjugate pairs of eigenvalues. Depending on the real
part of the conjugate pairs the following behaviors may occur:

- if > 0the amplitude of the oscillation diverges;

- if p < 0the amplitude of the oscillation vanishes;

- if w = 0 the amplitude of the oscillation is constant.
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Modal analysis, non-diagonalizable A

If A'is non-diagonalizable, we need to resort to the following
Theorem (Jordan normal form)

For every matrix A € C™*™, there exists a non-singular change of basis matrix 7' € C™*™ such that

J1 0 0
0 Jo ... 0
J=T"1AT = ,  Wwhere

0 0 Js

X100 |
J 0 i 0

L=

1
0 i

is a Jordan block with each X\; an eigenvalue of A and s equal to the number of independent eigenvectors of
A. The matrix J is unique up to a reordering of the blocks and is called the Jordan normal form of A.
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Modal analysis, non-diagonalizable A (cont.)

Note

There may be several Jordan blocks associated to the same eigenvalue. Sometimes the J; are referred to as
the Jordan mini-blocks, and the diagonal block composed of all the mini-blocks associated to the same
eigenvalue is called a Jordan block.

Notice that the ith block J; € R¥i*¥i may be written as

i 0 1 0
0 X\ 1
Ji 0 0 N i 0 1

0 1

0 0 0 i 0O 0 O 0
=3\ & 2
thus
Ji = Ag 4 io-
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Modal analysis, non-diagonalizable A (cont.)

Since J = T~ AT, the state transition matrix may be written as
eAt = TeltT1 (8)

where

Now, let us consider the block e/it = e(Ait+Jiot) |t is easy to check that, if the square matrices M and N are
such that MN = NM, i.e. if they commute, then e(M+N) = ¢M N From the definition of A; and Jyg it follows
that they commute: A;J;0 = JioA;, hence

6Jit — exllteJmt_ (9)
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Modal analysis, non-diagonalizable A (cont.)

The powers of J;g are obtained, by “moving upwards the 1s”, for instance:

0o 1 0 0 0 1 0
0 1 0 0 1
Jo=]0 00 1 .| j2_1]0
S 1 :
0 0 O 0 0O 0 O 0
0 0 0
0 0
i—1 .. i
Wi 000 ... 0f gulo0 0
0O 0 0 ... O 0O 0 0 ... O
Moreover, J§ =0, Vp > v;. Thus, the series corresponding to eiot is actually a sum of a finite number of
terms
v;—1 1
Jiot _ R Y
e 0t — Z ,'Jijotj.
j=0 J°
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Modal analysis, non-diagonalizable A (cont.)

v;—1
. . < I 5 8 auc
By inspecting the form of each of the terms of e/i0? = ,—'Jfotj, it is easy to check that
i=o0 J*
r +2 +3 tvi—1
Lt 5 g Wit
1t b i
21 (vi—2)!
Vi~
o 0 1 t =
eliot —
0 t
1
On the other hand:
etit 0
0 €Mt 0
Ailt — ‘
0 0 etit
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Modal analysis, non-diagonalizable A (cont.)

Thus, the ith block of e/t takes the form

B 2 3 v;—1
t t Vi
Lt 5 3 (v =1t
t2 Vi~
1t 5 :
2! (vy—2)!
8=
; v;—1 - \ \ 0 1 t (v; —3)!
elit = E Jfo—'e it — gAit . (10)
=0 4
0 t
1
or B B
it pedit oAt 2 oAt =0 Y
! ) (1/3'—12)!
it teXit t?!e)\,;t ﬁekit
At At tYi T N\t
p 0 @ tedt R 7y
elit = . (11)
teNit
ehit
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Modal analysis, non-diagonalizable A (cont.)

Back to the exponential matrix, letting S = T'—1, by partitioning 7' (column-wise) and S (row-wise) — according
to the size of the diagonal blocks — we get:

ST
0 et 0 0 !
S5
A =TTy ... T 0 0 elst 0 ... ' 7 (12)
: o7
0 0 0 elst °
where T; € C"*vi e ST € Cvix™,
Thus
S
et = [Tie’i*s]], (13)

=il

and, by using (10),

s v;—1 tj
At i oT Ait
et = E E TiJjS; —eit.
i=1 j=0 J:
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Modal analysis, non-diagonalizable A (cont.)

Finally, by letting Z;; = TiJfOSI% we obtain

s v;—1

€At = Z Z Zijtje)\it. (14)

i=1 j=0

If there exist Jordan blocks of size greater than one, associated to the eigenvalue ), in the matrix e4?, the

following modes will appear:
e)\t’ te)‘t, thAt““’t(u(A)—l)eAt

where v(X) denotes the degree of the eigenvalue ), i.e. the size of the largest Jordan block associated to .
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Modal analysis, non-diagonalizable A (cont.)

Example. Let the Jordan form of a matrix A be

©O O O O O O O N

O O O O O O N =

0 0 0 O
0 0 0 O
2 1 0 0 O
0 2 1 0 O
0 0 2 0 O
0 0 0 5 0
0 0 0 0 5
0 0 0 0 O

g = O O O O O O

Then, its eigenvalues are 2 and 5, having degree v(2) = 3 and v(5) = 2, respectively. The modes of e?* are:

Felice Andrea Pellegrino
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2t7 t262t, 65t7 t85t.
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Modal analysis (discrete-time)



State response

We have seen that the state response of the system
z(k+ 1) = Az(k) + Bu(k)
takes the form:

k—1
z(k) = AF—Fo) gy 4 Z AFR=1=9) By(4)
Jj=ko
Without loss of generality we can take kg = 0 thus obtaining
k—1

a(k) = APz + > ART179) Bu(j)
j=0

The transition matrix A¥ can be computed simply as a matrix product repeated k — 1 times, but this is of little

interest. Instead, to reveal the properties of the response, we can perform a modal analysis, similarly to the
continuous-time case. We will first consider the case of diagonalizable A.
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Modal analysis, diagonalizable A
If A is diagonalizable by a similarity transformation, we can write:

A=TAT !
A=T-1AT
.., An}, Where \; is the ith eigenvalue of A.

where A is a diagonal matrix having diagonal elements {\1, Az,
The columns of the matrix 7" are eigenvectors t; of matrix A. The inverse of 7', S = T~ can be partitioned

row-wise
s{
S5
T=tite ... tp], T '=8=] °
Sn
Thus, A may be rewritten as:
A1 0
s
A2 0 =
&bl
A=lt1ts ... tn) 0 A3 , (15)
T
S
0 0 0 ... An "
322MI -Spring 2023 L2 -p40

Felice Andrea Pellegrino



Modal analysis, diagonalizable A (cont.)

Since

we get

Felice Andrea Pellegrino

AR = PRI | TERTT = TR,

Ak = [tl to .

]

k times
A0
0 M
0 0
0

k
)‘3

o o

(16)
s{
=
&5
] (17)
Sn
12 -p40
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Modal analysis, diagonalizable A (cont.)

By defining the matrices
Zh = ths;br,

we can state the following

Property

If A is diagonalizable, the state transition matrix A¥ can be written as the sum of constant matrices Zj,, each
multiplied by the discrete mode A¥

n n
A =S T Al = 32 Zuad (1e)
h=1 h=1

As in the continuous-time case, we can distinguish the two cases of the eigenvalue X being real or complex.
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Modal analysis, diagonalizable A (cont.)

For A € R, the mode A¥ has the following behavior: Ak -
*cA>

- if [A] > 1 the mode diverges;
- if [A] < 1 the mode vanishes;

- if [\ = 1 the mode has constant amplitude. .

e o e o o o e o eN=1

... 0<i<1
k
Aeforo< A< 1,A=1and X > 1.

Based on the sign of ), there is the further distinction:

- if A > 0 the mode is positive;
- if X < 0 the mode has alternated sign;
- if A = 0 the mode is null.
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Modal analysis, diagonalizable A (cont.)

If some eigenvalue is complex we can, as before, order the eigenvalues:
a(A) ={ A1, A2, A, Ak 1, A 1, A3, Afpgs s A1, A1 }
—_———— —— | ——
real conjugate conjugate conjugate

By taking the real and imaginary part of Z;, and expressing A, in polar form we have

Ph eI
My, + jNp.

)\h
Zn

From Euler’s formula
Ao = pheifnk — ok Opk) + 7sin(0yk
h = ppe pr[cos(0pk) + 7 sin(0x k)]

it can be obtained (with a rather long maths)

T n—1
Ak = Z ZhA’fL + Z 2pﬁ [My, cos(0pk) — Np, sin(0p,k)]
h=1 r+1 (step 2)
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Modal analysis, diagonalizable A (cont.)

The following important property follows:

Property
Each conjugate pair of eigenvalues A and A* produces complex modes that result in real sequences of the
form:

p¥ cos(0k) and pF sin(0k).
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Modal analysis, diagonalizable A (cont.)

pF sin(0k) for p > 1.

pF sin(0k) for0 < p < 1.

pF sin(0k) for p = 1.

The state transition matrix is thus governed by real exponential terms associated to real eigenvalues and
oscillating (“pseudo-periodic”) modes associated to the conjugate pairs of eigenvalues. Depending on the
modulus of the eigenvalue, the following behaviors may occur:

- if p > 1 the amplitude of the oscillation diverges;

- if p < 1 the amplitude of the oscillation vanishes;

- if p = 1 the amplitude of the oscillation is constant.
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Modal analysis, non-diagonalizable A

As for the continuous-time case, if A is non-diagonalizable, we may resort to the Jordan form

A=TJT ! =— AF=TJjkT1 (19)

where
J = diag{J1, J2,...,Js}

is the Jordan normal form of A.

Recalling the definition of the binomial coefficient () = m the kth power of the block J; can be
(] 2 —1).
written as

(AT + Jno)* =
= R (A o R+

LI o
- Z(ﬁ)/\ﬁ_uio'

=0

Y
k

k—1 k
k— 1) Nino " + o =
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Modal analysis, non-diagonalizable A (cont.)

Recall that J,’fo = 0 Vk > v, (v, being the size of the block J,0). Moreover, by definition, <k> =0ifk <. Then
(2

vp—1
BN o
Jk = ZO (5) M o, (20)
Observe that, for k£ > 4, the binomial coefficient
k k! k(k—1)(k—2)...(k—i+1) .
= = = pi(k),
(z) ik — i) il pilk)

is a polynomial of degree i in the variable k. Thus, similarly to the continuous-time case, we get:

s vp—1

AP =303 Zupi(Ay T 1)

h=1 =0

where Zp; = T JE S
If there exist Jordan blocks of size > 1, associated to A, in the matrix A¥, the following modes will appear:

A, (]I)Ak—17 (;)Ak—27 L (V ﬁ I)Ak_uﬂ

where v = v()) is the degree of A.
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Modal analysis, non-diagonalizable A (cont.)

Example. Let the Jordan form of a matrix A be

S O O O Ww
o O O w =
O O w o O
o W = O O
w = o O o

Then, the sole eigenvalue A = 3 has a degree deg()\) = 3 and, as a consequence, the modes of A* are:

3k, (ﬁ) g1 (l;) gk—2
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Transfer function
(continuous-time)




Transfer function

Consider the time-invariant dynamic system:

{ @(t) = Az(t) + Bu(t)
y(t) = Cx(t) + Du(t)

and let (0) = xo. By applying the Laplace transform to both sides of the first equation we get:
sX(s) —xo=AX(s)+ BU(s) = (sI—A)X(s)==x0+ BU(s)

which implies
X(s) = (sI — A)"lag + (sI — A)"LBU(s) (22)

By substituting X (s) in the Laplace transform of the output equation we get
Y(s) = C(sI — A)7'ao + [C(sI — A)T'B+ D] U(s) (23)
Letting zp = 0, it follows that:
Y(s) = [C(s] — A)"'B+ D|U(s) = W(s)U(s)

and W (s) is called the transfer function.
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Transfer function (cont.)

Let's analyze the structure of the transfer function:

wi1(s) -+ wim(s)
W(s)=| wir(s) -+  wim(s)
wpi(s) 0 wpm(s)

W(s) isa p x m matrix. If zg = 0, the ith component of the output vector is given by:
Yi(s) = Z wir (8)Ur(s) = w1 (8)U1(s) + wiz(s)Usa(s) + - - -
F=il
Thus:

z(0) =0
ur(t) =0, r#j Uj(s)
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Transfer function (cont.)

In particular, if we take u;(t) = d(t), we have
Uj(s) = L[u; (1)) = L[5(B)] =1

hence (®)
Y;(s
ij (s) = =Y;
wii(e) = 7y = Yilo)
In other words, w;;(s) is the Laplace transform of the ith component of the output response to the unit
impulse applied to the jth input. Thus

wij(s) = L [wi;(¢)]

where w;;(t) is the ijth element of the impulse response matrix W (t).

Since the above holds for any pair 4, j, it follows that

W(s) = LIW(?)]

hence, the transfer function is the Laplace transform of the impulse response.
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Transfer function (cont.)

Impulse response and transfer function
The impulse response and transfer function of the system

{ @(t) = Az(t) + Bu(t)
y(t) = Cx(t) + Du(t)

are given, respectively, by
W(t) =L [C(sI — A)"'B + D]

and
W(s)=C(sI —A)~'B+D
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Transfer function (cont.)

In the following, we show that the entry w;;(s) of a transfer function is a proper rational function (a rational
function is a ratio of polynomials; it is proper if the degree of the numerator is less than or equal to the degree
of the denominator; it is strictly proper if strict inequality holds).

Indeed:

W(s)=C(sI—A)~"'B+D

and
s—a1l —ai2 —ain

(sT— A)~! = —az1  s5— a2

—anl ce S — Qnn
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Transfer function (cont.)

The inverse can be expressed as:

_ 1
(I =)~ = GI—a) X

where K (s) is the matrix of the algebraic complements (each of which is the determinant of an
(n—1) x (n — 1) minor of sI — A).

Clearly:
-+ @(s) =det (sI — A) is a polynomial of degree n (the characteristic polynomial of A)
- K(s) = [kij(s)], 4,5 =1,...,n,where k;;(s) is a polynomial of degree < n, Vi,j

As a consequence,
-1 _ K(s)
©(s)

(sI — A)

is an n x n matrix of strictly proper rational functions.
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Transfer function (cont.)

Therefore: ® (*) ®)
K(s M(s N(s
20 TP o TP e

where the entries of N(s) are polynomials of degree < n:

W(s)=C(sI—A)'B+D=C

deg (n;(s)) <n

The strict inequality holds if and only if the corresponding entry of D is zero, i.e. d;; = 0.

In summary, W (s) is strictly proper (all its entries are strictly proper) if and only if D = 0 (i.e. the system is
strictly proper).
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Transfer function of equivalent dynamic systems

Given
{ i(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

let & =T~ 1z, where T € R™*™ is a generic non-singular n x n matrix (det(7T") # 0). Then, an equivalent
state-space description is given by:

{ @(t) = T~ 1a(t) = TV ATE(t) + T~ Bu(t) = A2(t) + Bu(t)
y(t) = CTi(t) + Du(t) = Ci(t) + Du(t)

In other words: X R
{ B() = Az(t) + Bu(t) { i(t) = ,ix &(t) + Bu(t
Yy Cx( C#

)
(t) = Ca(t) + Du(t) y(t) = Ci(t) + Du(t)
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Transfer function of equivalent dynamic systems (cont.)

W(s)=C(sl — A= 1B+ D

(CT) (sI —=T*AT) "' (T-'B)+ D
=CT (sT™'T - T~ 1AT) 'T-1B+ D
=CT [T~ (sl — A)T]|~ T‘lBJrD

:CT[ (SI—A)*T]T%BJFD

=C(sI-A)"'B+D

W(s)

/-\

Hence, the transfer function is invariant to change of basis.
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Transfer function (discrete-time)




Transfer function

Consider the time-invariant dynamic system:

{ z(k +1) = Az(k) + Bu(k)
y(k) = Cx(k) + Du(k)

and let (0) = xo. By applying the Z-transform to both sides of the first equation we get:
2[X(2) —zo] = AX(2) + BU(z) = (21— A)X(2)=zz0+ BU(?)

which implies
X(2) = (21 — A)"tzzo + (21 — A)TIBU(2) (24)

By substituting X (z) in the Z-transform of the output equation we get

Y(2) = C(2I — A)'zao + [C(2] — A)T'B+ D] U(2) (25)

Letting zp = 0, it follows that:

and W (z) is called the transfer function.
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Transfer function (cont.)

Let's analyze the structure of the transfer function:

wi1(z) - wim(z)
W(z)=| wir(z) - wim(2)
wpl(z) e wpm(z)

W(z) isa p x m matrix. If zo = 0, the ith component of the output vector is given by:
Yi(2) = Y wir(2)Ur(2) = wir (2)U1(2) + wiz(2)V2(2) + - --
r=1

Thus:

z(0) =0 ) =
=0 Es el U;(2)
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Transfer function (cont.)

In particular, if we take u;(k) = 6(k), we have
Uj(2) = Z [u;(k)] = Z[6(k)] =1

hence @)
Yi(z
ij (2) = =Y;
wii(a) = gy = Hile)
In other words, w;;(z) is the Z-transform of the ith component of the output response to the unit impulse
applied to the jth input. Thus

wij(2) = Z [wij (k)]
where w;; (k) is the ijth element of the impulse response matrix W (k).

Since the above holds for any pair 4, j, it follows that

W(z) = Z [W (k)]

hence, the transfer function is the Z-transform of the impulse response.
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Transfer function (cont.)

Impulse response and transfer function
The impulse response and transfer function of the system

{ a(k + 1) = Az(k) + Bu(k)
y(k) = Cx(k) + Du(k)

are given, respectively, by
W(k) = 271 [C(z] — A)"'B + D]

and
W(z)=C(2I — A)"'B+D
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Transfer function (cont.)

In the following, we show that the entry w;; () of a transfer function is a proper rational function (a rational
function is a ratio of polynomials; it is proper if the degree of the numerator is less than or equal to the degree
of the denominator; it is strictly proper if strict inequality holds).

Indeed:
W(z)=C (2 —A)"'*B+D
and
=il
z— a1 —a12 —ain
(21 — A)~" = —az21 z — a2
—anl to Z — Qnn
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Transfer function (cont.)

The inverse can be expressed as:
1

71 _
e e &5 )

K(2)
where K (z) is the matrix of the algebraic complements (each of which is the determinant of an
(n—1) x (n — 1) minor of zI — A).
Clearly:
+ @(z) =det (2I — A) is a polynomial of degree n (the characteristic polynomial of A)
- K(z) = [kij(2)], 4,5 =1,...,n,where k;;(z) is a polynomial of degree < n, V4,j

As a consequence,
-1 _ K(z)
o(2)

(zI — A)

is an n x n matrix of strictly proper rational functions.
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Transfer function (cont.)

Therefore:

K@, p_ ME , ,_NE
o(2) ©(2) »(2)
where the entries of N(z) are polynomials of degree < n:

W(z)=C(zI— A" 'B+D=C

deg (n;5(z)) <n

The strict inequality holds if and only if the corresponding entry of D is zero, i.e. d;; = 0.

In summary, W (z) is strictly proper (all its entries are strictly proper) if and only if D = 0 (i.e. the system is
strictly proper).
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Transfer function of equivalent dynamic systems

Given
{ a(k +1) = Az(k) + Bu(k)
y(k) = Cx(k) + Du(k)

Llet & := T2, where T € R**™ is a generic non-singular n x n matrix (det(T) # 0). Then, the equivalent
state-space description is given by:

{ E(k+1) =T ta(k+1) = T AT2(k) + T~ Bu(k) = Az(k) + Bu(k)
y(k) = CT#(k) + Du(k) = Cz(k) + Du(k)

In other words:

{ a(k+1) = Az(k) + Bu(k) { #(k+1) = Az(k) + Bu(k)
y(k) = Cz(k) + Du(k) y(k) = C&(k) + Du(k)
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Transfer function of equivalent dynamic systems (cont.)

W(z) =C(zI — A)~'B+D
=(CT) (I —=T'AT) ' (T"'B)+ D
=OT (z2T7'T - T~ 'AT) 'T-1B+D
=CT [T (I - AT] 'T"'B+D
=CT [T*l (2I — A)~! T] T-'B+D
=C(zI-A)"'B+D
=W(z)

Hence, the transfer function is invariant to change of basis.
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Given the LTI discrete-time system, having two inputs and one output:

z(k+1)= [ _01 _12 ] x(k) + [ ? 711//22 :| u(k)

y(k) = [-3 3]a(k)

the transfer function is a 1 x 2 matrix:

z —1
1 z+42
1

(z+1)

W(z) = [-3 3] [

TTo -2

{ 1 1/2 ]
z4+2 1 0 —1/2
-1 =z } [ 1 1/2

- ERL S

= [-3 3]

1/2 (z+1)2 z+1
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