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Stability

When dealing with stability in the context of dynamic systems we consider three different cases:

1. Stability of state movements

2. Stability of equilibrium states

3. Stability of linear systems

Remark. Concerning the first case, we provide definitions and concepts in the context of general abstract

dynamic systems, thus the treatment is the same for both continuous-time and discrete-time systems.
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Stability of state movements



Stability of state movements

Consider a general abstract dynamic system characterised by the state-transition function

ϕ(t, t0, x0, u(·))

Then, consider a generic nominal state movement for a given initial state x̄0 and a given input function ū(·) :

x̄(·) = ϕ(·, t0, x̄0, ū(·))

Now, consider the perturbed state movement generated by a perturbation of the initial state and a perturbation

of the input function:

x(t0) = x̄0 + δx̄

u(·) = ū(·) + δu(·)
=⇒

ϕ(t, t0, x̄0 + δx̄, ū(·) + δu(·))
perturbed state movement
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Stability with respect to perturbations of the initial state

Definition

The nominal state movement

x̄(·) = ϕ(·, t0, x̄0, ū(·))

is stable with respect to perturbations of the initial state x̄0 if ∀ ε > 0 , ∀t0 > 0 there exists δ(ε, t0) > 0 such

that

‖δx̄‖ < δ(ε, t0) =⇒ ‖ϕ(t, t0, x̄0 + δx̄, ū(·))− ϕ(t, t0, x̄0, ū(·))‖ < ε , ∀ t ≥ t0

Definition

The nominal state movement

x̄(·) = ϕ(·, t0, x̄0, ū(·))

is attractive if ∀t0 > 0 there exists η(t0) > 0 such that

lim
t→+∞

‖ϕ(t, t0, x̄0 + δx̄, ū(·))− ϕ(t, t0, x̄0, ū(·))‖ = 0 , ∀ ‖δx̄‖ < η(t0)

Felice Andrea Pellegrino 322MI –Spring 2023 L3 –p3



Asymptotic stability with respect to perturbations of the initial state

Definition

The nominal state movement

x̄(·) = ϕ(·, t0, x̄0, ū(·))

is asymptotically stable with respect to perturbations of the initial state x̄0 if:

• it is stable;

• it is attractive.
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Instability with respect to perturbations of the initial state

Definition

The nominal state movement

x̄(·) = ϕ(·, t0, x̄0, ū(·))

is unstable with respect to perturbations of the initial state x̄0 if it is not stable with respect to such a kind of

perturbations.
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Geometrical interpretation

(0) nominal state movement

(1) perturbed state movement remaining

confined in the “tube” of radius ε

(2) perturbed state movement remaining

confined in the “tube” of radius ε and

asymptotically converging to the nominal

movement

(3) perturbed state movement crossing the

“tube” of radius ε
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Stability with respect to perturbations of the input function

Definition

The nominal state movement

x̄(·) = ϕ(·, t0, x̄0, ū(·))

is stable with respect to perturbations of the input function ū(·) if ∀ ε > 0 , ∀t0 > 0, there exist δ(ε, t0) > 0

such that

‖δū(·)‖ < δ(ε, t0) =⇒ ‖ϕ(t, t0, x̄0, ū(·) + δū(·))− ϕ(t, t0, x̄0, ū(·))‖ < ε , ∀ t ≥ t0

where the norm in ‖δū(·)‖ is any function norm.
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Instability with respect to perturbations of the input function

Definition

The nominal state movement

x̄(·) = ϕ(·, t0, x̄0, ū(·))

is unstable with respect to perturbations of the input function ū(·) if it is not stable with respect to such a

kind of perturbations.
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Stability of equilibrium



Stability of equilibrium

• An equilibrium is a movement which is constant with respect to time.

• The stability of equilibrium is the stability of such constant movement.

• Thus, all the definitions related to the stability of movements apply to the equilibrium case.
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Stability of equilibrium (cont.)

Definition

The equilibrium state x̄ corresponding to the input ū(·) is said to be stable with respect to a state

perturbation if ∀ε > 0, ∀t0 > 0 there exists δ(ε, t0) > 0 such that

‖δx̄‖ < δ(ε, t0) =⇒ ‖ϕ(t, t0, x̄+ δx̄, ū(·))− x̄‖ < ε, ∀t ≥ t0

Definition

The equilibrium state x̄ corresponding to the input ū(·) is said to be asymptotically stable with respect to

state perturbations if

• it is stable;

• it is attractive, i.e. ∀t0 > 0 there exist η(t0) > 0 such that

lim
t→+∞

‖ϕ(t, t0, x̄0 + δx̄, ū(·))− x̄‖ = 0, ∀‖δx̄‖ < η
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Uniform stability

In the previous definitions δ may depend on the initial time:

δ = δ(ε, t0)

If δ is not dependent on the initial time

δ = δ(ε),

the stability is said to be uniform.

The concept of uniform asymptotically stability follows accordingly.
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Instability and divergence of trajectories

• It is important to notice that instability does not imply divergent trajectories.

• Systems do exist that admit unstable equilibrium states but do not have divergent trajectories.

• The Van der Pol oscillator is a significant example.
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Van der Pol oscillator

The Van der Pol oscillator is described by a second order

non-linear equation corresponding to an RLC circuit in which the

resistive element has a nonlinear characteristic:

x(t)

L
+ ẋ(t)(3x2(t)− α) + ẍ(t)C = 0,

where α > 0. A state-space representation is: ẋ1(t) = x2(t)

ẋ2(t) = −
x1(t)

LC
−

x2(t)

C
(3x2

1(t)− α)

The system admits the origin as unique equilibrium state and such

equilibrium state is unstable. However, no trajectory diverges.

Indeed all the trajectories, for any initial state, converge to a curve

called limit cycle.
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Stability and convergence of trajectories

• Conversely, the convergence of all trajectories of a system to an equilibrium state doesn’t imply the

stability of that state.

• There exist systems whose trajectories are all convergent to one (ore more) unstable equilibrium states. For

example:

x(k + 1) =

{
2x(k) if ‖x(k)‖ < 1

0 otherwise

• The origin is an equilibrium state (the sole). Furthermore all the trajectories converge to the origin.

However the origin is unstable (why?).
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Stability of regular systems of finite dimension

Given the system

{
ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

we want to study the stability, w.r.t. the initial state perturbation, of the movement x̄(·) = ϕ(·, t0, x̄0, ū(·)).

The difference between the perturbed and the nominal movement x̄(·) is

z(t)
.
= x(t)− x̄(t)

From which:

ż(t) = ẋ(t)− ˙̄x(t) = f(z(t) + x̄(t), ū(t), t)− f(x̄(t), ū(t), t)
.
= w(z(t), x̄(t), ū(t), t)

Where the function w enjoys the property:

w(0, x̄(t), ū(t), t) = 0 ∀t ≥ t0

Felice Andrea Pellegrino 322MI –Spring 2023 L3 –p15



From movement stability to equilibrium stability

The dynamic system ż(t) = w(z(t), x̄(t), ū(t), t) describes the dynamic of perturbed movements w.r.t. a

nominal movement.

For a given movement, i.e., for given x̄(t) and ū(t), the function w depends on z and t.

The property

w(0, x̄(t), ū(t), t) = 0, ∀t ≥ t0

shows that the system admits the equilibrium state (i.e. the constant movement):

z(t) = 0, ∀t ≥ t0

Therefore, the stability analysis of a movement has been cast as the stability analysis of an equilibrium of a

suitable dynamic system (the one describing the perturbed movement).

As a consequence, it is not restrictive to treat the equilibrium stability only.
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Stability of equilibrium: the Lyapunov method

The Lyapunov method is a fundamental tool for system analysis and control.

It originates from the following observation in physics:

If the total energy of a system (for example, a mechanical system) is continuously dissipated, then such a

system must necessarily approach an equilibrium state.

The Lyapunov method generalizes the above observation by employing a suitable positive scalar function

of the state, which acts as an “energy”.
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Example

Consider a nonlinear mechanical system

m
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

f
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

r
<latexit sha1_base64="KW9lsAyVkdpVbFveN55RrnKcBcI=">AAACH3icbVC7TgJBFJ3FF64v0NLETCQmVmRXC+kksbGERB4JbMjscMEJs4/M3DUhG0orW/0A/4LK1s7Y8g3+hLsLhYCnOjnn3pyT44ZSaLSsmZHb2Nza3snvmnv7B4dHheJxUweR4tDggQxU22UapPChgQIltEMFzHMltNzRXeq3nkBpEfgPOA7B8djQFwPBGSZSXfUKJatsZaDrxF6Q0u3HtP7zfDat9YpGvtsPeOSBj1wyrTu2FaITM4WCS5iY3UhDyPiIDaGTUJ95oJ04azqhF5FmGNAQFBWSZiL8/YiZp/XYc5NLj+GjXvVS8T+vE+Gg4sTCDyMEn6dBKCRkQZorkUwAtC8UILK0OVDhU84UQwQlKOM8EaNkk6XAeeklKU3uB6gnpmkm29mrS62T5lXZvi5bdatUrZA58uSUnJNLYpMbUiX3pEYahBMgL+SVvBnvxqfxZXzPT3PG4ueELMGY/QJeY6ZJ</latexit>

k(r)
<latexit sha1_base64="qjBkugLJfbMdcBdrAkKroq3o0k4=">AAACInicbVBLTgJBFOzBH4w/0I2Jm47EBDdkRheyJLpxiYl8EiCkp3lAh55Put+Y4ITEE7jVA3gCj+HOuDLhMM4MLASsVaXqvVSlnEAKjZb1Y2Q2Nre2d7I5c3dv/+AwXzhqaD9UHOrcl75qOUyDFB7UUaCEVqCAuY6EpjO+TfzmIygtfO8BJwF0XTb0xEBwhok0LqmLXr5ola0UdJ3YC1KsnjzNcs8fN7Vewch2+j4PXfCQS6Z127YC7EZMoeASpmYn1BAwPmZDaMfUYy7obpSWndLzUDP0aQCKCklTEf5+RMzVeuI68aXLcKRXvUT8z2uHOKh0I+EFIYLHkyAUEtIgzZWIVwDaFwoQWdIcqPAoZ4ohghKUcR6LYTzLUuC89JKUJPd91FPTNOPt7NWl1knjsmxfla37eMQKmSNLTskZKRGbXJMquSM1UiecjMgLeSVvxrvxaXwZ3/PTjLH4OSZLMGa/UQKmAg==</latexit>

h(ṙ)
<latexit sha1_base64="nTDoR0nTUjYKczFFZmRmUqviMAk=">AAACJ3icbVC7TgJBFJ31CesLtDGxmUhMsCG7WkhJtLHERB4GCJkdLjBh9pGZuyZISPwHW/0AW3/Ezmhi4584CxQCnurknHtzTo4XSaHRcb6sldW19Y3NVNre2t7Z3ctk96s6jBWHCg9lqOoe0yBFABUUKKEeKWC+J6HmDa4Sv3YPSoswuMVhBC2f9QLRFZyhke76+WYnRKpO25mcU3AmoMvEnZFc6fDhO/34dlluZ62UeeWxDwFyybRuuE6ErRFTKLiEsd2MNUSMD1gPGoYGzAfdGk0aj+lJrBmGNAJFhaQTEf5+jJiv9dD3zKXPsK8XvUT8z2vE2C22RiKIYoSAJ0EoJEyCNFfCTAG0IxQgsqQ5UBFQzhRDBCUo49yIsdlmLnBaek5Kks1yemzbttnOXVxqmVTPCu55wbkxIxbJFClyRI5JnrjkgpTINSmTCuHEJ0/kmbxYr9a79WF9Tk9XrNnPAZmD9fMLHHKn9A==</latexit>

f = 0

k(r) = k0r + k1r3

h(ṙ) = bṙ|ṙ|
k0, k1, b > 0

mr̈ + bṙ|ṙ|+ k0r + k1r3 = 0

Letting x1 = r and x2 = ṙ, we get the state equations: ẋ1(t) = x2(t)

ẋ2(t) = −
k0

m
x1(t)−

k1

m
x3
1(t)−

b

m
x2(t)|x2(t)|

It is immediate to check that x̄ = [0 0]> is an equilibrium state.
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Example (cont.)

m
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f
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r
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k(r)
<latexit sha1_base64="qjBkugLJfbMdcBdrAkKroq3o0k4=">AAACInicbVBLTgJBFOzBH4w/0I2Jm47EBDdkRheyJLpxiYl8EiCkp3lAh55Put+Y4ITEE7jVA3gCj+HOuDLhMM4MLASsVaXqvVSlnEAKjZb1Y2Q2Nre2d7I5c3dv/+AwXzhqaD9UHOrcl75qOUyDFB7UUaCEVqCAuY6EpjO+TfzmIygtfO8BJwF0XTb0xEBwhok0LqmLXr5ola0UdJ3YC1KsnjzNcs8fN7Vewch2+j4PXfCQS6Z127YC7EZMoeASpmYn1BAwPmZDaMfUYy7obpSWndLzUDP0aQCKCklTEf5+RMzVeuI68aXLcKRXvUT8z2uHOKh0I+EFIYLHkyAUEtIgzZWIVwDaFwoQWdIcqPAoZ4ohghKUcR6LYTzLUuC89JKUJPd91FPTNOPt7NWl1knjsmxfla37eMQKmSNLTskZKRGbXJMquSM1UiecjMgLeSVvxrvxaXwZ3/PTjLH4OSZLMGa/UQKmAg==</latexit>

h(ṙ)
<latexit sha1_base64="nTDoR0nTUjYKczFFZmRmUqviMAk=">AAACJ3icbVC7TgJBFJ31CesLtDGxmUhMsCG7WkhJtLHERB4GCJkdLjBh9pGZuyZISPwHW/0AW3/Ezmhi4584CxQCnurknHtzTo4XSaHRcb6sldW19Y3NVNre2t7Z3ctk96s6jBWHCg9lqOoe0yBFABUUKKEeKWC+J6HmDa4Sv3YPSoswuMVhBC2f9QLRFZyhke76+WYnRKpO25mcU3AmoMvEnZFc6fDhO/34dlluZ62UeeWxDwFyybRuuE6ErRFTKLiEsd2MNUSMD1gPGoYGzAfdGk0aj+lJrBmGNAJFhaQTEf5+jJiv9dD3zKXPsK8XvUT8z2vE2C22RiKIYoSAJ0EoJEyCNFfCTAG0IxQgsqQ5UBFQzhRDBCUo49yIsdlmLnBaek5Kks1yemzbttnOXVxqmVTPCu55wbkxIxbJFClyRI5JnrjkgpTINSmTCuHEJ0/kmbxYr9a79WF9Tk9XrNnPAZmD9fMLHHKn9A==</latexit>

f = 0

k(r) = k0r + k1r3

h(ṙ) = bṙ|ṙ|
k0, k1, b > 0

mr̈ + bṙ|ṙ|+ k0r + k1r3 = 0

The total mechanical energy is the sum of the kinetic energy and the elastic potential energy:

V (x1, x2) =
1

2
mx2

2 +

∫ x1

0
k(ξ)dξ =

1

2
mx2

2 +
1

2
k0x

2
1 +

1

4
k1x

4
1 (1)

Clearly, the function V (x1, x2) is a positive scalar function having the state as argument. It is zero if and only if

x1 = 0, x2 = 0.

Felice Andrea Pellegrino 322MI –Spring 2023 L3 –p18



Example (cont.)

m
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f
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r
<latexit sha1_base64="KW9lsAyVkdpVbFveN55RrnKcBcI=">AAACH3icbVC7TgJBFJ3FF64v0NLETCQmVmRXC+kksbGERB4JbMjscMEJs4/M3DUhG0orW/0A/4LK1s7Y8g3+hLsLhYCnOjnn3pyT44ZSaLSsmZHb2Nza3snvmnv7B4dHheJxUweR4tDggQxU22UapPChgQIltEMFzHMltNzRXeq3nkBpEfgPOA7B8djQFwPBGSZSXfUKJatsZaDrxF6Q0u3HtP7zfDat9YpGvtsPeOSBj1wyrTu2FaITM4WCS5iY3UhDyPiIDaGTUJ95oJ04azqhF5FmGNAQFBWSZiL8/YiZp/XYc5NLj+GjXvVS8T+vE+Gg4sTCDyMEn6dBKCRkQZorkUwAtC8UILK0OVDhU84UQwQlKOM8EaNkk6XAeeklKU3uB6gnpmkm29mrS62T5lXZvi5bdatUrZA58uSUnJNLYpMbUiX3pEYahBMgL+SVvBnvxqfxZXzPT3PG4ueELMGY/QJeY6ZJ</latexit>

k(r)
<latexit sha1_base64="qjBkugLJfbMdcBdrAkKroq3o0k4=">AAACInicbVBLTgJBFOzBH4w/0I2Jm47EBDdkRheyJLpxiYl8EiCkp3lAh55Put+Y4ITEE7jVA3gCj+HOuDLhMM4MLASsVaXqvVSlnEAKjZb1Y2Q2Nre2d7I5c3dv/+AwXzhqaD9UHOrcl75qOUyDFB7UUaCEVqCAuY6EpjO+TfzmIygtfO8BJwF0XTb0xEBwhok0LqmLXr5ola0UdJ3YC1KsnjzNcs8fN7Vewch2+j4PXfCQS6Z127YC7EZMoeASpmYn1BAwPmZDaMfUYy7obpSWndLzUDP0aQCKCklTEf5+RMzVeuI68aXLcKRXvUT8z2uHOKh0I+EFIYLHkyAUEtIgzZWIVwDaFwoQWdIcqPAoZ4ohghKUcR6LYTzLUuC89JKUJPd91FPTNOPt7NWl1knjsmxfla37eMQKmSNLTskZKRGbXJMquSM1UiecjMgLeSVvxrvxaXwZ3/PTjLH4OSZLMGa/UQKmAg==</latexit>

h(ṙ)
<latexit sha1_base64="nTDoR0nTUjYKczFFZmRmUqviMAk=">AAACJ3icbVC7TgJBFJ31CesLtDGxmUhMsCG7WkhJtLHERB4GCJkdLjBh9pGZuyZISPwHW/0AW3/Ezmhi4584CxQCnurknHtzTo4XSaHRcb6sldW19Y3NVNre2t7Z3ctk96s6jBWHCg9lqOoe0yBFABUUKKEeKWC+J6HmDa4Sv3YPSoswuMVhBC2f9QLRFZyhke76+WYnRKpO25mcU3AmoMvEnZFc6fDhO/34dlluZ62UeeWxDwFyybRuuE6ErRFTKLiEsd2MNUSMD1gPGoYGzAfdGk0aj+lJrBmGNAJFhaQTEf5+jJiv9dD3zKXPsK8XvUT8z2vE2C22RiKIYoSAJ0EoJEyCNFfCTAG0IxQgsqQ5UBFQzhRDBCUo49yIsdlmLnBaek5Kks1yemzbttnOXVxqmVTPCu55wbkxIxbJFClyRI5JnrjkgpTINSmTCuHEJ0/kmbxYr9a79WF9Tk9XrNnPAZmD9fMLHHKn9A==</latexit>

f = 0

k(r) = k0r + k1r3

h(ṙ) = bṙ|ṙ|
k0, k1, b > 0

mr̈ + bṙ|ṙ|+ k0r + k1r3 = 0

How does the total mechanical energy change in time?

By deriving (1) with respect to time and taking into account the state equation, we get:

V̇ (x1, x2) =
dV (x1, x2)

dt
= mx2ẋ2 + k0x1ẋ1 + k1x

3
1ẋ1 = −b|x2|3

Clearly:

• The function V̇ (x1, x2) is not an explicit function of time but only of the state. Hence, for a given state

x = [x1 x2]> the rate of variation of V (x1, x2) is fixed.

• The mechanical energy is continuously dissipated, except when x2 = 0, i.e., when the cart velocity is zero.
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Example (cont.)

m
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f
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r
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k(r)
<latexit sha1_base64="qjBkugLJfbMdcBdrAkKroq3o0k4=">AAACInicbVBLTgJBFOzBH4w/0I2Jm47EBDdkRheyJLpxiYl8EiCkp3lAh55Put+Y4ITEE7jVA3gCj+HOuDLhMM4MLASsVaXqvVSlnEAKjZb1Y2Q2Nre2d7I5c3dv/+AwXzhqaD9UHOrcl75qOUyDFB7UUaCEVqCAuY6EpjO+TfzmIygtfO8BJwF0XTb0xEBwhok0LqmLXr5ola0UdJ3YC1KsnjzNcs8fN7Vewch2+j4PXfCQS6Z127YC7EZMoeASpmYn1BAwPmZDaMfUYy7obpSWndLzUDP0aQCKCklTEf5+RMzVeuI68aXLcKRXvUT8z2uHOKh0I+EFIYLHkyAUEtIgzZWIVwDaFwoQWdIcqPAoZ4ohghKUcR6LYTzLUuC89JKUJPd91FPTNOPt7NWl1knjsmxfla37eMQKmSNLTskZKRGbXJMquSM1UiecjMgLeSVvxrvxaXwZ3/PTjLH4OSZLMGa/UQKmAg==</latexit>

h(ṙ)
<latexit sha1_base64="nTDoR0nTUjYKczFFZmRmUqviMAk=">AAACJ3icbVC7TgJBFJ31CesLtDGxmUhMsCG7WkhJtLHERB4GCJkdLjBh9pGZuyZISPwHW/0AW3/Ezmhi4584CxQCnurknHtzTo4XSaHRcb6sldW19Y3NVNre2t7Z3ctk96s6jBWHCg9lqOoe0yBFABUUKKEeKWC+J6HmDa4Sv3YPSoswuMVhBC2f9QLRFZyhke76+WYnRKpO25mcU3AmoMvEnZFc6fDhO/34dlluZ62UeeWxDwFyybRuuE6ErRFTKLiEsd2MNUSMD1gPGoYGzAfdGk0aj+lJrBmGNAJFhaQTEf5+jJiv9dD3zKXPsK8XvUT8z2vE2C22RiKIYoSAJ0EoJEyCNFfCTAG0IxQgsqQ5UBFQzhRDBCUo49yIsdlmLnBaek5Kks1yemzbttnOXVxqmVTPCu55wbkxIxbJFClyRI5JnrjkgpTINSmTCuHEJ0/kmbxYr9a79WF9Tk9XrNnPAZmD9fMLHHKn9A==</latexit>

f = 0

k(r) = k0r + k1r3

h(ṙ) = bṙ|ṙ|
k0, k1, b > 0

mr̈ + bṙ|ṙ|+ k0r + k1r3 = 0

Question:

Is it possible to exploit the condition

V̇ (x1, x2) ≤ 0

to draw conclusions about the stability of the equilibrium state x̄ = [0 0]> ?

Answer:

Yes, it is! −→ Lyapunov Stability Theory
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Direct Lyapunov Method (continuous-time systems)

The direct Lyapunov method consists of

• associating to the system state, a suitable positive scalar function that plays the role of “energy”;

• (trying to) prove that such function is decreasing along the trajectories of the system.

Preliminary notions:

• positive (semi)definite and negative (semi)definite functions

• computation of V̇ (x)
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Positive definite functions

Definition

A function V (·) : Rn → R is said to be positive definite in x̄ if:

• V (x̄) = 0

• ∃ ξ > 0 : V (x) > 0 , ∀x : ‖x− x̄‖ < ξ, x 6= x̄

x1 x2

V (x1, x2)

x̄

x1 x2

V (x1, x2)

Positive definite in 0 Positive definite in x̄
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Positive semi-definite functions

Definition

A function V (·) : Rn → R is said to be positive semi-definite in x̄ if:

• V (x̄) = 0

• ∃ ξ > 0 : V (x) ≥ 0 , ∀x : ‖x− x̄‖ < ξ, x 6= x̄

x1 x2

V (x1, x2)
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Negative definite and semi-definite functions

Definition

A function V (·) : Rn → R is said to be negative definite (negative semi-definite) in x̄ if −V (·) is positive

definite (positive semi-definite).

x1 x2

V (x1, x2)

x1 x2

V (x1, x2)

Negative definite in 0 Negative semi-definite in 0
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Quadratic functions

Particularly useful for the applications are the quadratic functions of the form:

V (x) = x>Ax =

n∑
i=1

n∑
j=1

aijxixj

where A is a symmetric matrix.

Definition

The matrix A is said to be positive definite if the quadratic form V (x) = x>Ax is positive definite in the

origin.

Analogous definitions can be given for A positive semi-definite, negative definite, and so on.

If A is not symmetric, it can be easily shown that only its “symmetric part” contributes to the quadratic form

V (x) = x>Ax . In that case, matrix A can be replaced by its symmetric part AS whose entries are given by:

aSij =
aij + aji

2
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Criteria for checking the definiteness of a matrix

Recall that all eigenvalues of a symmetric matrix are real. The following results are useful.

Lemma

A symmetric matrix A is positive (negative) definite if and only if all its eigenvalues are strictly positive

(negative):

λi >
(<)

0 , i = 1, . . . , n

where λi denotes the i-th eigenvalue of A .

Lemma

A symmetric matrix A is positive (negative) semi-definite if and only if all its eigenvalues are non-negative

(non-positive):

λi ≥
(≤)

0 , i = 1, . . . , n

Observe that, for non-symmetric matrices, the eigenvalue check must be carried out on the symmetric part.
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Computation of V̇ (x)

Given a nonlinear system

ẋ(t) = f(x(t))

and a scalar function of the state

V (·) : Rn → R,

how does V vary along the system trajectories?

V (x(t)) : R → Rn → R

t → x(t) → V (x(t))

Using the rule for the derivative of compound functions (chain rule) we get:

V̇ (x) =
dV (x(t))

dt
= ∇V (x)ẋ = ∇V (x)f(x)

where the gradient ∇V (x) is a row vector:

∇V (x) =

[
∂V (x)

∂x1
. . .

∂V (x)

∂xn

]
.

Notice that V̇ (x) is a function of the state only (as a consequence, there’s no need to solve the differential

equations, to compute it).
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Lyapunov Theorem

Theorem

Given the system ẋ(t) = f(x(t)) , x ∈ Rn , having x̄ as an equilibrium state.

Given a function V (·) : Rn → R which is positive definite in x̄ and of class C1 (i.e. V (·) is continuous

along with its partial derivatives).

Then, the following implications hold:

V̇ (x) negative semi-definite in x̄ =⇒ x̄ is a stable equilibrium state

V̇ (x) negative definite in x̄ =⇒ x̄ is an asymptotically stable equilibrium state

V̇ (x) positive definite in x̄ =⇒ x̄ is an unstable equilibrium state

Before showing the proof, some remarks are in order.
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Remarks

1. The Lyapunov Theorem is of key importance since it allows to analyze the stability of equilibrium states

(and hence of arbitrary nominal state movements) without the need to determine the explicit solutions of

the state equations

2. For the above reason, the Lyapunov Theorem is also called the Direct Lyapunov Method

3. The Lyapunov Theorem provides sufficient conditions for the stability of equilibrium states. In other words:

if a positive definite function V (·) does not satisfy some of the conditions on V̇ (·) , no conclusion can be

drawn about the stability of the equilibrium state.

Felice Andrea Pellegrino 322MI –Spring 2023 L3 –p30



Intuition

Consider a second-order nonlinear system: {
ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

• Denote by σ the vector orthogonal to the level

curve k2 = V (x̃) evaluated on the state x̃

belonging to the trajectory T

• Given x̃ , the value of V̇ (x̃) is uniquely determined

• The knowledge of V̇ (x̃) allows to establish

whether the state is evolving towards increasing or

decreasing values of V (·)
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Intuition (cont.)

Denoting by ρ the tangent vector to the state trajectory, the following three cases may occur:
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Intuition

Since V (x) is continuous and positive definite, the level curves are closed, at least in a neighborhood of x̄,

and contain the state x̄

The compact set delimited by a level curve k is called k sublevel set. The sublevel sets allow to understand

the meaning of the conditions stated by the Lyapunov Theorem.

For example, it is clear that the condition

V̇ (x) negative definite

implies that the system state can only evolve entering in a lower sublevel set and then it converges to the

equilibrium state.
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Proof

We first prove the implication:

V̇ (x) negative semi-definite in x̄ =⇒ x̄ is stable.

Observe that:

• V (x) positive definite in x̄

• V̇ (x) negative semi-definite in x̄

imply that there exists a neighborhood W of x̄ in which

V (x) > 0, V̇ (x) ≤ 0 ∀x 6= x̄
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Proof (cont.)

To prove the stability of x̄ it is necessary to show that:

∀ε > 0 ∃δ(ε) > 0 : ‖x(0)− x̄‖ < δ =⇒ ‖x(t)− x̄‖ < ε, ∀t ≥ 0

Let Bε(x̄) be a ball of radius ε centered in x̄. It is not restrictive to suppose that Bε(x̄) is contained in W : indeed,

if δ guarantees the previous condition for ε : Bε(x̄) ⊂ W , the same δ will guarantee the condition for any ε̄ > ε.

Let

m = min
x∈∂Bε(x̄)

V (x)

which exists because V (x) is continuous and the set is closed and bounded.

"

<latexit sha1_base64="aGnjwt6F24ZPLiTWKbBfN4ORuPQ="></latexit>
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Proof (cont.)

Choose δ such that max
x∈Bδ(x̄)

V (x)
.
= M < m (this is possible

because V (x) is continuous and null in x̄).

Then, take x(0) ∈ Bδ(x̄) and suppose that the subsequent

trajectory goes out from the sphere Bε(x̄). Let t̄ be the first time

instant in which the trajectory intersects the boundary Bε(x̄)

t̄ = min{t ≥ 0 : x(t) ∈ ∂Bε(x̄)}
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Proof (cont.)

For the particular choice of x(0) and t̄:

V (x(0)) ≤ M < m ≤ V (x(t̄))

from which

V (x(0)) < V (x(t̄)).

That result contradicts the hypothesis of V̇ being negative semi-definite. Indeed V can’t grow up along system

trajectories:

V (x(t̄))− V (x(0)) =

∫ t̄

0
V̇ (x(t))︸ ︷︷ ︸

≤0 ∀x∈W

dt ≤ 0

Therefore, the trajectory never leaves the sphere Bε(x̄).

The proofs of the remaining implications are similar.
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Examples

Consider the first order system

ẋ = (1− x)5

whose sole equilibrium state is x̄ = 1. Take the Lyapunov function

V (x) = (1− x)2

that is continuous and positive definite in x̄ = 1. We get

V̇ (x) =
dV (x)

dx
f(x) = −2(1− x)(1− x)5 = −2(1− x)6

that is negative definite in x̄ because V̇ (x̄) = 0 and V̇ (x) < 0 ∀x 6= x̄.

Thus, the equilibrium state is asymptotically stable.

Felice Andrea Pellegrino 322MI –Spring 2023 L3 –p38



Examples (cont.)

m
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

f
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

r
<latexit sha1_base64="KW9lsAyVkdpVbFveN55RrnKcBcI=">AAACH3icbVC7TgJBFJ3FF64v0NLETCQmVmRXC+kksbGERB4JbMjscMEJs4/M3DUhG0orW/0A/4LK1s7Y8g3+hLsLhYCnOjnn3pyT44ZSaLSsmZHb2Nza3snvmnv7B4dHheJxUweR4tDggQxU22UapPChgQIltEMFzHMltNzRXeq3nkBpEfgPOA7B8djQFwPBGSZSXfUKJatsZaDrxF6Q0u3HtP7zfDat9YpGvtsPeOSBj1wyrTu2FaITM4WCS5iY3UhDyPiIDaGTUJ95oJ04azqhF5FmGNAQFBWSZiL8/YiZp/XYc5NLj+GjXvVS8T+vE+Gg4sTCDyMEn6dBKCRkQZorkUwAtC8UILK0OVDhU84UQwQlKOM8EaNkk6XAeeklKU3uB6gnpmkm29mrS62T5lXZvi5bdatUrZA58uSUnJNLYpMbUiX3pEYahBMgL+SVvBnvxqfxZXzPT3PG4ueELMGY/QJeY6ZJ</latexit>

k(r)
<latexit sha1_base64="qjBkugLJfbMdcBdrAkKroq3o0k4=">AAACInicbVBLTgJBFOzBH4w/0I2Jm47EBDdkRheyJLpxiYl8EiCkp3lAh55Put+Y4ITEE7jVA3gCj+HOuDLhMM4MLASsVaXqvVSlnEAKjZb1Y2Q2Nre2d7I5c3dv/+AwXzhqaD9UHOrcl75qOUyDFB7UUaCEVqCAuY6EpjO+TfzmIygtfO8BJwF0XTb0xEBwhok0LqmLXr5ola0UdJ3YC1KsnjzNcs8fN7Vewch2+j4PXfCQS6Z127YC7EZMoeASpmYn1BAwPmZDaMfUYy7obpSWndLzUDP0aQCKCklTEf5+RMzVeuI68aXLcKRXvUT8z2uHOKh0I+EFIYLHkyAUEtIgzZWIVwDaFwoQWdIcqPAoZ4ohghKUcR6LYTzLUuC89JKUJPd91FPTNOPt7NWl1knjsmxfla37eMQKmSNLTskZKRGbXJMquSM1UiecjMgLeSVvxrvxaXwZ3/PTjLH4OSZLMGa/UQKmAg==</latexit>

h(ṙ)
<latexit sha1_base64="nTDoR0nTUjYKczFFZmRmUqviMAk=">AAACJ3icbVC7TgJBFJ31CesLtDGxmUhMsCG7WkhJtLHERB4GCJkdLjBh9pGZuyZISPwHW/0AW3/Ezmhi4584CxQCnurknHtzTo4XSaHRcb6sldW19Y3NVNre2t7Z3ctk96s6jBWHCg9lqOoe0yBFABUUKKEeKWC+J6HmDa4Sv3YPSoswuMVhBC2f9QLRFZyhke76+WYnRKpO25mcU3AmoMvEnZFc6fDhO/34dlluZ62UeeWxDwFyybRuuE6ErRFTKLiEsd2MNUSMD1gPGoYGzAfdGk0aj+lJrBmGNAJFhaQTEf5+jJiv9dD3zKXPsK8XvUT8z2vE2C22RiKIYoSAJ0EoJEyCNFfCTAG0IxQgsqQ5UBFQzhRDBCUo49yIsdlmLnBaek5Kks1yemzbttnOXVxqmVTPCu55wbkxIxbJFClyRI5JnrjkgpTINSmTCuHEJ0/kmbxYr9a79WF9Tk9XrNnPAZmD9fMLHHKn9A==</latexit>

k(r) = k0r + k1r3

h(ṙ) = bṙ|ṙ|

Consider the total energy of the nonlinear system shown in figure:

V (x1, x2) =
1

2
mx2

2 +
1

2
k0x

2
1 +

1

4
k1x

4
1

which belongs to C1 and is positive definite in the origin. Its time-derivative is

V̇ (x1, x2) = mx2ẋ2 + k0x1ẋ1 + k1x
3
1ẋ1 = −b|x2|3

which is negative semi-definite in the origin.

Felice Andrea Pellegrino 322MI –Spring 2023 L3 –p38



Examples (cont.)

V̇ (x1, x2) = mx2ẋ2 + k0x1ẋ1 + k1x
3
1ẋ1 = −b|x2|3

Indeed, it is equal to zero as long as x2 = 0, i.e.

V̇ (x1, 0) = 0, ∀x1

x1 x2

V

From the Lyapunov theorem, we can conclude that the equilibrium state is stable.

Felice Andrea Pellegrino 322MI –Spring 2023 L3 –p38



Counterexample (Van der Pol oscillator)

The state equation of the Van der Pol oscillator is

ẋ1 = x2

ẋ2 = −
x1

LC
−

x2

C
(3x2

1 − α)

where L,C, α > 0. The origin is the unique equilibrium state:

x̄ =

[
0

0

]

Take the function

V (x1, x2) = x2
1 + LCx2

2

which belongs to C1 and is positive definite in the origin. Thus, we get

V̇ (x) = [2x1 2LCx2]

 x2

−
x1

LC
−

x2

C
(3x2

1 − α)

 = −2Lx2
2(3x

2
1 − α)

that is positive semi-definite (it is equal to zero if x2 = 0 and it is closely positive for x1 sufficiently small).

Therefore, no conclusions can be drawn based on the Lyapunov theorem.
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Krasowskii criterion

The following result is useful to conclude asymptotic stability even when V̇ is negative semi-definite.

Theorem

Given the nonlinear system ẋ = f(x) having x̄ as an equilibrium state.

Given a function V (·) : Rn → R which is positive definite in x̄ and of class C1 and such that V̇ (x) is

negative semi-definite in x̄ .

Let W be a neighborhood of x̄ such that V (x) > 0, V̇ (x) ≤ 0 ∀x ∈ W \ x̄.

Let

N =
{
x ∈ W \ x̄ : V̇ (x) = 0

}
.

If there are no trajectories entirely contained in N , i.e.

@x̃ ∈ N : x(0) = x̃ =⇒ x(t) ∈ N ∀t ≥ 0

then x̄ is asymptotically stable.

Intuitively, the conditions of the Krasowskii criterion prevent the state to be stucked in the region where no

dissipation occurs.
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Krasowskii criterion (cont.)

Let consider again the mechanical system

m
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

f
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

r
<latexit sha1_base64="KW9lsAyVkdpVbFveN55RrnKcBcI=">AAACH3icbVC7TgJBFJ3FF64v0NLETCQmVmRXC+kksbGERB4JbMjscMEJs4/M3DUhG0orW/0A/4LK1s7Y8g3+hLsLhYCnOjnn3pyT44ZSaLSsmZHb2Nza3snvmnv7B4dHheJxUweR4tDggQxU22UapPChgQIltEMFzHMltNzRXeq3nkBpEfgPOA7B8djQFwPBGSZSXfUKJatsZaDrxF6Q0u3HtP7zfDat9YpGvtsPeOSBj1wyrTu2FaITM4WCS5iY3UhDyPiIDaGTUJ95oJ04azqhF5FmGNAQFBWSZiL8/YiZp/XYc5NLj+GjXvVS8T+vE+Gg4sTCDyMEn6dBKCRkQZorkUwAtC8UILK0OVDhU84UQwQlKOM8EaNkk6XAeeklKU3uB6gnpmkm29mrS62T5lXZvi5bdatUrZA58uSUnJNLYpMbUiX3pEYahBMgL+SVvBnvxqfxZXzPT3PG4ueELMGY/QJeY6ZJ</latexit>

k(r)
<latexit sha1_base64="qjBkugLJfbMdcBdrAkKroq3o0k4=">AAACInicbVBLTgJBFOzBH4w/0I2Jm47EBDdkRheyJLpxiYl8EiCkp3lAh55Put+Y4ITEE7jVA3gCj+HOuDLhMM4MLASsVaXqvVSlnEAKjZb1Y2Q2Nre2d7I5c3dv/+AwXzhqaD9UHOrcl75qOUyDFB7UUaCEVqCAuY6EpjO+TfzmIygtfO8BJwF0XTb0xEBwhok0LqmLXr5ola0UdJ3YC1KsnjzNcs8fN7Vewch2+j4PXfCQS6Z127YC7EZMoeASpmYn1BAwPmZDaMfUYy7obpSWndLzUDP0aQCKCklTEf5+RMzVeuI68aXLcKRXvUT8z2uHOKh0I+EFIYLHkyAUEtIgzZWIVwDaFwoQWdIcqPAoZ4ohghKUcR6LYTzLUuC89JKUJPd91FPTNOPt7NWl1knjsmxfla37eMQKmSNLTskZKRGbXJMquSM1UiecjMgLeSVvxrvxaXwZ3/PTjLH4OSZLMGa/UQKmAg==</latexit>

h(ṙ)
<latexit sha1_base64="nTDoR0nTUjYKczFFZmRmUqviMAk=">AAACJ3icbVC7TgJBFJ31CesLtDGxmUhMsCG7WkhJtLHERB4GCJkdLjBh9pGZuyZISPwHW/0AW3/Ezmhi4584CxQCnurknHtzTo4XSaHRcb6sldW19Y3NVNre2t7Z3ctk96s6jBWHCg9lqOoe0yBFABUUKKEeKWC+J6HmDa4Sv3YPSoswuMVhBC2f9QLRFZyhke76+WYnRKpO25mcU3AmoMvEnZFc6fDhO/34dlluZ62UeeWxDwFyybRuuE6ErRFTKLiEsd2MNUSMD1gPGoYGzAfdGk0aj+lJrBmGNAJFhaQTEf5+jJiv9dD3zKXPsK8XvUT8z2vE2C22RiKIYoSAJ0EoJEyCNFfCTAG0IxQgsqQ5UBFQzhRDBCUo49yIsdlmLnBaek5Kks1yemzbttnOXVxqmVTPCu55wbkxIxbJFClyRI5JnrjkgpTINSmTCuHEJ0/kmbxYr9a79WF9Tk9XrNnPAZmD9fMLHHKn9A==</latexit>

 ẋ1 = x2

ẋ2 = −
k0

m
x1 −

k1

m
x3
1 −

b

m
x2|x2|

By employing the total energy as Lyapunov function, we previously obtained a negative semi-definite

V̇ (x1, x2) = −b|x2|3.

Clearly, N =
{
[x1 0]> : x1 6= 0

}
as W can be taken arbitrarily large. For initial states belonging to N we have ẋ1(0) = 0

ẋ2(0) = −
k0

m
x1(0)−

k1

m
x3
1(0) 6= 0

Thus, after an arbitrarily small time interval, the state will leave the set N . As a consequence, by the Krasowskii

criterion, the origin is asymptotically stable.
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Direct Lyapunov method for discrete-time systems

For discrete-time systems, we can state the following result.

Theorem

Given the nonlinear system x(k + 1) = f(x(k)) , x ∈ Rn , having the equilibrium state x̄ .

Given a continuous function V (·) : Rn → R which is positive definite in x̄ .

Let

∆V (x)
.
= V (f(x))− V (x)

Then, the following implications hold:

∆V (x) negative semi-definite in x̄ =⇒ x̄ is a stable equilibrium state

∆V (x) negative definite in x̄ =⇒ x̄ is an asymptotically stable equilibrium state

∆V (x) positive definite in x̄ =⇒ x̄ is an unstable equilibrium state
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Examples

Consider the second-order nonlinear system:
x1(k + 1) =

x2(k)

1 + x2
2(k)

x2(k + 1) =
x1(k)

1 + x2
2(k)

Clearly, x̄ = [0 0]> is an equilibrium state.

The function V (x1, x2) = x2
1 + x2

2 is continuous and positive definite.

It follows that:

∆V (x) = V (f(x))− V (x) =

(
x2

1 + x2
2

)2

+

(
x1

1 + x2
2

)2

− x2
1 − x2

2

=
−2x2

2 − x4
2

(1 + x2
2)

2
(x2

1 + x2
2)

which is negative semi-definite. Therefore, the equilibrium state x̄ = [0 0]> is stable.
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Examples (cont.)

Consider the same second-order nonlinear system as before:
x1(k + 1) =

x2(k)

1 + x2
2(k)

x2(k + 1) =
x1(k)

1 + x2
2(k)

but let us choose a different candidate Lyapunov function:

V (x) = (x2
1 + x2

2)

(
1 +

1

(1 + x2
2)

2

)

After some algebra, we obtain:

∆V (x) =
x2
1 + x2

2[
(1 + x2

2)
2 + x2

1

]2︸ ︷︷ ︸
=0 for x=[0 0]> and >0 elsewhere

{
(1 + x2

2)
2 −

[
(1 + x2

2)
2 + x2

1

]2}︸ ︷︷ ︸
=0 for x=[0 0]> and <0 elsewhere

Thus, the equilibrium state x̄ = [0 0]> is asymptotically stable.
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Stability of linear continuous-time

systems



Stability of linear systems

Consider a generic regular linear system of finite dimension:{
ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

We want to study the stability of the generic movement

x̄(t) = ϕ(t, t0, x̄0, ū(·))

with respect to perturbations of the initial state x̄0 = x(t0).

By defining the difference between the perturbed and the unperturbed movement (nominal movement):

z(t)
.
= x(t)− x̄(t)

we get, by linearity:

ż(t) = A(t)(z(t) + x̄(t)) +B(t)ū(t)−A(t)x̄(t)−B(t)ū(t)

= A(t)z(t)
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Stability of linear systems (cont.)

The difference between the perturbed and the unperturbed movement evolves according to:

ż(t) = A(t)z(t)

and for this reason it doesn’t depend on the initial state (but only on the perturbation z(t0) of the initial state).

Property

If a system is linear all the movements (and therefore, in particular, the constant movements: the equilibria)

share the same stability properties. In other words, for a linear system, the stability is a global property. We

can thus refer to the stability as a property of the system.
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Stability of linear continuous-time

invariant systems



Stability and eigenvalues

The following theorem establishes a relationship between the stability of a LTI system and the eigenvalues of

the state matrix.

Theorem

Given the LTI system

ẋ(t) = Ax(t) +Bu(t)

let σ(A) = {λ1, . . . , λn} be the spectrum of A.

(a) The system is asymptotically stable if and only if for any λ ∈ σ(A), we have Re(λ) < 0 ;

(b) The system is stable if and only if for any λ ∈ σ(A), we have Re(λ) ≤ 0 and, moreover, if Re(λ) = 0 then

deg(λ) = 1.
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Stability and eigenvalues (cont.)

Before proceeding with proof, we recall the definition and some properties of matrix norms.

Definition

Given Am×n and a vector norm ‖·‖ : Rm → R, the following is the induced matrix norm:

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

Properties

Induced matrix norms are submultiplicative, i.e.

‖MN‖ ≤ ‖M‖‖N‖.

Moreover, if M is square of size n× n, then

‖M‖ ≤ nmax
i,j

|mij |.
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Stability and eigenvalues (cont.)

Proof. We first prove the implication (⇐) of statement (b). The norm of the state is

‖x(t)‖ = ‖eAtx(0)‖ = ‖TeJtT−1x(0)‖ ≤ ‖T‖‖eJt‖‖T−1‖‖x(0)‖,

where J = T−1AT is the Jordan form of A. From the lecture on the solution to LTI systems we know that

eJt =


eJ1t 0 . . . 0

0 eJ2t

.

.

.
. . .

0 . . . . . . eJst

 , where

eJit =



eλit teλit t2

2!
eλit t3

3!
eλit . . . tνi−1

(νi−1)!
eλit

0 eλit teλit t2

2!
eλit . . . tνi−2

(νi−2)!
eλit

0 0 eλit teλit . . . tνi−3

(νi−3)!
eλit

.

.

.
.
.
.

.

.

.
. . .

. . .
.
.
.

0 0 0 0
. . . teλit

0 0 0 0 . . . eλit


. (2)
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Stability and eigenvalues (cont.)

The condition on the eigenvalues required by statement (b) implies that the matrix eJt is bounded:

∃k > 0 : [eJt]ij ≤ k, ∀t ≥ 0, ∀i, j

t t t

t t t

t t t

t t t

t t t

t t t

Indeed, with reference to the figures above:

• if Re(λ) < 0, the modes eλt, teλt, . . . are bounded (left columns of the figures);

• if Re(λ) = 0, the unbounded modes teλt, t2eλt, . . . are excluded (central columns of the figures), because

deg(λ) = 1 (hence there are no Jordan blocks of size greater than one associated to λ);

• the case Re(λ) > 0 (right columns) is excluded.
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Stability and eigenvalues (cont.)

It follows that ∀t ≥ 0:

‖x(t)‖ ≤ ‖T‖‖eJt‖‖T−1‖‖x(0)‖ ≤ nk‖T‖‖T−1‖‖x(0)‖. (3)

Given an arbitrary ε > 0, if we take δ as

δ =
ε

nk‖T‖‖T−1‖

it follows that any trajectory starting in Bδ(0) is included in Bε(0).

Indeed, inequality (3) guarantees that ‖x(t)‖ ≤
ε

δ
‖x(0)‖, so

‖x(0)‖ ≤ δ =⇒ ‖x(t)‖ ≤ ε, ∀t ≥ 0.

As a consequence, the origin (and therefore the system) is stable.
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Stability and eigenvalues (cont.)

(⇒) We now show that whenever the condition on the eigenvalues is violated, the system is unstable. If

Re(λ) > 0 or Re(λ) = 0, deg(λ) > 1, there is at least one unbounded entry of eJt , say
[
eJt

]
ij
. Take

x(0) = Tα = T



α1

.

.

.

αj

.

.

.

αn


= T



0

.

.

.

αj

.

.

.

0


as initial condition. Thus, we get:

x(t) = TeJtT−1x(0) = TeJtT−1Tα = Tαj

jth column of eJt︷ ︸︸ ︷
.
.
.[

eJt
]
ij

.

.

.


which is unbounded ∀αj 6= 0. Therefore the origin (and thus, the system) is not stable.
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Stability and eigenvalues (cont.)

As for the statement (a), which concerns the asymptotic stability, the proof is as follows.

(⇐)

We need to show that, if Re(λi) < 0 ∀i, then the origin is both stable and attractive. The stability is guaranteed

by the statement (b). The origin is attractive because all the modes converge to zero.

(⇒)

Suppose that a non-convergent mode exists (necessarily due to an eigenvalue having non strictly-negative real

part). In the same way as before, we can find an initial state that generates a non-convergent natural

movement.
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Stability and eigenvalues (cont.)

Corollary

Given the LTI system

ẋ(t) = Ax(t) +Bu(t)

let σ(A) = {λ1, . . . , λn} be the spectrum of A.

The system is unstable if and only if there exist at least one λ ∈ σ(A) such that Re(λ) > 0 or Re(λ) = 0 and

deg(λ) > 1.
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Lyapunov Theorem for linear continuous-time systems

Theorem

The system

ẋ(t) = Ax(t) (4)

is asymptotically stable if and only if for every symmetric positive-definite matrix Q, there exists a unique

symmetric and positive-definite matrix P , that solves the following Lyapunov equation:

A>P + PA = −Q. (5)
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Lyapunov Theorem for linear continuous-time systems (cont.)

Proof.
(⇐)

Given the symmetric and positive definite matrices P,Q that satisfy the Lyapunov equation, let

V (x) = x>Px.

By taking the derivative w.r.t. time we get:

V̇ (x) = ẋ>Px+ x>P ẋ = (Ax)>Px+ x>PAx = x>(A>P + PA)x = −x>Qx,

where −x>Qx < 0, ∀x 6= 0.

Therefore, V̇ (x) is negative-definite and by the Lyapunov theorem the origin is an asymptotically stable

equilibrium state. Consequently, the system is asymptotically stable.
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Lyapunov Theorem for linear continuous-time systems (cont.)

(⇒)

Let the system (4) be asymptotically stable and Q be symmetric and positive definite. We need to show that a

symmetric and positive definite matrix P exists that satisfies the Lyapunov equation. Let

P =

+∞∫
0

eA
>tQeAtdt.

Such a matrix is well-defined because, being the system asymptotically stable, all the entries of eA
>tQeAt

converge exponentially to zero making the improper integral well-defined.

Moreover, P is indeed a solution of the Lyapunov equation. By substitution:

A>P + PA = A>
+∞∫
0

eA
>tQeAtdt+

+∞∫
0

eA
>tQeAtdtA =

=

+∞∫
0

d

dt
(eA

>tQeAt)dt =
[
eA

>tQeAt
]∞
0

= −Q

where the second equality follows from the fact that
d

dt
eAt = AeAt = eAtA.
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Lyapunov Theorem for linear systems (cont.)

Furthermore, a P of the form

P =

+∞∫
0

eA
>tQeAtdt

• is symmetric, being the integral of symmetric matrices:

(eA
>tQeAt)> = eA

>tQeAt;

• is positive definite, being the integral of positive definite matrices:

x>(eA
>tQeAt)x = (eAtx)>Q(eAtx) > 0,∀x 6= 0

Indeed, Q is positive definite by hypothesis and eAt (that has as eigenvalues eλit) has trivial kernel:

ker[eAt] = {0}, ∀t.
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Lyapunov Theorem for linear systems (cont.) (cont.)

It remains to show that the solution is unique. Suppose, by contradiction, that there exists another solution P̄

to (9), i.e.

A>P + PA = −Q, and A>P̄ + P̄A = −Q.

Then, by subtracting

A>(P − P̄ ) + (P − P̄ )A = 0.

and by multiplying on the left and right by eA
>t and eAt respectively, we get

eA
>tA>(P − P̄ )eAt + eA

>t(P − P̄ )AeAt︸ ︷︷ ︸
d

dt

(
eA

>t(P − P̄ )eAt
) = 0, ∀t ≥ 0.

Therefore eA
>t(P − P̄ )eAt is constant for all times. On the other hand it must converge to zero as t → ∞

because of stability, hence it must be always zero. Then, since eAt is nonsingular, this implies P = P̄ .
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Observations

1. The Lyapunov equation

A>P + PA = −Q

is linear in P . For given A and Q, finding P amounts to solving a linear system of equations, whose

unknowns are the entries of P . Actually, only the entries above (or below) the main diagonal of P have to

be considered (including the diagonal), because P is symmetric. The total number of unknowns and

equations is then

n+ (n− 1) + (n− 2) + · · ·+ 1 =
n(n+ 1)

2
.

2. The theorem suggests a stability test for linear systems: choose a symmetric positive definite Q and solve

the Lyapunov equation for symmetric P . If a solution exists such as P is positive definite, then the system

is asymptotically stable.

3. The proof of the theorem shows that, if the test is successful, then the function

V (x) = x>Px

is a Lyapunov function for the system. Thus, the theorem provides a method for finding a Lyapunov

function (for linear systems).
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Example

Consider the state matrix

A =

[
0 1

−1 −1

]
which yields an asymptotically stable system. By taking Q = I , the Lyapunov equation is[

0 −1

1 −1

][
α β

β γ

]
+

[
α β

β γ

][
0 1

−1 −1

]
=

[
−1 0

0 −1

]

thus [
−2β α− β − γ

α− β − γ 2(β − γ)

]
=

[
−1 0

0 −1

]
which, by equating the corresponding entries, yields β = 1/2, γ = 1 and α = 3/2. Thus, the resulting matrix P is

P =

[
3/2 1/2

1/2 1

]
.
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Kronecker product and vector operator

Definition

Given the matrices Am×n and Bp×q , the Kronecker product is the mp× nq matrix:

A⊗B =


A11B . . . A1nB

.

.

.
.
.
.

Am1B . . . AmnB



The product is defined for any pair of matrices, is non commutative, and enjoys the following properties:

1. (A⊗B)⊗ C = A⊗ (B ⊗ C);

2. (A⊗B)> = A> ⊗B> ;

3. (A⊗B)−1 = A−1 ⊗B−1 ;

4. For square A and B: if λA is an eigenvalue of A and λB is an eigenvalue of B, then λAλB is an eigenvalue

of A⊗B;

5. rank(A⊗B) = rank(A) rank(B).
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Kronecker product and vector operator (cont.)

To state another property we must introduce the vector operator.

Definition

Given a matrix X = [x1 x2 . . . xn], the vector operator vec is the operator that stacks the columns one

underneath the other to a single vector:

vec (X) =


x1

x2

.

.

.

xn

 .

The following useful identity holds:

vec (AXB) =
(
B> ⊗A

)
vec (X) . (6)

The above identity is useful for “pulling out” the unknown X from a matrix equation.
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Kronecker product and vector operator (cont.)

Example: consider the following linear system of equation in the unknown X[
a11 a12

a21 a22

][
x11 x12

x21 x22

][
b1

b2

]
=

[
0

0

]
.

By taking the vec of both sides and applying the previous identity we get:

[b1 b2]⊗
[

a11 a12

a21 a22

]
x11

x21

x12

x22

 =

[
0

0

]
,

thus we obtain an easy to manage equation:

[
b1a11 b1a12 b2a11 b2a12

b1a21 b1a22 b2a21 b2a22

]
x11

x21

x12

x22

 =

[
0

0

]
.
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Kronecker product and vector operator (cont.)

Consider the Lyapunov equation:

A>P + PA = −Q.

By applying the vec operator to both sides, and the identity (6), we get(
I ⊗A> +A> ⊗ I

)
vec (P ) = − vec (Q) .

Thus, provided that the matrix on the left side is invertible, we have

vec (P ) = −
(
I ⊗A> +A> ⊗ I

)−1
vec (Q) .

Note

In Matlab, the vec operator can be computed with b=B(:) and the inverse operation can be computed with

B=reshape(b,n,length(b)/n). The Kronecker product is implemented in kron(A,B).
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Stability of linear discrete-time

systems



Stability of linear discrete-time systems

Consider the general discrete-time linear dynamic system

x(k + 1) = A(k)x(k) +B(k)u(k),

and define a nominal state movement

x̄(k) = ϕ(k, k0, x̄0, {ū(k0), . . . , ū(k − 1)})

starting from the initial state x̄(k0) = x̄0 .

We analyze the stability of the nominal movement x̄(k) with respect to perturbations of the initial state x̄0 ,

that is, we consider the perturbed state movement

x(k) = ϕ(k, k0, x0, {ū(k0), . . . , ū(k − 1)})

starting from the perturbed initial state x0 6= x̄0 .
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Stability of linear discrete-time systems (cont.)

Hence, by defining the difference between the perturbed and the nominal state movement as follows:

z(k)
.
= x(k)− x̄(k) ,

we get:

z(k + 1) = x(k + 1)− x̄(k + 1)

= A(k)[z(k) + x̄(k)] +B(k)ū(k)−A(k)x̄(k)−B(k)ū(k)

= A(k)z(k)

Thus, the dynamics of z(k) is described by the system

z(k + 1) = A(k)z(k). (7)
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Stability of linear discrete-time systems (cont.)

Therefore, we can draw the following conclusions, analogously to the continuous-time case

• for linear systems, the dynamics of the difference between the perturbed and the nominal state movement

z(k) = x(k)− x̄(k) satisfies:

z(k + 1) = A(k)z(k) ;

• the dynamics of z(k) does not depend on the specific initial state x̄0 , but on the initial state perturbation

z(k0) = x(k)− x̄0 ;

• all state movements have the same stability properties or, in other terms, stability is not a property of a

specific nominal state movement but, instead, is a global property of the system.
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Stability of linear discrete-time

invariant systems



Stability and eigenvalues

The following theorem is analogous to that of the continuous-time case, and can be proven similarly, based on

the Jordan normal form of A.

However, it is easily understood recalling that the modes associated to the eigenvalue λ have the form:

pi(k)λ
k−i = pi(k)|λ|k−i (cos(θ(k − i)) + j sin(θ(k − i))) , i = 0 . . . deg(λ)− 1,

where pi(k) is a polynomial of degree i in the variable k.

Theorem

Given the LTI system

x(k + 1) = Ax(k) +Bu(k)

let σ(A) = {λ1, . . . , λn} be the spectrum of A.

(a) The system is asymptotically stable if and only if for any λ ∈ σ(A), we have |λ| < 1 ;

(b) The system is stable if and only if for any λ ∈ σ(A), we have |λ| ≤ 1 and, if |λ| = 1, then deg(λ) = 1.
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Stability and eigenvalues (cont.)

Corollary

Given the LTI system

x(k + 1) = Ax(k) +Bu(k)

let σ(A) = {λ1, . . . , λn} be the spectrum of A.

The system is unstable if and only if there exist at least one λ ∈ σ(A) such that |λ| > 1 or |λ| = 1 and

deg(λ) > 1.
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Lyapunov theorem for linear discrete-time systems

Theorem

The system

x(k + 1) = Ax(k) (8)

is asymptotically stable if and only if for every symmetric positive-definite matrix Q, there exists a unique

symmetric and positive-definite matrix P , that solves the following discrete-time Lyapunov equation:

A>PA− P = −Q. (9)
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Lyapunov theorem for linear discrete-time systems (cont.)

Proof.
(⇐)

Take two symmetric positive definite matrices P,Q ∈ Rn×n that satisfy the Lyapunov equation

A>PA− P = −Q.

To show that the system x(k + 1) = Ax(k) is asymptotically stable, let

V (x) = x>Px

thus obtaining:

∆V (x) = (Ax)> PAx− x>Px = x>A>PAx− x>Px

= x>(A>PA− P )x = −x>Qx < 0 , ∀x 6= 0

Hence, ∆V (x) is negative definite, which implies that the origin is an asymptotically stable equilibrium state of

the system.
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Lyapunov theorem for linear discrete-time systems (cont.)

(⇒)

Suppose that the system x(k + 1) = Ax(k) is asymptotically stable. Given a symmetric positive definite matrix

Q , consider the Lyapunov equation:

A>PA− P = −Q.

By multiplying both members to the left by (A>)i , and to the right by Ai , we get

(A>)i+1PAi+1 − (A>)
i
PAi = −(A>)

i
QAi.

Then, summing from i = 0 to l we get

A>PA− P + (A>)2PA2 −A>PA+ · · · = −
l∑

i=0

(A>)iQAi

or

(A>)l+1PAl+1 − P = −
l∑

i=0

(A>)iQAi.

Letting l −→ ∞, the first term on the left vanishes and we get

P =

+∞∑
i=0

(A>)iQAi. (10)
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Lyapunov theorem for linear discrete-time systems (cont.)

Notice that the series on the right side converges due to the asymptotic stability assumption, and that P is

symmetric positive definite, being the sum of a symmetric positive definite matrix (Q) and symmetric positive

semi-definite matrices ((A>)iQAi, i ≥ 1).

Thus, we have proven that, if the system is asymptotically stable, a matrix P satisfying the Lyapunov equation

must necessarily satisfy the condition (10), which defines P uniquely. In other words, we have proven its

uniqueness.

It can be easily shown, by substitution, that such a P is indeed a solution of the Lyapunov equation:

A>
(

+∞∑
i=0

(
A>)i

QAi

)
A−

+∞∑
i=0

(
A>)i

QAi

=
+∞∑
i=0

(
A>)i+1

QAi+1 −
+∞∑
i=0

(
A>)i

QAi

=
[(
A>)

QA+
(
A>)2

QA2 + . . .
]
−

[
Q+

(
A>)

QA+ . . .
]
= −Q

which concludes the proof.
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Observations

1. The Lyapunov equation

A>PA− P = −Q

is linear in P . For given A and Q, finding P amounts to solving a linear system of equations, whose

unknowns are the entries of P . Actually, only the entries above (or below) the main diagonal of P have to

be considered (including the diagonal), because P is symmetric. The total number of unknowns and

equations is then

n+ (n− 1) + (n− 2) + · · ·+ 1 =
n(n+ 1)

2
.

2. The theorem suggests a stability test for linear systems: choose a symmetric positive definite Q and solve

the Lyapunov equation for symmetric P . If a solution exists such as P is positive definite, then the system

is asymptotically stable.

3. The proof of the theorem shows that, if the test is successful, then the function

V (x) = x>Px

is a Lyapunov function for the system. Thus, the theorem provides a method for finding a Lyapunov

function (for linear systems).
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Stability analysis via linearization



Stability analysis via linearization

In many cases, the stability of equilibria of nonlinear systems can be studied resorting to a suitable linearized

system.

Consider the system:

ẋ(t) = f(x(t))

and suppose that f(x̄) = 0, i.e. x̄ is an equilibrium state.

Then, under regularity assumptions on f , we can define a linearized system:

˙δx(t) = Aδx(t),

where δx = x− x̄ and

A = fx(x̄) =


∂f1

∂x1
· · ·

∂f1

∂xn
.
.
.

.

.

.

∂fn

∂x1
· · ·

∂fn

∂xn


x̄

.
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Indirect Lyapunov method

Theorem

Given the system:

ẋ(t) = f(x(t))

having x̄ as an equilibrium state, let A = fx(x̄). The following implications hold.

(1)
All the eigenvalues of A

have strictly negative real part
=⇒ x̄ is an asymptotically stable

equilibrium state

(2)
At least one eigenvalue of A

has strictly positive real part
=⇒ x̄ is an unstable equilibrium state
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Indirect Lyapunov method (cont.)

Proof.
We only prove statement (1). First, we recall some properties that will be employed:

• As a consequence of the definition of matrix norm, we have

‖Mx‖ ≤ ‖M‖‖x‖

and

‖MNx‖ ≤ ‖M‖‖Nx‖ ≤ ‖M‖‖N‖‖x‖

• by the Schwartz inequality we have

|x>y| ≤ ‖x‖‖y‖.

With no loss of generality we take x̄ = 0, thus δx = x (otherwise, a coordinate change can be applied). If A has

all the eigenvalues with strictly negative real part, then a matrix P exists such that

A>P + PA = −I.

Thus

V (x) = x>Px

is a Lyapunov function for the linearized system. We now prove that the same V is a Lyapunov function for (the

equilibrium state of) the nonlinear system as well.
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Indirect Lyapunov method (cont.)

Let

f(x) = Ax+ h(x),

where h(x) is the residual of the Taylor series expansion.

V̇ (x) = ∇V (x)f(x) = 2x>P (Ax+ h(x)) = 2x>PAx+ 2x>Ph(x) =

= x>(PA+A>P )x+ 2x>Ph(x) = −x>x+ 2x>Ph(x) =

= −‖x‖2 + 2x>Ph(x)

Recall that h(x) is an infinitesimal of a higher order than x, thus, for any ε > 0:

∃δ > 0 :
‖h(x)‖
‖x‖

< ε, ∀‖x‖ < δ.

In particular, for ε =
1

2‖P‖
:

∃δ > 0 : ‖h(x)‖ <
‖x‖
2‖P‖

,∀‖x‖ < δ.
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Indirect Lyapunov method (cont.)

Using the Schwartz inequality

|x>y| ≤ ‖x‖ ‖y‖,

we get, ∀‖x‖ < δ:

|2x>Ph(x)| ≤ ‖x‖‖2Ph(x)‖

≤ 2‖x‖‖P‖‖h(x)‖

< ‖x‖2

We have thus proven that V̇ (x) < 0, ∀‖x‖ < δ. Therefore, by the Lyapunov theorem, the equilibrium state is

asymptotically stable.
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Remark

The Lyapunov indirect method doesn’t cover all the possible cases.

Indeed, if the linearized system has all the eigenvalues with real part less or equal to zero and some

eigenvalues with null real part, no conclusions can be drawn about the stability of the equilibrium based on the

sole linearized system.

In these cases the linearized system doesn’t capture the dynamics of the nonlinear one because that dynamics

is related to the higher order terms of the Taylor series of f(x).

x

f(x)

x

f(x)

For example, in the cases shown above, the linearized system around the origin is the same (having a null

eigenvalue in both cases).
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Examples

When the Lyapunov indirect method does not allow to draw conclusions about the equilibrium stability, it is

still possible to employ the direct method. For example, consider the system:

{
ẋ1 = −x3

1 + x2

ẋ2 = −x3
1 − x3

2

The origin is an equilibrium state and A = fx(0) =

[
0 1

0 0

]
.

The indirect method does not allow to draw conclusions. However, by taking the candidate Lyapunov function

V (x) = x4
1 + 2x2

2

we get

V̇ (x) =
[
4x3

1 4x2

] [−x3
1 + x2

x3
1 − x3

2

]
= −4x6

1 − 4x4
2

that is negative definite. Therefore the origin is an asymptotically stable equilibrium state.
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Examples (cont.)

As a further example, consider the system {
ẋ1 = x3

1 + x2

ẋ2 = −x3
1 − x3

2

The origin is an equilibrium state and A = fx(0) =

[
0 1

0 0

]
.

Again, the indirect method does not provide information about the stability. However, by taking the candidate

Lyapunov function

V (x) = x4
1 + 2x2

2

we get

V̇ (x) =
[
4x3

1 4x2

] [ x3
1 + x2

−x3
1 + x3

2

]
= 4x6

1 + 4x4
2

that is positive definite. Therefore the origin is an unstable equilibrium state.
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Lyapunov indirect method for discrete-time systems

For discrete-time systems, an analogous result can be proven.

Theorem

Given the system:

x(k + 1) = f(x(k))

having x̄ as an equilibrium state, let A = fx(x̄). The following implications hold.

(1)
All the eigenvalues of A

have a module strictly less than one
=⇒ x̄ is an asymptotically stable

equilibrium state

(2)
At least one eigenvalue of A

has module strictly greater than one
=⇒ x̄ is an unstable equilibrium

state
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Input-output stability



Input-output stability for continuous-time systems

The stability discussed so far (internal stability or Lyapunov stability) is concerned with the effect of initial

conditions on the response of the system.

We now consider a different notion of stability: the input-output stability ignores the initial conditions and is

concerned on the effect of the input on the forced response. Although the concept is general, we will deal with

LTI systems only.

Definition

The system: {
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

is said to be BIBO stable (Bounded Input Bounded Output) if there exists M > 0 such that, for every input u(·):

‖u(t)‖ ≤ 1 ∀t ≥ 0 =⇒ ‖yF (t)‖ ≤ M ∀t ≥ 0.

where yF is the forced response, i.e. the response for x(0) = 0.
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Time-domain conditions for BIBO stability

Theorem

The system: {
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

is BIBO stable if and only if: ∫ ∞

0
‖W (t)‖dt < ∞. (11)

where W (t) = CeAtB +Dδ(t) is the impulse response matrix and ‖ · ‖ is any induced matrix norm.

Before proving the theorem, we observe that condition (11) is equivalent to

∃L > 0 :

∫ t

0
‖W (τ)‖dτ ≤ L ∀t ≥ 0. (12)

Indeed, the function
∫ t
0 ‖W (τ)‖dτ is positive and monotonically increasing with respect to t. In order to admit

a finite limit for t → ∞, it must be bounded from above. Conversely, if it is bounded from above, being

monotonically increasing, it must admit a finite limit.
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Time-domain conditions for BIBO stability (cont.)

Proof.
(⇐)

Assuming that ‖u(t)‖ ≤ 1 ∀t ≥ 0, we have, for null initial conditions:

‖y(t)‖ =

∥∥∥∥∫ t

0
W (t− τ)u(τ)dτ

∥∥∥∥ ≤

≤
∫ t

0
‖W (t− τ)u(τ)‖dτ ≤ (by definition of induced norm)

≤
∫ t

0
‖W (t− τ)‖ ‖u(τ)‖︸ ︷︷ ︸

≤1

dτ ≤
∫ t

0
‖W (t− τ)‖dτ ≤ L, ∀t ≥ 0

thus the system is BIBO stable.

(⇒)

Let the system be BIBO stable. Assume by contradiction that (12) (and, equivalently, (11)) does not hold. We

recall that for any induced matrix norm it holds1 that

‖M‖ ≤
∑
i,j

|mij |.

1see for instance Section 1.10.A of Antsaklis and Michel (2006)
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Time-domain conditions for BIBO stability (cont.)

Thus, we can write ∫ t

0
‖W (τ)‖dτ ≤

∫ t

0

∑
i,j

|wij(τ)|dτ =
∑
i,j

∫ t

0
|wij(τ)|dτ

and observe that, for
∫ t
0 ‖W (τ)‖dτ to be unbounded, there must exist i, j such that∫ t

0
|wij(τ)|dτ (13)

is unbounded.

Pick an arbitrary time T and consider the following input, whose nonzero entry is that of index j

ũ(t) =



0

.

.

.

sign (wij(T − t))

.

.

.

0


, ∀t ≥ 0.
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Time-domain conditions for BIBO stability (cont.)

For that input, the ith component of the forced response, at time T , is

yi(T ) =

∫ T

0
wij(T − τ) sign (wij(T − τ))︸ ︷︷ ︸

ũj(τ)

dτ =

∫ T

0
|wij(T − τ)|dτ

Since (13) is unbounded, by a proper choice of T , we can make |yi(T )| (and thus ‖y(T )‖) arbitrarily large by

means of inputs such that ‖ũ(t)‖ ≤ 1 ∀t ≥ 0. Thus the system is not BIBO stable.
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Time-domain conditions for BIBO stability (cont.)

It can be easily shown that condition (11) is equivalent to the absolute integrability of each entry of the

impulse response matrix W (t), thus the following corollary holds true.

Corollary

The system: {
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

is BIBO stable if and only if: ∫ ∞

0
|wij(t)|dt < ∞ ∀i, j, (14)

where wij(t) = [W (t)]ij is the ijth entry of the impulse response matrix.
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Frequency-domain conditions for BIBO stability

The following result provides a condition for BIBO stability based on the poles of transfer function.

Theorem

The system {
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(15)

is BIBO stable if and only if all the poles of all the entries of the rational matrix W (s) = C(sI −A)−1B +D

have strictly negative real part.
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Frequency-domain conditions for BIBO stability (cont.)

Proof.
(⇐)

If all the poles of W (s) have strictly negative real part, then each entry of the impulse response matrix

W (t) = CeAtB +Dδ(t) is the summation of exponential terms converging to zero plus possibly an impulse at

time t = 0. Thus, the integral
∫∞
0 ‖W (t)‖dt is finite and therefore the system is BIBO stable.

(⇒)

Conversely, if
∫∞
0 ‖W (t)‖dt is finite, the exponential terms that compose the entries of W (t) must converge to

zero. Thus, the poles of W (s) must have strictly negative real part.
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Frequency-domain conditions for BIBO stability (cont.)

Since the poles of W (s) are eigenvalues of A, the following corollary holds.

Corollary

For continuous-time LTI systems:

Asymptotic stability =⇒ BIBO stability.

It easy to recognize that the the converse is not true, in general. Indeed, not all the eigenvalues of A appear as

poles of W (s).

Example:

ẋ(t) =

[
−1 0

1 1

]
x(t) +

[
−2

1

]
u(t)

y(t) =
[
0 1

]
x(t)

we have σ(A) = {−1, 1}, but the transfer function is

W (s) =
Y (s)

U(s)
= C(sI −A)−1B =

1

s+ 1
.
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Input-output stability for discrete-time systems

Definition

The system: {
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

is said to be BIBO stable (Bounded Input Bounded Output) if there exists M > 0 such that, for every input u(·):

‖u(k)‖ ≤ 1 ∀k ≥ 0 =⇒ ‖yF (k)‖ ≤ M ∀k ≥ 0.

where yF is the forced response, i.e. the response for x(0) = 0.
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Time-domain conditions for BIBO stability

Analogously to the continuous-time case, the following necessary and sufficient condition for BIBO stability of

discrete-time systems can be stated, based on the impulse response matrix W (k).

Theorem

The system: {
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

is BIBO stable if and only if the following equivalent conditions hold:

1.

∞∑
k=0

‖W (k)‖ < ∞

2.

∞∑
k=0

|wij(k)| < ∞ ∀i, j

where ‖ · ‖ is any induced matrix norm and wij(k) = [W (k)]ij is the ijth entry of the impulse response matrix.
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Frequency-domain conditions for BIBO stability

As for the frequency-domain conditions, we have the following result.

Theorem

The system {
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

is BIBO stable if and only if all the poles of all the entries of the transfer matrix W (z) = C(zI −A)−1B +D

have module strictly less than one.

Corollary

For discrete-time LTI systems:

Asymptotic stability =⇒ BIBO stability.
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