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Realization



Realization

The realization problem, in general, is the problem of associating a state-space representation to a given

input-output description.

In the following, we consider the case of linear time-invariant systems, whose input-output behavior is

described by a transfer function matrix.

Definition

Given a transfer function matrix W (s) we say that a linear time-invariant state-space system{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

is a realization of W (s) if

C(sI −A)−1B +D = W (s).
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Transfer functions

A first question is, What type of transfer functions can be realized by LTI state-space systems?

For a linear time-invariant system Σ(A,B,C,D), where the matrices are respectively of size n× n, n×m,

p× n and p×m, the transfer function matrix takes the form

W (s) = C(sI −A)−1B +D =
N(s)

d(s)
=

N0 +N1s+N2s2 + · · ·+Nνsν

d0 + d1s+ d2s2 + · · ·+ dνsν
,

where ν ≤ n and Nk are matrices of dimension p×m. Notice that the entries of W (s),

[wij(s)] =

[
nij(s)

d(s)

]
,

are proper rational functions.
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Transfer functions (cont.)

Theorem

A transfer function W (s) can be realized by an LTI state-space system if and only if all its entries are proper

rational functions.

Proof.
The fact that LTI systems can realize only proper rational functions only has already been proven. The converse

will be proven constructively in the following.
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Examples

Time delay

The time delay of τ time units has transfer function

W (s) = e−τs,

which is not a rational function, thus it cannot be realized by a system Σ(A,B,C,D).

PID controllers

The PID controllers given by transfer functions of the type

W (s) = KDs+KP +
KI

s
=

KDs2 +KP s+KI

s

do not admit a realization Σ(A,B,C,D) because the transfer function is not proper. A realization is possible by

introducing an additional pole, obtaining

W (s) =
KDs2 +KP s+KI

s(1 + τs)
.
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A realization procedure

It is easy to recognize that if the realization problem admits a solution, then it admits infinite solutions: indeed,

the transfer function is invariant under change of basis. In the following, we provide a procedure for realizing an

arbitrary proper rational transfer function W (s). The steps of the procedure are:

1. write W (s) as the sum of a strictly proper function W̃ (s) and a constant matrix D:

W (s) = W̃ (s) +D.

This can always be done, because if W (s) is strictly proper, then D = 0 and W̃ (s) = W (s), otherwise we

can add and subtract Nν (sν + · · ·+ d1s+ d0) to the numerator, as below:

W (s) =
Nνsν +Nν−1sν−1 + · · ·+N0

sν + · · ·+ d1s+ d0
=

=
Nν (d0 + d1s+ · · ·+ sν) + (Nν−1 −Nνdν−1) sν−1 + · · ·+ (N0 −Nνd0)

sν + · · ·+ d1s+ d0

= Nν +
Ñν−1sν−1 + · · ·+ Ñ0

sν + · · ·+ d1s+ d0︸ ︷︷ ︸
strictly proper

= D + W̃ (s)
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A realization procedure (cont.)

For example:

2s2 + 10s+ 1

s2 + 3s− 2
=

2(s2 + 3s− 2) + 2s2 + 10s+ 1− 2(s2 + 3s− 2)

s2 + 3s− 2
=

= 2 +
4s+ 5

s2 + 3s− 2
.

Observe that we have assumed that the denominator of W (s) is monic, i.e. dν = 1. This is not a restriction,

because if dν 6= 1 we can divide numerator and denominator by dν .

Observe also that D can be easily found as

D = lim
s→∞

W (s).

2. Find the monic least common denominator of all the entries of W̃ (s):

d(s) = sν + · · ·+ d1s+ d0.

3. Write W̃ (s) as

W̃ (s) =
Ñν−1sν−1 + · · ·+ Ñ0

sν + · · ·+ d1s+ d0
.
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A realization procedure (cont.)

4. Take the matrices A,B and C as

A =



0 I 0 . . . 0 0

0 0 I . . . 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 . . . I 0

0 0 0 . . . 0 I

−d0I −d1I −d2I . . . −dν−2I −dν−1I


B =



0

0

.

.

.

0

0

I


C =

[
Ñ0 Ñ1 Ñ2 . . . Ñν−2 Ñν−1

]
where I is the identity matrix of dimension m×m. Thus, A is of dimension mν ×mν .
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A realization procedure (cont.)

To show that the above is a realization of W̃ (s) and, in turn, the system Σ(A,B,C,D) is a realization of W (s),

we start by computing the matrix

φ(s) = (sI −A)−1 B, which is a solution to (sI −A)φ(s) = B.

By partitioning φ(s) conveniently, the latter can be written as



sI −I 0 . . . 0 0

0 sI −I . . . 0 0

.

.

.
.
.
.

. . .
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

. . .
.
.
.

0 0 0 . . . sI −I

d0I d1I d2I . . . dν−2I (s+ dν−1)I





φ0(s)

φ1(s)

.

.

.

.

.

.

.

.

.

φν−1(s)


=



0

0

.

.

.

0

0

I


.
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A realization procedure (cont.)

The previous equality is equivalent to the following equations:

0 = sφ0(s)− φ1(s)

0 = sφ1(s)− φ2(s)

.

.

.

0 = sφν−2(s)− φν−1(s)

I = d0φ0(s) + d1φ1(s) + . . . dν−2φν−2 + (s+ dν−1)φν−1(s)

From the first ν − 1 equations we get

φi(s) = siφ0(s), i = 1, . . . , ν − 1,

and, by substituting in the last, we obtain

I = d0φ0(s) + d1sφ0(s) + · · ·+ dν−2s
ν−2φ0(s) + (s+ dν−1)s

ν−1φ0(s) = d(s)φ0(s).

As a consequence, φ(s) is given by

φ(s) =
1

d(s)



I

sI

s2I

.

.

.

sν−1I


.
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A realization procedure (cont.)

We conclude observing that

C (sI −A)−1 B = Cφ(s) =
[

Ñ0 Ñ1 . . . Ñν−1

] 1

d(s)


I

sI

.

.

.

sν−1I


=

Ñ0 + Ñ1s+ · · ·+ Ñν−1sν−1

d(s)

= W̃ (s).
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Dual realization

By duality, a realization can be found as follows. Consider the transfer function matrix W>(s) of the dual

system and find a realization (A∗, B∗, C∗, D∗). Such a realization has dimension pν × pν . Now, the dual

realization (A>
∗ , C>

∗ , B>
∗ , D>

∗ ) is a realization of W (s). The procedure is convenient if p < m.

Example

We found the primal and dual realizations for the transfer function

W (s) =

[
s

(s+ 1)(s+ 2)

2

(s+ 1)(s+ 2)

]
=

1

s2 + 3s+ 2
([0 2] + [1 0] s) .

The primal realization has order m× 2 = 4:

A =


0 0 1 0

0 0 0 1

−2 0 −3 0

0 −2 0 −3

 B =


0 0

0 0

1 0

0 1

 C =
[

0 2 1 0
]
.
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Dual realization (cont.)

The dual realization, obtained by W>(s), is of order p× 2 = 2:

A∗ =

[
0 1

−2 −3

]
B∗ =

[
0

1

]
C∗ =

[
0 1

2 0

]
.
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SISO case

The procedure described above becomes extremely simple for SISO strictly proper systems.

Theorem

The strictly proper SISO transfer function

W (s) =
n0 + n1s+ · · ·+ nν−1sν−1

d0 + d1s+ · · ·+ sν

admits the following realizations:

A =



0 1 0 . . . 0 0

0 0 1 . . . 0 0

.

.

.
.
.
.

.

.

. . . .
.
.
.

.

.

.

0 0 0 . . . 0 1

−d0 −d1 −d2 . . . −dν−2 −dν−1


B =



0

0

.

.

.

0

1


(1)

C =
[

n0 n1 n2 . . . nν−2 nν−1

]
(2)

which is called the controllable canonical form,
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SISO case (cont.)

Theorem (cont.)

and

A∗ =



0 0 0 . . . −d0

1 0 0 . . . −d1

0 1 0 . . . −d2
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 . . . 1 −dν−1


B∗ =



n0

n1

n2

.

.

.

nν−2

nν−1


(3)

C∗ =
[

0 0 0 . . . 0 1
]

(4)

which is called the observable canonical form.

The controllable and observable forms are, respectively, controllable and observable by construction (as it is

easy to prove by means of, e.g., the PBH test).
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Transformations towards controllable and observable forms (SISO)

The controllable and observable canonical forms turn out to be useful in the feedback control of SISO systems

(as we will see in the following). The following results are important.

Lemma

Suppose that the SISO system{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
, x ∈ Rn, u, y ∈ R

is reachable. Then, there exists a matrix T such that the system{
˙̂x(t) = Âx̂(t) + B̂u(t)

y(t) = Ĉx̂(t) + D̂u(t)
,

where Â = T−1AT , B̂ = T−1B, Ĉ = CT , and D̂ = D, is in controllable canonical form.

A constructive proof is reported in Antsaklis and Michel (2006).
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Transformations towards controllable and observable forms (SISO) (cont.)

Lemma

Suppose that the SISO system{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
, x ∈ Rn, u, y ∈ R

is observable. Then, there exists a matrix T such that the system{
˙̂x(t) = Âx̂(t) + B̂u(t)

y(t) = Ĉx̂(t) + D̂u(t)
,

where Â = T−1AT , B̂ = T−1B, Ĉ = CT , and D̂ = D, is in observable canonical form.

The result follows by duality from the previous.
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Transformations towards controllable and observable forms (SISO) (cont.)

The transformations toward the controllable and observable forms can be found easily. Suppose we are given a

reachable system Σ(A,B,C,D). Then, by the previous theorem, a transformation T exists that puts the system

in controllable canonical form. Observe that for any transformation T , the reachability matrix in the new state

form is

R̂ =
[
B̂ ÂB̂ . . . Ân−1B̂

]
=

[
T−1B T−1AB . . . T−1An−1B

]
= T−1R

thus

R̂ = T−1R.

Now, since the system is single input and reachable, R must be square and invertible and R̂ as well (because it

is the product of two invertible matrices). It follows that

T = RR̂−1.

Notice that R̂ can be easily computed from the controller canonical form, which is known in advance without

the need of computing T .
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Transformations towards controllable and observable forms (SISO) (cont.)

To summarize, the steps for computing T are:

1. compute det(sI −A) and form the matrix Â with its coefficients;

2. compute R from A and B;

3. compute R̂ from Â and B̂ = [0 0 . . . 0 1]> ;

4. compute T = RR̂−1 .

As for the observable canonical form, it follows, by duality that

T = O−1Ô.
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Transformations towards controllable and observable forms (SISO) (cont.)

Example

Let

A =


−1 0 0

0 1 0

0 0 −2

 , B =


1

−1

1

 .

The characteristic polynomial is

det(sI −A) = (s+ 1)(s− 1)(s+ 2) = s3 + 2s2 − s− 2,

thus the state and input matrices of the controllable canonical form are:

Â =


0 1 0

0 0 1

2 1 −2

 , B̂ =


0

0

1

 .

Moreover:

R =


1 −1 1

−1 −1 −1

1 −2 4

 and R̂ =


0 0 1

0 1 −2

1 −2 5

 .
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Transformations towards controllable and observable forms (SISO) (cont.)

Finally, the change of basis is given by:

T = RR̂−1 =


1 −1 1

−1 −1 −1

1 −2 4




−1 2 1

2 1 0

1 0 0

 =


−2 1 1

−2 −3 −1

−1 0 1

 .
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Minimal realizations



Minimal realization

Suppose that the state-space system{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
, x ∈ Rn, u ∈ Rm, y ∈ Rp

is a realization of the transfer matrix W (s). As a consequence we have:

C(sI −A)−1B +D = W (s).

Observe that m is necessarily equal to the number of columns of W (s). Likewise, p is equal to the number of

rows of W (s). On the contrary, the order n of the state-space representation is not uniquely determined.

It is easy to check that n can be arbitrarily large. Indeed, the extended system

[
ẋ(t)

ż(t)

]
=

[
A 0

0 F

][
x(t)

z(t)

]
+

[
B

G

]
u(t)

y(t) =
[
C 0

] [x(t)
z(t)

]
+Du(t)

,

where F is q × q, and G is q ×m, is a realization of W (s), for any q > 0.
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Minimal realization (cont.)

There is, however a minimal possible value of n that allows to realize a given transfer matrix W (s).

Definition

A realization of W (s) is called minimal if there is no realization of W (s) of smaller order.

The minimality of a realization is strictly related to reachability and observability, as expressed by the following

fundamental result.

Theorem

A realization is minimal if and only if it is both reachable and observable.

Proof of necessity.

The fact reachability and observability are necessary for minimality is easy to prove by contradiction: assume

that a realization is either not reachable or not observable. Then, by the Kalman decomposition one could find

another realization of smaller order that realizes the same transfer function, which would contradict

minimality.
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Markov parameters

To prove the converse, i.e. that reachability and observability are also sufficient for minimality, we need some

preliminary results.

First, observe that by the properties of the Laplace transform (and, in particular, the identity

L [tf(t)] = −
dL[f(t)]

ds
), we have:

(sI −A)−1 = L
[
eAt

]
= L

[ ∞∑
i=0

ti

i!
Ai

]

=
∞∑
i=0

L
[
ti

i!

]
Ai =

∞∑
i=0

s−(i+1)Ai.

Thus we can write

W (s) = C (sI −A)−1 B +D = D +
∞∑
i=0

s−(i+1)CAiB. (5)

The matrices

D, CAiB, i ≥ 0

are called the Markov parameters.
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Markov parameters (cont.)

The Markov parameters are also related to the impulse response. Indeed, we can write

W (t) = CeAtB +Dδ(t),

and, by taking the derivatives of the right-hand side, we get

diW (t)

dti
= CAieAtB, ∀i ≥ 0, t > 0.

Thus, since limt→0 eAt = I ,

lim
t→0+

diW (t)

dti
= CAiB, ∀i ≥ 0. (6)
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Markov parameters (cont.)

Theorem

Two systems {
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
and

{
˙̄x(t) = Āx̄(t) + B̄u(t)

y(t) = C̄x̄(t) + D̄u(t)

are realizations of the same transfer function W (s) if and only if they have the same Markov parameters, i.e.

D = D̄, CAiB = C̄ĀiB̄, ∀i ≥ 0.

Proof.
From (5) we conclude that if the Markov parameters are the same, then the transfer function is the same.

Conversely, if the transfer function is the same, the two systems must have the same D matrix since this matrix

is equal to lims→∞ W (s). Moreover, they must have the same impulse response, thus from (6) it follows that

the Markov parameters are the same.
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Proof of sufficiency

We are now ready to prove the sufficiency.

Proof of sufficiency.
Suppose by contradiction that the realization of W (s)

(A,B,C,D), A ∈ Rn×n (7)

is both reachable and observable, but not minimal. Therefore, there exists a realization

(Ā, B̄, C̄, D̄), Ā ∈ Rn̄×n̄ (8)

of the same transfer function W (s) of order n̄ < n. Consider now the reachability and observability matrices of

(7):

R =
[
B AB . . . An−1B

]
, O =


C

CA

.

.

.

CAn−1

 .
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Proof of sufficiency (cont.)

By taking the product we get the pn×mn matrix

OR =



C

CA

CA2

.

.

.

CAn−1


[
B AB . . . An−1B

]

=



CB CAB CA2B . . . CAn−1B

CAB
. . . CAnB

.

.

.
. . .

.

.

.

CAn−1B CAnB . . . CA2n−2B


︸ ︷︷ ︸

Markov parameters

;

(9)

thus, OR is a block matrix whose blocks are Markov parameters.

Felice Andrea Pellegrino 322MI –Spring 2023 L5 –p26



Proof of sufficiency (cont.)

Suppose now that we compute

ŌnR̄n =



C̄

C̄Ā

C̄Ā2

.

.

.

C̄Ān−1


[
B̄ ĀB̄ . . . Ān−1B

]

=



C̄B̄ C̄ĀB̄ C̄Ā2B̄ . . . C̄Ān−1B̄

C̄ĀB̄
. . . C̄ĀnB̄

.

.

.
. . .

.

.

.

C̄Ān−1B̄ C̄ĀnB̄ . . . C̄Ā2n−2B̄


︸ ︷︷ ︸

Markov parameters

,

(10)

which is also of size pn×mn.
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Proof of sufficiency (cont.)

Since (7) and (8) realize the same transfer function, by the previous theorem they must have the same Markov

parameters, therefore we have

OR = ŌnR̄n.

Now we recall that given two matrices Ap×q and Bq×v , the following inequalities hold:

rankAB ≤ min{rankA, rankB}

rankAB ≥ rankA+ rankB − q

the latter being the Sylvester’s inequality. Therefore, we have

rank ŌnR̄n ≤ min{rank Ōn, rank R̄n︸ ︷︷ ︸
≤n̄

} ≤ n̄ < n

and

rank ŌnR̄n = rankOR ≥ rankO︸ ︷︷ ︸
n

+rankR︸ ︷︷ ︸
n

−n = n.

Hence, the rank of ŌnR̄n must be both < n and ≥ n, which is clearly absurd.
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Order of a minimal realization

The proof of the previous theorem suggests a way to compute the minimum order of the systems having the

same transfer function W (s) of a given system (Ā, B̄, C̄, D̄) of order n̄. Let (A,B,C,D) be a minimal

realization of W (s), of order n. Since the Markov coefficients must be the same, we have

On̄Rn̄ = ŌR̄,

hence the rank is the same:

rankOn̄Rn̄ = rank ŌR̄.

On the other hand, rankOn̄Rn̄ = n, i.e., the minimum order, because both factors are rank n, and have,

respectively, n columns and n rows. Thus, the minimum order is

rank ŌR̄.

As an alternative, the Kalman decomposition can be computed and the minimum order is the order of the

reachable and observable part.
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Order of a minimal realization (cont.)

Example

Consider the system: 

ẋ =


−1 −4 0

0 −
7

2
0

−1 1 −2

x +


2

1

0

 u

y =
[

1 −2 1
]
x

The order of the system is 3. However, by computing

OR =


0 0 0

0 0 0

0 0 0

 ,

whose rank is zero, we obtain the minimum order is zero. Thus, there are no modes that are both reachable and

observable.
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Similarity of minimal realizations

We have seen that all minimal realizations have the same order, but it turns out that minimal realizations are

even more closely related. The following theorem holds (we do not report the proof).

Theorem

All minimal realizations of a transfer function are similar.

In other words, if

(A,B,C,D) and (Ā, B̄, C̄, D̄)

are minimal realizations of the same transfer function, then there exists T such that

(Ā, B̄, C̄, D̄) = (T−1AT, T−1B,CT,D).

Note that the transformations T can be easily found, in the SISO case. Indeed, the reachability matrices of two

similar systems are related by R̄ = T−1R, and if the two SISO systems are minimal, R and R̄ are square and

invertible, thus

T = RR̄−1.

Similarly, we get

T = O−1Ō.
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