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State feedback



We talk about feedback when a quantity that influences another is in turn influenced by it. It is @ mechanism
that can be observed in many natural phenomena (for example the sodium-potassium pump that governs the
transport process through the cell membrane, the glucose-insulin dynamics in the blood, the regulation of size
of the pupil).

Feedback is of fundamental importance in the control of dynamical systems.
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State feedback and output feedback

T U Y T U )
1. —— ¥
x
P Yo
Example of state feedback. Example of output feedback.

Typically, when the entire state is not accessible, the feedback block includes a sub-system, called the state
observer, whose objective is to estimate the state (in order to exploit this information for feedback purposes)
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Linear and static state feedback for LTI systems

Consider the system:

T u Yy
& = A+ Bu 21—
y = Cz+ Du
x
and take the input as uw = Kz + r, where K € R™*" s a gain
matrix. K

Static state feedback.
By substituting u is the state equation, we get:

t = (A+BK)x + Br
y = (C+DK)x +Dr

which is the the state-space representation of the closed-loop system. Clearly, the closed-loop system has
A + BK as state matrix.
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Linear and static state feedback for LTI systems (cont.)
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(A+ BK)x + Br

El >

(C+DK)z + Dr

<
Il

The gain matrix K affects the dynamics of the closed-loop system.
In general it should be chosen to obtain desirable properties of K
the closed-loop system.

Here, we are mainly concerned on the stability of the closed-loop system, thus we will answer the question:

“Under what conditions, and how, is it possible to guarantee the closed-loop stability by a proper choice of K?”
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External input

z = (A+BK)r +Br , w y
X1 ——
y = (C+DK)x+Dr
T
The input r is called the external input (or command input or
reference input). It has the same number of components of » and K
acts as an input for the closed-loop system.

Notice that the stability of the closed-loop depends only on the closed-loop matrix
A, = A+ BK

Thus, in particular, it does not depend on = (which, for simplicity, is usually set to zero when analyzing the
stability).
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Open-loop and closed-loop

The movement of the state under the control law
u=Kx+r

can be written, in terms of the initial state z(0) = zo and the external input r(-), as follows:

z(t) = e<A+BK)t:c0 + /OO e<A+BK)<t7T)Br(T)dT.
0

Substituting in u(t) = Kz (t) + r(t), we get:

oo
u(t) = Ke<A+BK)tﬂEo + K/ e(AJrBK)(t*T)Br(T)dT —+ r(t),
0

which is an open-loop control law, because it does not require the knowledge of the current state (only the
initial state is needed). In other words, it could be pre-computed, based on xg and (-), and applied in an
open-loop fashion.
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Open-loop and closed-loop (cont.)

The same concept can be explained in terms of transfer functions:

u(t) = Ka(t) +r(t) -  U(s) = KX(s) + R(s)

@(t) = Az(t) + Bu(t) =5  sX(s)— 2o = AX(s) + BU(s)

Solving the second equation for X (s), substituting in the first, and using the matrix identities
[[—K(sI—A) B 'K(sI — At =K(sI — A)"'[I — BK(sI — A)"Y]7! = K[s] — (A+ BK)]™!,
we get:
U(s) = K [sI — (A+ BK)] " @o + [I — K(sI — A)~'B] " R(s),

which is an open-loop control law, because it does not require the knowledge of the current state (only the
initial state is needed).
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Open-loop and closed-loop (cont.)

Thus, for the same initial state zo, the following schemes result in the same input u(t), ¢ > 0.

T 1 u T u

—1 I - K(sI-A)"'B]" b o
x
K [sI — (A+ BK)| "o .
Open-loop.
Closed-loop.
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Open-loop and closed-loop (cont.)

However, the open loop control scheme has little chance of being effective in practice. Indeed:

- the initial state is not known exactly in practice, but is affected by measurement noise;
- the dynamics of the system (and in particular the matrices A and B) is not exactly known in practice, but is
affected by uncertainty.

On the contrary, the closed-loop scheme does not require knowledge of the initial conditions and moreover,
through feedback, it is able to regulate the input based on the current state of the system.

The two schemes are therefore equivalent only in the absence of noise and model uncertainties (a situation
that never occurs in practice).
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Eigenvalue assignment

Theorem
Given A € R™*™ and B € R™*™, the eigenvalues of the matrix A + BK can be assigned to arbitrary (real or

complex conjugate) locations, by a properly chosen K € R™*™ if and only if the pair (A, B) is reachable.

Proof.
The sufficiency of the condition will be proved in a while, in a constructive way (i.e. by providing some

algorithms to arbitrarily assign the eigenvalues, provided that the system is reachable).
The necessity can be proven as follows. Assume that the pair (A, B) is not reachable. Thus, there exists a

similarity transformation 7" such that:

A1 A2 By

) ’

T—1AT = T-1B =
where the null blocks are structural.
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Eigenvalue assignment (cont.)

By applying the same transformation to the closed-loop matrix A + BK we get:
[ o]

—~ =
T~YA+BK)T =T AT +(T7'B) (KT) =

A1 A1,2 By o
+ [k K] =
0 Az 0

A1,1+B1f<1 A1,2+Blf(2

0 Ao

)

This matrix is similar to A + BK and therefore has the same eigenvalues. It can therefore be seen that
regardless of the choice of K, the eigenvalues of the unreachable part are eigenvalues of the closed-loop
matrix. That is, it is not possible to arbitrarily assign all the closed-loop eigenvalues.
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Eigenvalue assignment (cont.)

In other words:
0(As2) C 0(A+ BK), VK € R™*"

that is, the eigenvalues of the unreachable part are a subset of the eigenvalues of the closed-loop matrix, for
each choice of K. O

Observations:

- the necessity proof shows an important fact, namely that the unreachable eigenvalues are invariant under
state feedback: they cannot be changed by a state feedback;

- as stated by the theorem, the non real eigenvalues must be assigned as conjugate pairs (i.e. if A = o + jw
is to be assigned, then the eigenvalue A = ¢ — jw must be assigned too). Indeed, since A + BK has real
entries, its characteristic polynomial has real coefficients: as a consequence, non-real roots can only
appear as conjugate pairs.
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Stabilizable systems

Consider again the expression
A1,1+Blf§'1 A1,2+31K2

T YA+ BK)T =
0 Az o

s

and observe that the pair (A1,1, By) is reachable by construction (thus the eigenvalues of Aq,; + B1 K; can be
arbitrarily assigned).

The remaining eigenvalues are fixed, thus a control law of the form
u=Kzx+r

can produce an asymptotically stable closed-loop system if and only if the unreachable eigenvalues have
strictly negative real part.

Definition
The system
z(t) = Az(t) + Bu(t)
is said to be stabilizable (and likewise the pair (A, B)) if its unreachable eigenvalues (if any) have strictly
negative real part.
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Stabilizable systems (cont.)

The following is the Popov-Belevitch-Hautus (PBH) test for stabilizability.

Theorem
The continuous-time system
z(t) = Ax(t)+ Bu(t)
y(t) = Cz(t) + Du(t)
is stabilizable if and only if
rank [A\T— A B]=mn, VYA:Rel>0.

The proof is analogous to that of PBH test for reachability, except that here we restrict the attention to the

unstable region of C.

An analogous result holds for discrete-time systems (where the condition Re A > 0 is substituted with |A| > 1).
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Eigenvalue assigment problem

The eigenvalue assignment problem can be formulated as follows:

Eigenvalue assignment problem

Given the reachable pair (4, B), and the set A = {\1,..., A\, } (where the non-real elements, if any, appear as
conjugate pairs), find K such that
oc(A+ BK) =A.

A straightforward approach to solve the problem is the direct method, illustrated by the following example.
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Direct method

Example
Let

A= , B = , A={-1+j4-1-j}.

= [N

The sought matrix K must have one row and two columns: K = [ko ki1]. The characteristic polynomial of
A+ BK, as a function of kg and k7 is thus

a(X) = det(AI — (A + BK)) = det 2 - ko k]

1
A—=—k —1—k
2 0 1

—1—-k; A—2—ko

= det

5 1
=224 A= —ko—k ko — =k
+ ( 2 0 1)+0 o R
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Direct method (cont.)

On the other hand, the desired eigenvalues are the roots of the polynomial:
agN) =M= (=14 ) A= (=1—5) =12 +21+2.

By equating a(\) to ag (M), we get a linear system of two equations and two unknowns:

5
—2 —ko—k1 =2

2
ko — %k’l =2
whose solution is 1 13
K =[ko k1] = {*g 7?]'
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Direct method (cont.)

Observe that:

- it can be shown that if m = 1, i.e. when B is a column vector, the obtained system of equations is linear
(the proof is based on the Matrix determinant lemma that states that

det (M + uvT> = (1 + UT]\/[71U> det M

where M is invertible and « and v are column vectors); if m > 1 the obtained system of equation will be, in
general, non-linear;

- the reachability test must be performed in advance; if m = 1 and (A, B) is not reachable, it can be shown
that the matrix associated to the linear system is singular and a solution exists only if the unreachable
eigenvalues belong to A.
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Methods based on controller form

Let T be the similarity transformation to the controller form:
A, =T YAT, B.=T"'B.
The matrices A + BK and

T Y A+BK)YT =T 'AT+ T 'B KT = A, + B:K,

K,

have the same eigenvalues thus the problem becomes that of assigning the eigenvalues to A. + B:K. by a
proper choice of K.

Once the latter problem has been solved, the sought K can be obtained as K = K.T~1.
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Methods based on controller form (cont.)

In the single input case (m = 1) we have

Ke=1lko k1 -+ kn_1].
The closed-loop matrix is thus:
AcK = Ac + BCKC
[ o 1 - 0 0
= + (ko K1 k1]
0 0 1 0
| —ao —ay —ap—1 1
[ 0 1 0
0 0 1
| —(ao — ko) —(a1 — k1) —(an—1 —kn-1)
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Methods based on controller form (cont.)

The matrix A, is in Frobenius form, hence its characteristic polynomial is
det( A — Acg) = A"+ (an—1 — kn— )AL+ -+ (a1 — k1) + (a0 — ko).
If the eigenvalues to be assigned are the roots of the polynomial:
agN) = A" 4+ dp A" di A+ do,
by equating the coefficients of the same degree, we get the equations
ki=a;—d;, i=0,...,n—1
that provide the entries of K.

Notice that since the above equations admit a unique solution, we have proven the uniqueness of the solution
in the case m = 1. It can be shown that, for m > 1, multiple solutions may exist.
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Methods based on controller form (cont.)

Example
Let .
- 1 1
A= | 2 , B= , A={-1+j-1-j}.
1 2 1
We have
&
1 —
R=|B|aB|= 2
1 3
which is full rank. Moreover:
A. =T AT
where
-1 1 =9 2
41
I'= and Tt ==
1 3
— 1 1 2
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Methods based on controller form (cont.)

Thus
0 1 0
A =T AT = 5 | B. =
0 — 1
7\ 2
e T
—a;

On the other hand, the desired polynomial is
agN) = A= (=14+7)A = (-1-75) =A° +%A +%

hence we get the system of equations di do

ko =ag —do = —2 9
9 - KCZ{72 77:|
k1:a1—d1:—5

and, finally:
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Ackermann’s formula

In the single input case (m = 1), one can determine the elements of the gain matrix (which is a row matrix)
directly, that is, without passing through the controller form. This is made possible by Ackermann’s formula:

K =—el Rl ay(A)

where
en=00,...,0,]T€R", R=[B|AB|...| a8 ]

and ag4(A) is a matrix obtained by evaluating the polynomial ag(X) for A = A. In the previous example we
would have:
ag(A) = A2 + 24+ 21.
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Ackermann’s formula (cont.)

Proof of the Ackermann’s formula
Evaluating aq(X) for A = A, we get:

ag(Ac) = A% +dp 1 AT 4 di A+ dol.
On the other hand, by the Cayley-Hamilton theorem:
A7 = —an,lAg_l — - —a1Ac —aol.
By substitution in the first equation we get:
ag(Ae) = (dn—1— an_1)AZ" " + -+ (d1 — a1) Ac + (do — ao)I
It easy to check that, due to the particular structure of A. and its powers, the first row of ag(Ac) is
[10...0]ag(Ac) =[(do —ao) ... (dn—1—an—1)]=—Ke

i.e. the state-feedback matrix that assigns the desired eigenvalues to the system in controller form.
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Ackermann’s formula (cont.)

Since K = K.T'~!, and observing that
ag(Ae) = ag(T7TAT) = T~ tag(A)T

we can write
K=—-[10... 0T Yag(A)TT ' =—[10... 0]T  ay(A).

Now, recalling from the lecture on realizations, that

T7'=RcR!

where
Re=[ B. AB. - Ar'B.], R=|B AB ... a"B |
we have
K=—[10...0]R. R ay(A),
————

first row of R¢

but the first row of R, is easily checked tobe [0 ...01] =, . O
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Ackermann’s formula (cont.)

Example
Applying the Ackermann’s formula to the same eigenvalue assignment problem previously seen, we have

K = —ej R ag(A)

2 -1 1 1 : 1 1 1 0
=—[0 1) ) ) Z ry | Z +2

== g 1 2 1 2 0 1
7{ 1 13}
| o6 3
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Multiple input case

If m > 1, the solution of the eigenvalue assignment problem is not unique, in general.
We distinguish two cases:
(A) the system is reachable by a single input, i.e.

Ji : rank ([ b; Ab; --- A" 1p, ]) =n

where b; is the ith column of the input matrix B;

(B) the system is not reachable by a single input.
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Multiple input case (cont.)

Case (A): in this case, the eigenvalues can be assigned by resorting to the ith input only, i.e. solving the problem
O‘(A + biKi) =A

instead of (A + BK) = A.

Once K; has been found, it becomes the ith row of the whole feedback matrix K:

K=1 Ki |+ ithrow
0
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Multiple input case (cont.)

Example

0 1 0 1 0

A= 0 0 1 B = 0 1
1 1 0 0 0

by b

The system is reachable by each of the two inputs separately, since:
vank ([ by Aby o Anlpy |)=vank ([ by Aby o Al |) =3

Thus, the eigenvalues can be assigned by any of the following control laws, for properly chosen K; and Ko:
K

u =
0
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Multiple input case (cont.)

For instance, by applying the control law

0
u = z+T,

where K> is a row matrix found by solving the assignment problem o(A 4+ b2 K2) = A, we have

1
ul 0 0 0
= g || <5
U2 ko1 ka2 ka3

a3
3
The block scheme of the control system is represented T = uy
in the figure. Notice that the first input channel is =
employed for the reference signal only. Possible T9 Uo
problem: unbalanced exploitation of the actuators.
75
Ky
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Heymann’s lemma

Case (B): when the system is reachable but
Ei:rank([ b, Ab; --- A" 1lp; ]) =n,
the eigenvalue assignment problem can be solved in two steps:

1. apply a state-feedback to render the closed-loop system reachable by a single input;

2. apply a single input assignment method to the obtained system.
The previous is possible thanks to the following lemma (Heymann'’s lemma).

Lemma
Let (A, B) be reachable, and b; # 0 be a column of B. Then, there exists M; such that (A + BM;, b;) is
reachable.

In other words, the Heymann’s lemma states that a reachable system can be always rendered reachable by a
single input, by a proper state feedback.
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Heymann's lemma (cont.)

Proof of the Heymann's lemma
The proof is constructive. Recall that R has rank n and takes the form
R=[ b1 by ... bp|Ab Abp o Abn || Al A, |
Suppose b1 # 0 and extract v1 + - - - + vy = n linearly independent columns, in the following order:
Q= [ b Abi .. ATy by o Avelny || L AnTly ]

Define S € R™*™ as

S:[o... |0 oes|. o . el‘O...O]
vith (v1 + v2)th (n —1)th
column column column

where e; is the ith column of the identity matrix I,,.
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Heymann's lemma (cont.)

Now, let the feedback matrix M7 be defined as

M; =SQ 1.
We now prove that (A + BMi,by) is reachable.
By construction of My, it follows that
AhQ::Ah[ b Abi .. ATl || b oAb AW*%Z} o
:[0 oe|o e o a0 0].

We need to prove that the columns of the reachability matrix

Ra=[ b (A+BM)b ... (A+BM)" b |

are linearly independent.
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Heymann's lemma (cont.)

The first column by is linearly independent since by # 0. We now consider the subsequent columns.
=0 by (1)
—~ =
(A+ BMl)bl = Aby + B My1by = Aby
(A+ BM;)%b; = (A+ BM;)Aby = A%b,

(A+ BM1)"" by = (A+ BM1)A" %6y = A by
(A+ BM1)"'by = (A4 BM1)A" " 'by = A”1by + Beg = A"V b1 +by = by + ...
(A+ BM)" by = (A4 BM1) (A" by + by) = Aby + ...

(A4 BM)" by = (A+ BM) (A = 2b; +...) = AV 1o 4.

The colored vectors are linearly independent and the dots denote vectors linearly dependent from the
previous. a

In Hautus (1977) a different, non-constructive, proof is provided.
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Heymann's lemma (cont.)

The whole scheme is reported in the figure, where P @ o
A, B
K1
B 0
K=
— M
0 1
The two feedback matrices can be combined as
K=M +K. b
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Heymann's lemma (cont.)

Example

Consider the pair:

0O 0 0 O 0 1
0O 0 1 0 0 0
A= , B=
0O 0 0 1 0 0
0O 0 1 0 1 0
The reachability matrix is:

0O 1 0 0 0 0 0 O

0O 0 0O 0 1 0 0 O
R= ,

0O 0 1 0 0 O 1 O

1 0 0 01 0 0 O

whose rank is 4, thus the system is reachable.
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Heymann's lemma (cont.)

The reachability matrices from the first input and second input

R(b1) = [b1 Aby A%by A%bi],  R(b2) = [ba Aby A%by A%b5]
are respectively
0 0 0 O 10 0 0
0 0 1 0 00 0 0
R(b1) = , R(b2) =
01 0 1 0 0 0 0
1 0 1 0 00 0 0

thus the system is not reachable from solely the first input, nor from the second.

By applying the procedure seen above we have:

0 0 O
8=
0 0 1

q
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Heymann's lemma (cont.)

0O 0 0 1
1 0O 0 0 O 0O 0 1 0 0 O
My =8SQ " = =
0O 0 1 0 0 1 0 O 0 1
1 0 0 O
By the Heymann's lemma, the pair (A + BM1,b1)
0 1 0 O 0
0O 0 1 0 0
A+ BM;, = s by = 5
0 0 0 1 0
0O 0 1 0 1
is reachable. Observing that the pair is in controller form, we have
ap =0, a1 =0, ag =—1, a3 =0.

If the polynomial to be assigned is

ad()\) =ao + ai A+ @2)\2 =+ Elg)\g =+ )\4,
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Heymann's lemma (cont.)

we need to take
Kl = [ 7&0 7&1 —-1- (~12 &3 ]
thus, the whole feedback matrix K is

Ki |
0

K =M +

|
1

0 0 N —ap —a1 —l—az as
0 0 0 0 0 0
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Example: servomechanism

Let J be the inertia of the beam, and z; = 9, z2 = 9, u = C)y, and
e -
=

The system is described by
i 0 1
1 _ xr1 n 0 u
To 0 0 ) B

The system is in a “quasi-controller form” (it would be in controller form for 3 = 1). However, we have:

RGN P
A+ BK = + [k1 ko] =
0 0 B Bk1 Bka

whose characteristic polynomial is a(\) = A2 — Bka\ — Bk1.
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Example: servomechanism (cont.)

Let A = {A\1, A2} be the set of eigenvalues to be assigned. Then:
agA) = A=A —A2) =A% — (A1 4+ A2)A + A de
and to choose K it is sufficient equating the corresponding coefficients:

—Bk1 = A1)
—Bka = — (A1 + A2)

thus obtaining:

A1

ky = — 1A2
B

A Ao’

fey = 1+ A2
B
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Example: servomechanism (cont.)

How should we choose the eigenvalues?

they must of course have strictly negative real part, to obtain an asymptotically stable closed-loop system;

- depending on the desired behavior in terms of pseudo-periodic modes, they will have/not have imaginary
part;

- having a reasonable time constant i.e.

- sufficiently short to get satisfactory transients;
- sufficiently large to avoid excessive inputs (torque applied).

(Recall that the time constant of an eigenvalue X is the reciprocal of — Re(\) and the response of the associate
mode gets faster as the time constant decreases).
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Example: servomechanism (cont.)

Take a time constant 7 of half a time unit for both the eigenvalues:

Thus, we have

and, from the previous equations we get

A2 4
M=-—3"=-3 4 4
= K=[k ko]=[-= ——
At i (k1 ko] [B ﬁ]
g === __
B B
Observation
Since A1, A2 = —— we have, in general
T
1
k1 =ko = —
1 2 TB

showing that the control action increases as the time constant decreases (this is reasonable because to obtain
faster transients we need stronger control action).
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Non-reachable systems

If the system is non-reachable, we have seen that, being K a feedback matrix, and T the similarity
transformation to the Kalman reachability form, we have

1 _ =1 =il = —
T=Y(A+ BK)T = T"'AT + (T"'B) (KT) =
Ay A1 By

0 Ag o 0

A1,1 + Bk, A1,2+31f(2

0 Az 2
thus, the eigenvalues of the reachable part can be assigned by solving the assignment problem:
o(A11+ B1K1) = A,

which is solvable because the pair (Am, Bl) is reachable. Having obtained K7 as the solution of the previous
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Non-reachable systems (cont.)

problem, it is sufficient to take

Finally, recalling that K = KT, we have
K=KT'

Clearly, provided that the assigned eigenvalues have strictly negative real part, the whole closed-loop system
will be asymptotically stable if and only if the unreachable eigenvalues have strictly negative real part.
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Discrete-time LTI systems

Consider the system:

r u y
2(t+1)= = Ax(t)+ Bu(?) —0— X —
y(t) = Cuz(t) + Du(t)
45
and take the input as w = Kz + r, where K € R™X",
K

Static state feedback.
By substituting w is the state equation, we get:

z(t+1)

(A+ BK)z(t) + Br(t)

y(t)

(C+ DK)z(t) + Dr(t)

which is the the state-space representation of the closed-loop system. The closed-loop system has A + BK
as state matrix.
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Discrete-time LTI systems (cont.)

The same theorem of the continuous-time case holds for the discrete-time because the eigenvalue assignment
problem is a purely algebraic one (“find a matrix K such that A + BK has given eigenvalues”). We report the
theorem here for convenience.

Theorem
Given A € R™*™ and B € R™*™, the eigenvalues of the matrix A + BK can be assigned to arbitrary (real or
complex conjugate) locations, by a properly chosen K € R™*™ if and only if the pair (A, B) is reachable.

For the same reason, all the eigenvalue assignment methods shown for the continuous-time case can be
employed for the discrete-time as well.

Needless to say, the asymptotic stability region is now the open unit circle.
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State estimation



State estimation

In some cases of practical interest, the whole state is not accessible, and only the output y can be measured.
Possible reasons are:

1. some state variables are not measurable,

2. the sensor required for measuring a state variable is too expensive;

3. the noise is such that any possible measured value would be affected by a too large error;

4o ..

In those cases, under proper conditions, the state can be estimated from the available information (essentially,
the input and the output in a given time interval).
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Observer

The device that provides an estimate z of the state z of the system X based on the input w and the output y, in
a given time interval, is called state observer.

U Y

observer

=
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Luenberger observer

Given the system w .
Y
t = Axz + Bu
y = Cz+Du
the Luenberger observer is a defined as observer
i = A& +Bu+tLy—9) 4
g = Cz+Du

where L € R™*P js a suitably chosen matrix. Notice that:

- the Luenberger observer is a linear dynamic system;
- the order of such a system is n, the same of the system to be observed;
- the state & of the observer is the estimate of the true state z;

- the dynamics of the Luenberger observer is the same of the original system, except for a “correction term”
(y — ) that enters through the injection matrix L.
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Luenberger observer (cont.)

Considering again the representation:

Az +Bu+ Ly —9)

-
Il

Cz+Du

]

By substituting the second equation onto the first, and recalling that the output of the system is y = Cz + Du,

we can write
&=(A-LC)& + (B—LD)u+ Ly

u :|
- the dynamics of the observer is governed by A — LC,

- the input vector of the observer is composed by the input and the output of the observed system.

or, in compact form:

#=(A-LO)& +[B—-LD I

Thus:
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Error dynamics

The estimation error at time ¢ is the difference between the actual state z(¢) and the estimated state &(¢):

e(t) = z(t) — &(¢).
By taking the time derivative we get

Cx + Du — Cz — Du
. —_—
ét) =2(t) —2(t) = Az + Bu—[A% + Bu+ L(y — 3)]
Az + Bu—[A2 + Bu+ LC(z — %)) = (A— LC)(z — &)

thus:
é(t) = (A— LCO)e(t)

In other words, the error behaves as a linear system with no input, governed by the state matrix A — LC.
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Error dynamics (cont.)

By integrating we get
e(t) = exp[(A — LC) t] e(0).

If the eigenvalues of A — LC lie in the open left half plane, then the system is asymptotically stable and
e(t) — 0 as t — oo,

independent of the initial error e(0) = z(0) — (0), i.e. independent of the observer's initialization. Moreover,
the speed of convergence to zero is governed by the eigenvalues.

Felice Andrea Pellegrino 322MI -Spring 2023 L6 -p53



Eigenvalue assignment

Lemma
Given A € R™*™ and C € RPX™, the eigenvalues of the matrix A — LC can be assigned to arbitrary (real or
complex conjugate) locations, by a properly chosen L € R™*¥P, if and only if the pair (4, C) is observable.

Proof.
The matrices

A—LC and (A-LC)T =AT —CTLT

have the same eigenvalues. By the eigenvalue assignment theorem, the eigenvalues of AT — CTLT can be
arbitrarily assigned by a proper choice of LT if and only if the pair (AT,CT) is reachable. By duality, the latter
condition is equivalent to the pair (A, C) being observable. O
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Detectable systems

Definition
The system

z(t) = Az(t)+ Bu(t)
y(t) = Cuz(t) + Du(t)
is said to be detectable (and likewise the pair (A, C)) if its unobservable eigenvalues (if any) have strictly

negative real part.

Detectability is a necessary and sufficient condition for obtaining an asymptotically stable Luenberger observer.
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Choice of the eigenvalues

When designing an observer, two opposite requirements must be taken into account:

- on the one hand, it is desirable that the estimation error converges to zero “fast enough”;

- on the other hand, too fast eigenvalues lead to “too large” gain matrix L, rendering the estimate too
sensitive to measurement noise.

Observe that the measurement noise is the only reason that prevents from using arbitrarily large observer
eigenvalues (i.e. arbitrarily fast convergence), because the observer is typically implemented in a digital
computer. On the contrary, when designing the feedback matrix K, besides the measurement noise of the state,
there is the additional constraint of the maximum actuators’ effort.
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Choice of the eigenvalues (cont.)

The following is the Popov-Belevitch-Hautus (PBH) test for detectability.
Theorem
The continuous-time system
z(t) = Az(t) + Bu(t)
y(t) = Cuz(t) + Du(t)
is detectable if and only if

A — A
rank & =n, VA:Rel>0.

The proof is analogous to that of PBH test for observability, except that here we restrict the attention to the
unstable region of C.

An analogous result holds for discrete-time systems (where the condition Re A > 0 is substituted with [A| > 1).
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Trivial observer

Is it possible to choose L = 0?

In that case, the correction term y — 4 is missing and the observer is, in practice, a replica of the system to be
observed:
i=A% + Bu.

Such a choice has a number of disadvantages:

- since the state matrix of the observer is A, the estimation error converges to zero only if the system is
asymptotically stable;
- there is no way of modifying the speed of convergence;

- suppose that u(t) = 0, ¢ > 0, and the state of the observer is initialized as #(0) = 0 (which is an obvious
choice, in absence of specific information). We then have e(0) = z(0) — 0 = z(0), thus

lle@®Il = llexp (At) z(0)| = [l=(®)]] -

In other words, the estimation error is as big as the estimated variable (which is clearly a poor
performance).
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Consider the observable pair

0o 1 0
A=|o0 o0 Cz[l 0 0]
o 2 -1

Let ag(\) = A3 + d2 A2 + d1 )\ + do be the characteristic polynomial to be assigned to A — LC.

We can formulate the dual problem of assigning the eigenvalues to Ap + Bp K p, where

0
Ap=AT =| 1 0 2 |, Bp=C"=1o0 |, Kp=-L".
0 1 -1
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Example (cont.)

The similarity transform to the controller form is

1 0
Ap, =T '"ApT = 0 0 1
-1
where
-2 1 1 0 1
T=1| 1 1 0 and T '=|o0 =il
1 0 1 —1 3
By applying
ki=a; —d;, 1=0, n—1
we get immediately
Kp,=[ ~do  —di-2 —d+1 |
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Example (cont.)

Thus, the solution of the dual problem is

o 0 1
Kp=KpT'=[ ~dg —di-2 —dot1]|o0 1 -1
1 -1 3

=|:—d2+1 do —dy — 3 —d0+d1—3d2+5].

Finally:
do — 1
L=-K}= —dg +d1 +3
dog —d1 +3da — 5
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Ackermann’s formula

The same result could be obtained by applying the dual Ackermann’s formula:
L =ag(A)0 e,
where O is the observability matrix of the pair (4, C):

C
CA

CA’VL*l
The dual formula can be obtained from the primal, by applying the duality transform. More generally, any

procedure for assigning the eigenvalues to A + BK by a proper choice of K can be applied, by means of
duality, to the problem of assigning the eigenvalues to A — LC by a proper choice of L.
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Consider the system:

r = Ax
0 —2
where A= ], C:[o 1]
y = Cz —
and the Luenberger observer:
& = Ai+Ly—19) AcC Y
g = Cé&
It is easy to check that the matrix
do — 2 observer
L=
di —2
T

assigns to A — LC the following characteristic polynomial:
ag(\) = A2+ di) +do.
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Example (cont.)

Indeed
A 0 0 —d
det(A[(ALC)):det([O }[1 °D=A2+d1A+do.
The error e(t) = z(t) — &(¢) is governed by the equation
é(t) = (A— LC)e(t).

We now consider four different polynomials (i.e. different pairs of eigenvalues) and represent the error as a
function of time, for (0) # x(0), precisely
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Example (cont.)

Case A
-1
M=-1d=-1 = ogN)=QA+1)2=X+22+1 — L_[ ]

2

- att = 0 the error is equal to the state since
the observer is initialized at zero: 15t

e(0) = z(0) — £(0) = z(0); ‘

- then, it decreases, governed by the stable
dynamics:

é(t) = (A — LC)e(t)
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Example (cont.)

Case B
2
M=-2d=-2 = agN=0N+22=XN4+4+4 — L:{ }

- att = 0 the error is equal to the state since
the observer is initialized at zero:

e(0) = =(0) — 2(0) = =(0);

- then, it decreases, governed by the stable
dynamics:

é(t) = (A — LC)e(t)

The error transient is much shorter (about half) than that of case A. Indeed, the assigned eigenvalues are
farther from the imaginary axis than in the previous case.
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Example (cont.)

Case C

A =-2-2j

= ogMN)=O-M)A-X)=X2+424+8 = L=
A2 =—2+4+2j

- att = 0 the error is equal to the state since
the observer is initialized at zero:

¢(0) = 2(0) — #(0) = 2(0);

- then, it decreases, governed by the stable
dynamics:

é(t) = (A — LC)e(t)

The duration of the transient is approximately the same as in case B, but pseudoperiodic modes appear
because the eigenvalues have a non-zero imaginary part.
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Example (cont.)

Case D

A1 = —200

Ao =—0.5

98
= ag(\) =22 4+20050+100 = L=
198.5

- the gain is extremely high;
- the transient is extremely short;

- however, problem may arise due to
measurement noise, as shown next.
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Example (cont.)

Let us take into account a measurement noise v:
AC !
t = Ai+Ly+v—79) )
g = C&
It is easy to check that the error obeys the following: g o
rver
&(t) = (A — LO)e(t) — Lo(t) observe
4%

In particular, let
v(t) = 0.2sin (80¢) .
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Example (cont.)

0.5 [ 1 -05 - -
1| 8 1+ -
15 b 15 —
2 | | | | | 2 | | | | |
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t t
Observer D Observer B

The slower observer B is less sensitive to the measurement noise than observer D.
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Example (cont.)

Homework:

1. compute the transfer functions from v to e; and es, in the cases B and D;

2. plot and compare the Bode diagrams.
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Discrete-time LTI systems

There is a strict analogy with the continuous-time case. Given the = y
discrete-time system DY

{ z(t+1)
y(t)

Ax(t) + Bu(t)
Cx(t) + Du(t)

the Luenberger observer is a defined as observer
#(t+1) = Az(t) +Bu(t)+ Ly(t) — 9(t)) w‘
9(t) = C&(t) + Du(t)

or, more com pactly:

i(t+1)=(A— LC)&(t) +[B— LD I] { u(t) } .
y(t)
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Discrete-time LTI systems (cont.)

Analogously to the continuous-time case, the estimation error
e(t) = z(t) — z(¢)
is governed by the difference equation:
e(t+1) = (A —LC)e(t).

The eigenvalues of (A — LC) can be assigned arbitrarily if and only if the pair (A, C) is observable.

The detectability also has an analogous definition:

{ x(t+ 1)
y(t)

is said to be detectable (and likewise the pair (A, C)) if its unobservable eigenvalues (if any) have modulus
strictly less than 1.

Definition
The system

Ax(t) + Bu(t)
Cxz(t) + Du(t)
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Discrete-time LTI systems (cont.)

Of course, the eigenvalues of (A — LC) must belong to the open unit disk in order to guarantee the
convergence to zero of the estimation error, independent of the initial condition.

Finally, as in the continuous-time case, the choice of the eigenvalues to be assigned must take into account two
opposite needs:

- quick convergence of the estimation;

- insensitivity to measurement noise.
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Deadbeat observer

The deadbeat observer is an observer designed in such a way that the estimation error goes to zero in finite
time.

Contrary to the continuous-time systems, in the case of discrete-time systems it can be obtained by assigning
suitable eigenvalues to the closed-loop matrix.

Indeed, if L is chosen to place all the eigenvalues of A — LC' in the origin:
o(A—LC) ={o0,...,0},

then the characteristic polynomial of A — LC becomes p(z) = 2™, where n is the order of the system. Thus, by
the Cayley-Hamilton theorem, we have:

p(A—LC) = (A—LC)” =0.

As a consequence, we get
e(n) =z(n) — &(n) = (A — LC)"e(0) = 0.
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Deadbeat observer (cont.)

It can be shown that the actual number of steps depends on the size of the largest Jordan block associated to
the null eigenvalue (which is the sole eigenvalue).

Let J be the Jordan canonical form of A — LC. We have
(A—LOY = (TJT 1) = TJPT !
We know that J is a diagonal block matrix
J =diag{J1,...,Jm}

where each block takes the form

0 1 0

Jz - (2)
1
0 0
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Deadbeat observer (cont.)

By the properties of block matrices we have
JF = diag{Jf,..., I}
and, given the special form (2), the block JZ?“ is null if and only if & > n;, where n; is the block dimension.

Denoting by

the dimension of the largest block, we have

(A—LC)Y* =0 = k> k.
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Deadbeat observer (cont.)

Example

Consider the observable pair

ag(z) = 2.
By applying the Ackermann'’s dual formula we get
1 0 -1
L=ag(A)0 e, =A%| 0 1 0f=] 3
0 0 1 1 -5
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Deadbeat observer (cont.)

Thus, we have

1 0 1 [ 1 1 0
A—LC= 0 1 |- 3 [ 1 0 0 ] =l -3 o 1
1 -5 | 5 2 1
and -
—2 1 1
(A-LO?=| 2 -1 -1 |, (A-LC)P=
6 3 3 I

Thus, the error goes to zero in at most three steps.
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Output feedback




Output feedback

When the state x cannot be measured, one could be tempted to

use the state estimate & instead of the actual state z in the r U Yy
feedback law, thus obtaining —0 )
u=Kz+r.
observer

In this case, the regulator is, overall, a dynamic system, composed
of a dynamic part (the observer) and a static one (the feedback 7
gain). In the following we analyze the properties of such a control
scheme.

K

regulator
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Time-domain analysis

Consider the system
Az + Bu
Cx+ Du

—N
< 8
I

and the state observer
& =A% + Bu+ L(y — C% — Du).

We now apply the feedback law
u=Kz+r,

and analyze the properties of the obtained closed-loop system, whose more detailed block scheme is reported
in the next slide.
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Time-domain analysis (cont.)

&, Yy
L O
s
r @ %
O B—’C>—’/ c N
Y
A
f\_,D_
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Time-domain analysis (cont.)

The observer's equation can be written as
2 u
t=(A-1C)s +| B-LD L | [ }
Y

Recalling that y = Cxz + Du, we get

#=(A—-LC)& + LCx + Bu
(A—LC)& + LCx + BK% + Br
= (A— LC + BK)# 4+ LCz + Br

On the other hand, we have

z = Az + BKZ + Br
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Time-domain analysis (cont.)

Thus, the whole closed-loop system is governed by:

Aci Bey
—_——
48 A BK T B
. = + T

43 LC A—-LC+ BK 4 B

4z
y=[C DK)] [ | +Dr

—— T

Cei

We now perform a change of basis, to analyze the stability of the system.

Let the new state vector be:
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Time-domain analysis (cont.)

It is immediate to check that T = T—1, thus we get

A+ BK —BK B
* ] T—chl:[ }

T YA,T =
0 A—-LC

CaT=[ C+DK -DK |
As a consequence, the new representation of the closed-loop system becomes

¢ ] [ A+BK _BK ],
e | 0 A—LC e

+ Dr

“
y:[C+DK —DK]{E
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Time-domain analysis (cont.)

. A+ BK _BK =], [B
= T
8 0 A—r1c || e 0
X
y:[C+DK DK]{ + Dr
e

The block-triangular structure of the closed-loop state matrix has a fundamental consequence: the closed-loop
eigenvalues are the union of the eigenvalues of A+ BK and A — LC:

0(Ac)) =0(A+BK)Uo(A—LC)

Such eigenvalues, under the reachability and observability hypotheses can be arbitrarily and independently
assigned by a proper choice of K and L.
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Separation theorem

We have thus proven the separation theorem:

Theorem
The closed-loop of the system
z = Ax+ Bu
y = Cz+ Du
and the output feedback controller
& = A& +Bu+ Ly — Cxz — Du)
u = Kz+r

results in a system whose eigenvalues are the union of the eigenvalues of the state feedback closed-loop
matrix A+ BK with the eigenvalues of the observer matrix A — LC.
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Separation theorem (cont.)

The theorem suggests a two-step procedure to design a controller when the state is not accessible:

1. design the controller as if the state was accessible (thus, choose K in order to assign the desired
eigenvalues to A + BK);

2. if the state is not accessible, design a state observer by assigning the desired eigenvaluesto A — LC by a
proper choice of L.

Neither of the two choices influences the other and therefore the state and the error of estimation will evolve
according to the respective assigned dynamics. This is called the separation property.
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A rule of thumb

We have seen that the eigenvalues of A — LC have to be chosen to guarantee a sufficient speed of convergence
of the estimation error. What a sufficient speed is, depends on the dynamics of the system whose state is to be
estimated.

A rule of thumb is the following: choose the observer’s eigenvalues (orange, in the figure) from 6 to 10 times
farther from the imaginary axis than the eigenvalues of A + BK (black, in the figure).

Im

ol

Seoooooonoos( Sooooooooocoo0s
®

~ 6+ 10d
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Recall that the closed-loop system is governed by:

43 - 43

é e
As it is clear, the closed-loop system is not reachable by the external input r. In particular, the estimation error
e does not depend on 7. Such a property is desirable, because the error

A+ BK —BK
0 A—-LC

+

e(t) = x(t) — (t)

must converge to zero independent of the external input r.
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Consider the system:

t = A B 0 -2 0
v vt bu where A = , B= , C:{o 1]
y = O 1 -2 1

By letting

the eigenvalues of A + BK are placed in correspondence to the roots of

a(s)=(s+1)(s+1)=s2+2s+1.

Considering now the observer

& = Ai+Bu+L(y—19) do — 2
where L=
dy —2

H = O
it can be easily checked that the eigenvalues of A — LC are the roots of
ag(s) = s +dis+ do.
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Example (cont.)

State feedback
By applying the state feedback u = Kz, from the initial state

=il
w-[2]

we get the transient shown in the figure.

3

We now apply the feedback of the estimated state, using three different observers.
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Example (cont.)

Case A
7
1 4
ag)(s) =(s+ 5)2 = LW =
—1
- the control law is: )
u(t) = Ka(t); :
- the observer is initialized at zero: !
0 L
2(0) = . ’
0
4l
0 1 2 3 4 5 6 7 8 9 10
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Example (cont.)

Case B

aP()=(s+5? = IL®=

- the control law is:
u(t) = K2(t);

- the observer is initialized at zero:

o Jo
m(O)—|:O].
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Example (cont.)

Case C
98
aPs)=(s+102 = LO=
18
- the control law is: 1 1 1 1 T T T T 1
u(t) = K& (t); :
- the observer is initialized at zero: '
0 of -
z(0) = .
©) [ ’ ]
4
5 ‘
0 1 2 3 4 5 6 7 8 9 10
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The transients are clearly different.
Apparently, the control system of the Case C (which is based on the feedback of the estimated state) behaves
better than the full state feedback system (the transient is shorter). However:

- the fact that a particular transient is shorter does not mean that this always occurs (it depends on the
initialization of the observer);

- the performance should be evaluated also considering the moderation of the control action (strong
controls may not be desirable or even admissible);

- always keep in mind that high observer gains expose you to the risk of amplifying measurement noise.
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Frequency-domain analysis

r U = Y
observer
z
K
Consider the estimated state feedback:
A+ BK —BK

1] -

)

+ Dr

0 A—-LC

<
Il

[C + DK — DK] { *

and compute the transfer function T'(s) from r to y.
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Frequency-domain analysis (cont.)

By discarding the modes associated to e (which certainly do not appear in the transfer function, being
unreachable), we get

T(s) = [(C + DK)[sI — (A + BK)]"'B + D].
Such a transfer function coincides with the transfer function of the system in the following figure (that is, of the
full state feedback system).

In other words, from the input-output point of view, the control system behaves as if there was no observer.
However, recalling the meaning of the transfer function, it is clear that the above equivalence holds only when
the transients have expired, or for null initial conditions (including, in particular e(0) = 0).
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Frequency-domain analysis (cont.)

By assuming nonzero initial conditions, and applying the Laplace transform to equations (3), we get

Y (s) = (C + DK)[sI — (A + BK)]~1x(0)
—{(C + DK)[sI — (A+ BK)| " !BK[sI — (A—LC)] ™!
+DK|[sI — (A + BK)]"}e(0) + T(s)R(s)
that shows, in terms of transforms, how the output is affected by the initial conditions.
Notice that

- the colored term is due to the observer and is null if £(0) = z(0);

- the speed of convergence to zero of the contribution due to e(0) depends on A+ BK aswellason A— LC.
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Parameterization of all stabilizing
controllers




Dynamic, output-feedback stabilization problem

Consider the system Yy

2;{ i(t) = Az(t)+ Bu(t) 2
y(t) = Cx(t)

where A € R**", B € R»*™ and C € RPX™ (the case D # 0 will be
considered later on).

We want to find all the linear controllers (if any) of the form U r
- { i) = An(t) + By(t)
u(t) = Cn(t) + Dy(t)

such that the closed-loop system formed by £ and I is (asymptotically)
stable.
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Dynamic, output-feedback stabilization problem (cont.)

By substituting, we get
# = Ax+ B(Cn+ Dy) = Az + BCn+ BDCx
n = An+BCxzx

HE

where A, is the closed-loop matrix. Thus, the stability of the closed-loop depends on the eigenvalues of A;.

or, in compact form:

A+ BDC B_C’}{m]

BC A n

=Ac
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Dynamic, output-feedback stabilization problem (cont.)

We will actually consider a more general problem, in which the system to be controlled is

r = Az+ Biw+ Bou w z
X 8 z = Ciz+ Diiw+ Disu E
y = Chz+ Dajw U y

and search for the linear controllers I" such that the closed-loop system in the figure below is stable.

w z

— » —

@ )
r
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Dynamic, output-feedback stabilization problem (cont.)

In this more general setting:

- w is the vector of the control inputs;
- y is the vector of measured outputs;

- w is the vector of exogenous inputs (containing, for instance, references and disturbances and
measurement noise);

- z is the vector of performance outputs.
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Dynamic, output-feedback stabilization problem (cont.)

By substituting we get

t = Ax+ Biw+ By (én+D(CQI+D21w))
7 = An+ B(Cyzx + Dajw)
Crz + D1yw + D1s (Cn+ D(Cez + Da1w))

or, in compact form:

T A+ BQDCQ BQ@ 4B i B1 + BQDDQl
_ _ _ w
n BC> A n BDoy
ZAy
_ x _
z = [ C1+ D12DC2  D12C ] + (D11 + D12DDoy)
n

Felice Andrea Pellegrino

w
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Dynamic, output-feedback stabilization problem (cont.)

Let r be the order of the controller (i.e. A € R"*7). The closed-loop matrices A.; and A.; can be written
respectively as:

A+BDCBC_AO+BO D ¢ c o
BC A ] Lo o 0 I || B A 0 I
N/
=M

and

o

A+ B2DCy BC | | A 0 LB O D C Cy 0

BCs A 0 0, 0 I B A 0o I |
The above expressions are formally the same (Bz and C2 correspond to B and C, respectively). Thus, for
simplicity of notation, we will refer to the first case.
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Dynamic, output-feedback stabilization problem (cont.)

The dynamic output feedback stabilization problem can be stated as follows.

Problem statement: dynamic output feedback stabilization problem
Given the matrices A, B, C find, if they exist, an integer » > 0 and a matrix M € R(m+7)X(@+7) sych that

A 0 B 0 c 0
+ M
0 Or 0 I 0 I

is Hurwitz (i.e. all its eigenvalues have strictly negative real part).

In the following, we provide necessary and sufficient conditions for the problem to admit a solution.
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Dynamic, output-feedback stabilization problem (cont.)

We begin with two intermediate results.

Lemma
Let » > 0 and define the extended matrices

A B
Af = 0 and By = 0 .
0 O

Then, (A, B) is stabilizable if and only if (A¢, BE) is stabilizable.

a

Proof.
It is an immediate consequence of the PBH test for stabilizability. Indeed, the matrix

A —A 0 B 0

[ Magr—ag | B2 ] =
0 A, | 0 I
has a rank drop for X : Re(X) > 0 if and only if the matrix
[a-a]B ]

has a rank drop for the same . O
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Dynamic, output-feedback stabilization problem (cont.)

Lemma
Let » > 0 and define the extended matrices

A
AL = 0 and Cs = @0 .
0 O

Then, (A, C) is detectable if and only if (A%, C¢) is detectable.

Proof.
It is an immediate consequence of the PBH test for detectability. a
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Dynamic, output-feedback stabilization problem (cont.)

The following result provides necessary and sufficient conditions for the dynamic output feedback stabilization
problem to admit a solution.

Theorem
Given the matrices A™Xn BnXm CPX7 there exists an integer » > 0 and a matrix M (m+7)x(P+7) sych that

EREE

1. the pair (A, B) is stabilizable, and
2. the pair (A, C) is detectable.

is Hurwitz if and only if
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Dynamic, output-feedback stabilization problem (cont.)

Proof.
(=)

By hypothesis the matrix A¢ + BEMCE is Hurwitz. By viewing it as
Le
—~
A + BEMC?
~——
KG

itis clear that (A¢, BE) is stabilizable, because there exists a matrix K¢ such that A¢ + BEK*® is Hurwitz.
Therefore, by the first of the previous lemmas, (A, B) is stabilizable.

Similarly, (A%, Cg) is detectable, because there exists a matrix L€ such that A¢ + LeC¢ is Hurwitz. Therefore,
(A, C) is detectable.
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Dynamic, output-feedback stabilization problem (cont.)

(=)
By hypothesis, there exist matrices K and L such that

A+ BK and A+ LC
are Hurwitz. Take M as follows:

0 K
M =
{ —-L A+ BK+LC ]

(which implies that » = n). It is easy to check that the closed-loop matrix becomes

A BK
—-LC A+ BK+LC

Ay = A+ BEMC?® = {

Such a matrix can be proven to be Hurwitz by a proper change of basis.
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Dynamic, output-feedback stabilization problem (cont.)

Indeed, take

I -1 It It

T=|" " whose inverseis T i1=| """ " |.

0 I 0 I,

We have:
A+ LC 0
TagT-1=| 47T
—LC A+ BK

which is Hurwitz. O

Notice that, in view of the separation theorem, we already knew that the stabilizability and detectability are
sufficient conditions for stabilizing a system by means of output feedback: indeed they allow for designing an
observer-based stabilizing controller. We now have proven that they are also necessary.
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Dynamic, output-feedback stabilization problem (cont.)

Observe also that the controller employed in the second part of the proof, i.e.

0 K

M =
—L A+ BK+LC
is nothing more than an observer-based controller, whose block scheme is reported next.
U Y
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Q-parameterization

The following theorem (Q-parameterization) is a fundamental result in Control Theory.

Theorem

Given the matrices Anxn BnxXm CPX™_|et (A, B) be stabilizable and (A, C) be detectable. Let K™*"™ and
L™*P be such that A+ BK and A + LC are Hurwitz. Then:

- for every stabilizing controller (4, B, C, D) there exists a stable system (Ag, Bg, Cqg, Dg) such that a
realization of the controller, possibly with stable, yet uncontrollable and/or unobservable modes is:

] A

u=[K+DQC C’Q] |:IZ}DQ1/

A+ BK + LC + BDoC BCq
BgC Ag

=L = IBID)
Q:|y
—Bg

- for every stable system (Ag, Bg, Cq, Dg) the controller (4) is stabilizing.

Before proving the theorem, some observations are in order.
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(QQ-parameterization (cont.)

The block diagram of the controller is the following:

u Y

v

A Q

Dq
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(QQ-parameterization (cont.)

Thus, the controller is composed of an observer-based controller (whose state is &) and a stable linear system

(Ag,Bq,Cq,Dgq). The stable linear system is driven by the output estimation error § — y and its output v is
added to the feedback:

u= Kz + v.

The theorem states that all the linear stabilizing controllers can be obtained by fixing K and L and varying
(Ag, Bg,Cq, Dg) among the set of the stable linear systems (of any order).

In other words, the family of all the stabilizing controllers for the system (A, B, C) can be viewed as a
parametric family, depending on the “parameter” (Ag, B, Cq, Dq). Such a result is known as the
Q-parameterization or Youla-Kucera parameterization.

The result is important because it allows to cast the controller design problem in terms of a search in the
parameter space:

- the stability of the closed-loop is guaranteed by the parameterization;

- the parameter can be chosen in order to satisfy some prescribed performance specifications.
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(QQ-parameterization (cont.)

Proof.
(<)

We want to show that for all choices of (Ag, Bg, Cq, Dg), the controller given by (4) is stabilizing. Let Ag be
Hurwitz and Bg, Cq, Dg be matrices of appropriate dimensions. The closed-loop system obtained by
employing the controller (4) is governed by the following equations:

&= Az + Bu= Az + B [(K + DgC)é& + Cqzg — Dqy] =
Az + B [(K + DgC)i + Cgzg — DoCx]
&= (A+BK + LC + BDgC) & + BCgzg — (L + BDg)Cx
ig = BoCi + Agwg — BgCux

Hence, the closed-loop matrix is

A—BDgC B(K + DqoC) BCq
Aa=| —(L+BDq)C A+ BK+LC+ BDoC BCq
—BoC BgC Ag
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(QQ-parameterization (cont.)

By performing the change of variables:

xX r—X
T — zQ
zQ 45

we can recognize that A is Hurwitz. Indeed, denoting by nq the order of the matrix Ag, the change of
variable can be obtained by

I, —I, 0 I 0 s
T=1 0 0 Ing whose inverseis T 1= | 0 0o I
In 0 0 Ing, O
leading to
A+ LC 0
Acl = TACZT71 = *BQC AQ

—(L+BDg) BCq A+ BK

which is clearly Hurwitz.
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(QQ-parameterization (cont.)

=)

Suppose that the controller (A4, B, C, D) is stabilizing and let » be its order. Then, the closed-loop matrix

Ag = A® + B¢

o O
= Q)

cr

is Hurwitz. Define now

, Cq=|[ -K+DC ¢ |, Dg=-D.

We want to show that the controller (4), w Q@,Bqg,Cq, Dqg defined as above, has the same transfer function
(i.e. is a realization) of the controller A, B (7 D. By substituting in (4) and partitioning z¢ in a way consistent

to BQZ
Q1
xTr =
© |: TQq :|

we find the following state-space equations for the controller.
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(QQ-parameterization (cont.)

&= (A+ BK + LC — BDO)# + B(—K + DC)zg, + BCzg, + (—L + BD)y
#g, = (L — BD)C# + (A+ BDC)zqg, + BCxq, + (—L + BD)y
TQ, = ~BC%& + BCJ?QI + Ax@z — By

u= (K —-DC)z + (—K + DC’);KQ1 + C'xQQ + Dy

or, in compact form:

& A+ BK + LC - BDC B(-K + DC) BC|—L+ BD &
$Qi | _ (L — BD)C A+BDC BC|-L+ BD zq,
TQy -BC BC A B TQy

u K — DC ~K+DCc ¢ | D y

We now perform the change of variables:

>

TIIT oY

TQ1 = Q1

TQ2 Q2
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(QQ-parameterization (cont.)

corresponding to the change of base matrix:

In _In
T= In s
0 I
obtaining
& — g, A+ BK 0 0 0 i—xzg,
tg, _ (L-BD)C A+LC BC|-L+BD g,
£Q, -BC 0 A B TQ,
u K — DC 0 @ D Y

The first states (which are stable) are unreachable, thus can be removed without affecting the transfer function.
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(QQ-parameterization (cont.)

We obtain:
TQ, A+LC BC|-L+ BD Q.
ig, | = 0 A B zQ,
u 0 @ ‘ D Y

The first states (which are stable) are unobservable, thus can be removed without affecting the transfer

function. We get:
ZQ, _ LQo
u Yy '

i.e, the stabilizing controller (A, B, C, D). Thus we have proven that the controller (4), with Ag, Bg, Cqg, Do
defined as above, is a realization of the controller (4, B, C, D). O

i|B
¢|b

Notice that the controller (4), which is often called the Q-augmented controller, is not necessarily minimal, but
is certainly stabilizable and detectable (indeed, unobservable and/or unreachable modes may exists but, as
shown in the proof, they are stable).
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Observation 1

It is worth computing the transfer function “seen by the parameter”: it is sufficient to disconnect the system
and compute the transfer function from v to h = § — v, as in the figure below.

Felice Andrea Pellegrino

u

T

<

Ax 4+ Bu
Czx

Y

K

v

AQQL‘Q + Bgh
CQJJQ e DQh

322MI -Spring 2023 L6 -p124



Observations (cont.)

We have:

© = Ax + Bv+ BKzZ
& = A% + Bv + BKi + L(Ci — Cx)
h=Ci—Cx

-2 G2

)

i.e.,, in compact form

h=[-c o]

We now perform the change of variables:
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Observations (cont.)

corresponding to the matrix

We thus have (notice that T =T7-1):

A+ BK  —-BK
0 A+ LC

|24

T YAT =

, TB:{?], CT‘1=[0 —c].

Hence:
A+BK —-BK

It is immediate to check that all the modes are either unobservable or unreachable: as a consequence, the
transfer function from v to h is equal to zero.
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Observations (cont.)

Observation 2

The generic stabilizing controller can be represented as in the figure:
u Yy
h J v

Q

where J is the transfer matrix from (y, v) to (u, k), corresponding to the scheme

u
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Observations (cont.)

having the following state-space description:

#=(A+ BK+ LC)& — Ly — Bv
u=Kz+wv
h=C&—vy
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Observations (cont.)

Observation 3

If the system is of type

w z
— —
by
— —>
u Y

T = Az + Biw + Bau
z=Ci1z + D11w + Disu
y = Cox + Dajw

it is sufficient to employ, for the parameterization, the triplet (A, Bz, C2). Of course, the pairs (A, B2) and
(A, C2) need to be stabilizable and detectable, respectively. The transfer matrix J will have the following

realization )
= (A + Bo K + LCQ)i‘ — Ly — Bav
u=Kzi+wv
h=Ch®—vy
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Closed-loop transfer matrix

By applying the Q-augmented controller we get the scheme on the left, which is equivalent to that on the right,
obtained by grouping in a different way.

: w z
; R s
Cou] E |y
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Closed-loop transfer matrix (cont.)

Thus, we have

w zZ
v T h
Q

where T' = we have already proven that Ths = 0). We can write

Tii(s) Tia(s) ] (
To1(s) 0

z =T (s)w + Ti2(s)v

h = Toy (s)w = z=(Ti1(s) + Ti2(s)Q(s)T21(s)) w.
v = Q(S)h TCZ(S)
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Closed-loop transfer matrix (cont.)

w z

Thus, we have the following important property.

Property
The @Q-parameterization results in a closed-loop transfer function Ty;(s) between the exogenous inputs w and
the performance outputs z of the form

Te1(s) = T11(s) + Th2(s)Q(s)T21(s)

where Q(s) = Cq(sI — Ag)~'Bg + Dg and T11(s), Th2(s), T>1(s) are stable transfer matrices. In other
words, the closed-loop transfer matrix is affine in Q(s).

The property is important because affine dependence considerably simplifies the search in the parameter
space, leading to a design technique known as Q-design.
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Closed-loop transfer matrix (cont.)

To conclude, we show how to remove the hypothesis Doo = 0. It is sufficient to add and subtract Dos in the
loop, as in figure, obtaining an auxiliary system 3 such that Dgy = 0.

5
DY 1 DY
Doy —0
T T/ + 1 T/ L
Do Ot Doa O
r r
I r

Then, the family of all controllers T" that stabilize 3 is found via Q-parameterization. The final controller I is
obtained from T by feeding back the signal —Dagu.
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Applying feedback to nonlinear
systems




Applying feedback to nonlinear systems

Consider the nonlinear system (which is strictly proper, for ease of calculation):

{ (1) Fl@(®),u(?))
yt) = g(=@)),
and let (z,@) = (0,0) be an equilibrium pair. By applying the Taylor's series expansion, the previous can be

written as

{ab(t) = Az(®) + Bu(t) + ((2(t), u(t)) )

y(t) = Cxz(t) +£(=(1)),
where the residuals ¢(z,w) and &(z), are infinitesimals of order greater than 1 with respect to their arguments.

By neglecting the residuals, we obtain a linear system $(A, B, C) (i.e, the linearized system around the
considered equilibrium):

E{ #(t) = Ax(t)+ Bu(t)
y(t) = Cz(t).
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Applying feedback to nonlinear systems (cont.)

In the previous sections we have seen some techniques for designing regulators for linear systems.

One may ask whether a stabilizing regulator designed based on X (i.e., capable of stabilizing X2) is able to
stabilize the equilibrium of the nonlinear system as well. Remarkably, the answer is positive.

Indeed, let T be a stabilizing regulator for the linear system ¥ (no matter how it has been obtained):
(t

r.d 7®

u(t)

Applying the regulator to the nonlinear system amounts to joining (5) and (6), thus obtaining:

An(t) + By(t) (6)
Cn(t) + Dy(t).

& = Az + B(Cn + Dy) +((z,u) =
= Az + BCn + BDy + ((z,u) =
= Az + BCn+ BD(Cz + £(z)) + ¢(z,u) =
= (A+ BDC)z + BCn + BD¢(z) + ((z,u)
n=An+ B(Cz +&(z)) =
= An+ BCz + B¢(x).
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Applying feedback to nonlinear systems (cont.)

The previous can be written in compact form as:
U]

where the last term is easily proven to be an infinitesimal of order greater than 1 with respect to = and 7.

)

A+ BDC BC ) . ¢(z,u) + BDE(x)
BC A n B¢(x)

Ay infinitesimal of order greater than 1

The previous is the state equation of the overall nonlinear control system, obtained by applying the linear
regulator I" to the nonlinear system. Clearly, such a control system has the origin as an equilibrium state. The
stability of the equilibrium can be studied by linearizing the system, which amounts to neglecting the residual.
In other words, recalling the Lyapunov’s indirect method, the stability depends on the eigenvalues of A;.

On the other hand, A.; is precisely the closed-loop matrix obtained when applying I" to the linear system X.
Since T stabilizes X, the eigenvalues of A.; have strictly negative real part, implying the asymptotic stability of
the equilibrium.

Felice Andrea Pellegrino 322MI -Spring 2023 L6 -p134



References




References

Hautus, M. (1977). A simple proof of Heymann's Lemma. IEEE Transactions on Automatic Control, 22:885 — 886.

Felice Andrea Pellegrino 322M| -Spring 2023 L6 —-p137



322MI -Spring 2023

Lecture 6
State feedback and output feedback

END



	State feedback
	Feedback
	State feedback and output feedback
	Linear and static state feedback for LTI systems
	Linear and static state feedback for LTI systems
	External input
	Open-loop and closed-loop
	Open-loop and closed-loop
	Open-loop and closed-loop
	Open-loop and closed-loop
	Eigenvalue assignment
	Eigenvalue assignment
	Eigenvalue assignment
	Stabilizable systems
	Stabilizable systems
	Eigenvalue assigment problem
	Direct method
	Direct method
	Direct method
	Methods based on controller form
	Methods based on controller form
	Methods based on controller form
	Methods based on controller form
	Methods based on controller form
	Ackermann's formula
	Ackermann's formula
	Ackermann's formula
	Ackermann's formula
	Multiple input case
	Multiple input case
	Multiple input case
	Multiple input case
	Heymann's lemma
	Heymann's lemma
	Heymann's lemma
	Heymann's lemma
	Heymann's lemma
	Heymann's lemma
	Heymann's lemma
	Heymann's lemma
	Heymann's lemma
	Example: servomechanism
	Example: servomechanism
	Example: servomechanism
	Example: servomechanism
	Non-reachable systems
	Non-reachable systems
	Discrete-time LTI systems
	Discrete-time LTI systems

	State estimation
	State estimation
	Observer
	Luenberger observer
	Luenberger observer
	Error dynamics
	Error dynamics
	Eigenvalue assignment
	Detectable systems
	Choice of the eigenvalues
	Choice of the eigenvalues
	Trivial observer
	Example
	Example
	Example
	Ackermann's formula
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Discrete-time LTI systems
	Discrete-time LTI systems
	Discrete-time LTI systems
	Deadbeat observer
	Deadbeat observer
	Deadbeat observer
	Deadbeat observer
	Deadbeat observer

	Output feedback
	Output feedback
	Time-domain analysis
	Time-domain analysis
	Time-domain analysis
	Time-domain analysis
	Time-domain analysis
	Time-domain analysis
	Separation theorem
	Separation theorem
	A rule of thumb
	Observation
	Example
	Example
	Example
	Example
	Example
	Observations
	Frequency-domain analysis
	Frequency-domain analysis
	Frequency-domain analysis

	Parameterization of all stabilizing controllers
	Dynamic, output-feedback stabilization problem
	Dynamic, output-feedback stabilization problem
	Dynamic, output-feedback stabilization problem
	Dynamic, output-feedback stabilization problem
	Dynamic, output-feedback stabilization problem
	Dynamic, output-feedback stabilization problem
	Dynamic, output-feedback stabilization problem
	Dynamic, output-feedback stabilization problem
	Dynamic, output-feedback stabilization problem
	Dynamic, output-feedback stabilization problem
	Dynamic, output-feedback stabilization problem
	Dynamic, output-feedback stabilization problem
	Dynamic, output-feedback stabilization problem
	Dynamic, output-feedback stabilization problem
	Q-parameterization
	Q-parameterization
	Q-parameterization
	Q-parameterization
	Q-parameterization
	Q-parameterization
	Q-parameterization
	Q-parameterization
	Q-parameterization
	Observations
	Observations
	Observations
	Observations
	Observations
	Observations
	Closed-loop transfer matrix
	Closed-loop transfer matrix
	Closed-loop transfer matrix
	Closed-loop transfer matrix

	Applying feedback to nonlinear systems
	Applying feedback to nonlinear systems
	Applying feedback to nonlinear systems
	Applying feedback to nonlinear systems

	References
	References


