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Correspondence 

On Minimizing the Probability of a 
Maximum  Deviation* 

In a recent  paper' a stochastic  control 
process was considered in \vhich the  mini- 
mum of the  maximum  expected  deviation 
over  the  'history of the process was used a s  
the  criterion  iunction. I t  is worth  pointing 
out  that  one  can  also  discuss  the  problem 
of minimizing  the  probabilitv  that  the 
masimtrm  deviation will exceed a  preas- 
signed quantity z. 

Consider  a  discrete  control process in 
which the  state of the  system a t  time, n ,  is 
governed  by  the  relation 

.Tn+1 = n(s., J,,, r,,), x0 = c, (1) 

where y. is the  control  vector  and .(rn]. is, 
for the  sake of simplicity.  a  set of independ- 
ent  random  vectors  with a common  dis- 
tribution  function.  Let  it  be  required  to  de- 
termine  the y.., using  feedback  control (cf. 
the discussion in Bellman2), so as  to mini- 
mize the  quantity 

f r ! c ) = P r o b ( m a x ( l r I l ,  ! x 2 / , . - - ,  

. I s,l) 5.). (.2) 

Here ! x '  can represent  either  a  norm of x 
or the  notation ! S I  < z  can  be  interpreted 
in some  component-by-component  fashion. 
I t  is clear that  

j d c )  = 0: I t I > i) 

= min J-= jX-,(g(c, y, r ) ) ~ ( r )  (3) 
Y =  

if  ' G I  IC. 
If we wish to minimize the  quantity 

using the  functional  equation  technique, 

define 
then we introduce  another  variable E', and 

f.v(c,w) =minesp  (ma, ti,, I x1 I , I x21 , . . . , 
Y 

. I x,] 11. (5 )  

Then  the principle of optimality yields 
the  recurrence  relation 

js(c: =) = mjn J-If.v-l(g(c, y, y);  

.max (6, w))dG(r) .  (6) 
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On Optimal  Control and Linear 
Programming* 

L. -4. Zadeh 
hiany of the  problems of optimal con- 

trol of discrete-time  systems  can  be  formu- 
lated as! or readil>-  reduced to,  problems in 
nonlinear  programming.  Some of these  non- 
linear  programming  problems  can  in  turn  be 
reduced  in well-knon-n ways  to  linear  pro- 
gramming  problems.  a  result,  some of the 
problems of optimal  control of discrete-time 
systems  can  be  reduced  to  linear  program- 
ming  problems.  The  purpoie of this  com- 
munication is to exhibit a fairly  obvious 
way in which this  can  be  done in the case of 
linear,  discrete-time  systems. 

Consider the following standard -prob- 
lem as  an  illustration.  Let S be  a  discrete- 
time  system  characterized  by  the  state 
equation 

x6+1 = Axl + B211, (1) 

where xt is the  state  vector at time t 
( t=O, 1, 2: . . . ), zit is the  scalar  input at  
time f ?  A is an n X n  matrix  and B is an 
t z  vector. -4ssume 1) that S is initially  (at 
t =o j  in a specified state a, 2) that  it is  de- 
sired to  take S to a specified state $ in 
minimal  time,  and 3) that u t  is constrained 
by ) u t !  5 1  for all t. Let T be  the  instant  at 
\vhich x t = $  for the first time.  Then  the 
problem is to find a sequence ( u t ] - ,  Ost 
I T -  1, which minimizes T. 

From  the  state  equation (1) it is a 
simple  matter  to  deduce  an explicit relation 
for the  state of S at  any  t ime t > O  in  terms 
of the  state of S a t  time 0 and  the  input 
sequence 210, . . , ut-'. I t  reads 

t 

x1 = A'xo + c h&-7, (2) 
7 4  

where ht, the  state  in~pulsive  response,  is  the 
inverse z transform of the  matrix  product 
(d-Aj-lB. Thus,  in  order  that  an  input 
sequence 240, . . . ,  UT-^ take S from (Y 

(at t = O )  t o  @ (at t =  T )  i t  is necessary  and 
sufficient that  

T 

hrllt--r = 6 - ATa.  (3) 
r=1 

In  terms of this  relation,  the  optimal  control 
problem can  be  stated  as follows. Find  a 
sequence uo, . . . ,  UT-^ which satisfies (3) 
with  the  smallest possible value of T,  sub- 
ject  to  the  constraint : uti < 1, t = O ,  . . . , 

h-ow as  \vas pointed  by  Krasovskii,L  this 
T-1. 

' here was  supported  in  part by  the  National  Science 
* Received  February 26, 1962. The work  reported 

Foundation. 
1 S.  S. Krasovskii. 'Qn the thenrv of ontimal 

regulation,' Aztfomafika i Telemekha-nika vol. 18 
pp. 960-930; November, 1955. An exposition of Kra: 
sovskii's method  is given in  the  author's  chapter, 

-- 

in  *Computer  Control  Systems  Technology," C. T. 
"Optimal  control  problems  in  discrete-time  systems." 

Leondes.  Ed.,  hlcGraa-Hill  Book Co., Inc.. New 
York, N. Y.; 1961. 

problem  can be  reduced to  the  solution of 
Problem -1 stated below. 

Problem -4: Starting Lvith a fixed T,  
minimize the  quantity 

over  the u 1  subject  to  the  constraint 

Krasovskii  also  pointed  out  that  Prob- 
lem A is  equivalent  to  Problem B stated 
below. 

Problem B: Starting  with  a fixed T ,  mini- 
mize the  quantity 

'I' 

QG-1 = c I t.ht I : 
1 4  

t.ht = scalar product of t and hr  (6) 

over  real n vectors  subject  to  the  constraint 

(e - A T L Y ) . t  = 1. ( 2  

In both  these  problems, if the  minimum 
value of Q(Tj exceeds one, start  with  a 
larger  value of T. If Q(T)  <1, reduce T 
until Q(T)  equals one. For  this  value of T,  
say T =  Tnt, the  corresponding  minimizing 
sequence zt.0, . . + , Z ~ T - ~  is a solution to  the 
original problem,  and T,, is the  minimal 
value of T. 

?.!ow both  Problems X and B can  readily 
be put  into a linear  programming  form  by 
using known  techniques.* Specifically, in 
the case of Problem B, introduce a set of 
auxiliary var:ables zl, . . , ZT satisfying 
the 2T inequalities 

er2(t.hl) ,  s * > - ( t . h * ) ,  f = l , .  . - , T ,  (8)  

81 1 I &htl . (9) 

which together  imply 

Next, form the  objective  function 

0 = 2 2,. (10) 
1-1 

Now, for any satisfying (7) the  minimum 
value of 0 is attained  when z t=  / t . h f l ,  
t = 1, . . . , T. ConsequentlJ-,  the  minimiza- 
tion of Q is equivalent  to  the  minimization 
of Q. In  this n-ay, the  solution of Problem B 
is reduced to  the  minimization of the  linear 
form Q subject  to  the  inequality  constraints 
(8 )  and  equality  constraints (7.1. Another 
n a y  of attaining  the Teduction is  to  in- 
troduce 2T non-negative  variables i t f  and 
E'L such that 

2 C. E. Lemke  and .I\. C$arnes,  "Extrema1  prob- 
lems  in  linear  inequalities,  Camegie  Institute of 
Technology.  Pittsburgh. Pa., Tech  Rept. No. 36; 
May. 1953. 
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and 

Cf - 0 1  = h.h,, 1 = 1? . . . , T.  (12:) 

Here for any satisfying (7), the  minimum 
value of 5, is attained  by  setting w f = 0  if 
r.ht is non-negative  and v t=O if c-ht is 
negative.  Then, clearl>-, Q = Q. 

Problem -1 is closely related  to  the so 
called Tchebycheff p rob len~ ,~  which \\-as 
originally formulated  and solved by La- 
place in li99,' and which can  be reduced 
to a linear programming problem in  many 
ways. For  example,  let dT be an  auxiliary 
variable  satisfying  the  inequalities 

'If >_ P/t ,  JI 2 - I/#, 1 = 0, . . . ~ T - 1. (13) 
Then  Problem -4 reduces  to:  hlinimize X 
subject  to  the  inequality  constraints (13) 
and  equality  constraints (5). 

There  are  many  other  problems of 
optimal  control of linear  discrete-time 
systems which can be reduced in various 
wa?-s to linear programming problems. 
Some of these  are discussed in the  accom- 
pan)-ing con~n~unication  by B. \i-halen. 

The  author is indebted to Prof. G. 
Dantzig for the \-aIl&Poussin reference.' 

L. A.  ZADEH 
Dept. of Elec. Engrg. 

L-niversity of California 
Berkelel-, Calif. 

B.  H. Whalenzj 
*As Prof. Zadeh  points  out  above, 

Krasovskii's  formulation of the  minimal- 
time  problem for linear  discrete  systems  can 
be reduced to problems  in  linear  program- 
ming. -4s shown below, a different  formula- 
tion  leads  to a different linear program. =\ 
minimal-fuel problem is also discussed. 

THE MIKINAL-TIME  PROBLEN 

The definitions and  the  notation in Prof. 
Zadeh's  communication  are  assumed.  The 
problem is then to choose T,  u O ,  . . . , z6r-L 
such that T is minimized, and such that 

T 
Q = A T X o  + Chr2rT-f 

t-1 

I z < O I  5 1, t = 0, 1: . . . , T - 1. (1) 

ICrasovskii's idea  was to fix T and  then 
minimize over 21-1 the  function 

mal { I u t  I , t = 0, I, . . . , T - 1) (2) 

subject  to  the  constraints 

(3)  

The  alternative suggested here is to 
fix T and  then minimize over ut  the  function 

mas { ,  e;I , i  = 1, . . .  72)  

i=l 

3 E. Stiefel. T o t e  on Jordan  elimination,  linear 
programming  and  Tchebrcheff  approximation.' 
Semer ische Mofhentalik, vol. 2,  pp. 1-17; 1960. 

4 C.  J.  de la  Val+-Po;sein, *Sur la methode  de 
l'approsimation  minlmum, A X I L  Soc.Sri.:(Braxellesl, 
vol. 3.5. Pt. 2,  pp. 1-16;  1911. 
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where 

e = (el, . . . , e . )  = 3 - ~ T X ( ,  - h t l 1 T - t  (4) 

subjert  to  the  constraints 

T 

1-1 

I 211 ~ 5 1. (5) 

To reduce  this problem to  a linear  pro- 
gram.  introduce a new variable g and mini- 
mize g. subject  to  the 2ir. constraints 

and  the 2T constraints 

Since  the ei are  linear  functions of u f ,  

and since g is a linear functional of the 
variables g, 110. . . . , Z ~ T - ~ ,  the  above  prob- 
lem is a linear  program i n  these T+1 vari- 
ables6 If the  minimal g is nonzero, T is ad- 
justed  and  the process repeated.  For  the 
least T surh  that  the nlinimal g is zero, the 
solution of the  program is the  solution of 
the  original  minimal-time  problem. 

For the  regulator problem ( $ = O l ,  T 
should aI\\-n!-s be  adjusted  to  a larger value, 
although  this is not necessarily true for the 
control  problem. Obviousl?-, a technique 
n.hich determines only the  value of the 
program, i.?., the   n~inin~al  g, is sztisfactory 
for all the  iterations  but  the  last one. 

-1 ~IIsIJf.xL-FwL  PROBLEN 

Suppose  it is desired to minimize the 
cost  function 

y C f  I 111 ; (8) 
t=o 

subject  to  the  constraints 
T 

= A T X O  + h1UT-f. (9) 

T o  reduce  this problenl to a linear pro- 
gram,  introduce  the new variables go. . . . , 
gT-1. The  equivalent linear program is then 

f = l  

subject  to  the  constraints 

g , + 2 1 1 2 0  

-21:  2 - 1 j 
I 

7 

5 = .dTXo h t f l T - t .  (11) 
f = I  

-1lthough  this  program is more complex 
than  the  program for the  n~inimum-time 
problem, no iterations  are  involved. since T 
is specified. If one does not  know in advance 
that  the  iirst  set of constraints  ran  be  satis- 
fied. a Inore appropriate  cost  function \\-auld 
include  both  the fuel and the final error. 
If the  cost is linear in  the I e ;  1 ,  this  more 
general problem can be reduced  to a linear 
progranl by  the  same  method used above. 

ela.' XicGrau-Hill Book Co., Inc.,  New I-ork. X. I-.. 
6 D. Gale, "The Theory oi Linear  Economic  hlod- 

chs. 1 ,3 .  4; 1960. 

.hother  alternative which results in a linear 
program is to minimize  fuel subject  to  an 
inequality  constraint  on  the : e i l .  

COSCLUSIOS 

It should  be  noted that  the dimensions 
of the  linear  programs  obtained  here, as well 
as  those in Prof.  Zadeh's  communication  are 
proportional to T for large T. Ho\\-ever, the 
special  character of the  constraints  makes  it 
possible to  employ specialized algorithms 
n-hich greatly  reduce  the  computational 
labor for large values of T.  

.Aside iroiI: practical  considerations, 
there  are  some  theoretical  advantages  to 
this  approach.  For  example,  from  the ele- 
mentary  fact  that a solution of the  linear 
program lies on a vertex of the  constraint 
set,  one  can see that for both  the  minimal- 
time  and  the  minimal-fuel  problems,  the 
optinlal  control is "bang-bang" for a t  least 
T-n values of t. This is true  whether  the 
sJ.stem is oscillatory or not,  and  one  can 
thus  obtain  bounds on the  error  caused by  
using an  input n.hich can  only  be  plus or 
nlinus  one. 

;\nother  aspect of the  linear  program- 
ming  formulation is that  every  linear  pro- 
gram  has  an  equivalent  "dual"  program. 
In  fact,  Krasovskii's  observation  that 
Problems "A" and "B" are  equivalent is 
easily  proved by demonstrating  that  the 
corresponding  linear  programs  are  dual to 
each  other. 

B. H. \VHALEH 
I'niversity of California 

Berkeley, Calif. 

Plant-Adaptive  Optimal  Systems* 
I t  is interesting  to  note  that  often in the 

sylthesis of optimal  control  systems  one  ob- 
tains  part of the  solution to the  adaptive 
problem [l 1. Consider, for example,  a  plant 
with dpamics ,  in state  space, of the  form 

x = Jyx, u, w) (1) 

where x represents  the  plant  output, u the 
control  input,  and w a constant  plant- 
parameter  vector.  The  optimal  control sys- 
tem  then  takes  the form of Fig. 1. 

The  value of the  parameters in the con- 
troller  depend, of course,  on  the  plant- 
parameter  vector w. If a relationship be- 
t\\-een the  parameters of the  controller  and 
w can  be  established,  then an  adaptive  path 
may  be included in the  optimal  system  to 
maintain  optimality. See Fig. 2. 

The  adaptive  path  must  both  identify 
the  vector w and  actuate  the  optimal  con- 
troller.  The  purpose of this  note is to in- 
dicate how the  relationship  between  con- 
troller  parameters  and  plant  parameters 
may  be  obtained.  The  results  are  best illus- 
trated  by a simple  example. 

* Received .\pril 9,  1962. The work  reported in 
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