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On Optimal Control and Linear
Programming*

L. 4. Zadeh

Many of the problems of optimal con-
trol of discrete-time systems can be formu-
lated as, or readily reduced to, problems in
nonlinear programming. Some of these non-
linear programming problems can in turn be
reduced in well-known wavs to linear pro-
gramming problems. As a result, some of the
problems of optimal control of discrete-time
systems can be reduced to linear program-
ming problems. The purpose of this com-
munication is to exhibit a fairly obvious
way in which this can be done in the case of
linear, discrete-time systems.

Consider the following standard -prob-
lem as an illustration. Let .S be a discrete-
time system characterized by the state
equation

xp = Az, + Bu,, e

where x, is the state vector at time ¢
(¢=0,1, 2, - - ), u, is the scalar input at
time £, A is an #X#n matrix and B is an
n vector. Assume 1) that S is initally (at
t=0) in a specified state ¢, 2) that it is de-
sired to take .S to a specified state 8 in
minimal time, and 3) that u, is constrained
by Iu:! <1 for all . Let T be the instant at
which x,=g for the first time. Then the
problem is to find a sequence {u,}, 0<¢
<7 -1, which minimizes T.

From the state equation (1) it is a
simple matter to deduce an explicit relation
for the state of S at any time {>0 in terms
of the state of .S at time 0 and the input
sequence g, *+ * -+, #;1. It reads

¢
x, = A% + 2 hettiy, (2)

7=1

where h,, the state impulsive response, is the
inverse z transform of the matrix product
(I —A)7'B. Thus, in order that an input
sequence w#g, * -+, #r_y take S from «
(at t=0) to § (at £=7T) it is necessary and
sufficient that

T
> htr,=8— ATe &)

=1

In terms of this relation, the optimal control
problem can be stated as follows. Find a
sequence #,, - - -, #r—_; which satisfies (3)
with the smallest possible value of T, sub-
ject to the constraint |« <1, =0, - - -
Tr—1.

Now as was pointed by Krasovskii,! this

’
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1 N. N. Krasovskii, “On the theory of optimal
regulation,” Aunfomatike i Telemekhanika, vol. 18,
pp. 960-970; November, 1957, An exposition of Kra-
sovskii's method is given in the author's chapter,
“Optimal control problems in discrete-time systems,”
in “Computer Control Systems Technology,” C. T.
Leondes, Ed., McGraw-Hill Book Co., Inc., New
York, N. Y.; 1961,

problem can be reduced to the solution of
Problem A stated below.

Problem A: Starting with a fixed T,
minimize the quantity

T) = Max |u! 4
o) OSlSaY}—l | 2! 4)
over the #, subject to the constraint

- .

Z Ay, =03— ATe. 5)

T=1

Krasovskii also pointed out that Prob-
lem A is equivalent to Problem B stated
below.

Problem B: Starting with a fixed T, mini-
mize the quantity

> e,

& h: = scalarproductof Eand A, (6)

Q1)

over real z vectors & subject to the constraint
B —ATe)-E =1 (7

In both these problems, if the minimum
value of Q(7} exceeds one, start with a
larger value of T. If Q(7)<1, reduce T
until Q(7") equals one. For this value of T,
say I =T, the corresponding minimizing
sequence %, - * * , #r_1 is a solution to the
original problem, and 7. is the minimal
value of T.

Now both Problems A and B can readily
be put into a linear programming form by
using known techniques.? Specifically, in
the case of Problem B, introduce a set of
auxiliary wvarfables 2z, -+ -, 27 satisfying
the 2T inequalities

ZtZ(f'h:), ZIZ_(E'hl)y t=17 tTt, Tl (8)

which together imply

2> | £k 9)
Next, form the objective function
- T
Q=22 (10)

=1

Now, for any ¥ satisfying (7) the minimum
value of Q is attained when z,=&-h|,
t=1, - .-, 7. Consequently, the minimiza-
tion of Q is equivalent to the minimization
of Q. In this way, the solution of Problem B
is reduced to the minimization of the linear
form Q subject to the inequality constraints
(8) and equality constraints (7). Another
way of attaining the yveduction is to in-
troduce 27" non-neégative variables z; and
wy such that

. T
Q=2 (04w (11)

t=l

2 C. E. Lemke and A, Charnes, “Extremal prob-
lems in linear inequalities,” Carnegie Institute of
Technology, Pittsburgh, Pa., Tech Rept. No. 36;
May, 1953.


Felice Andrea Pellegrino


46 IRE TRANSACTIONS ON AUTOMATIC CONTROL

and

&n, t=1,---,7. (12)
Here for any & satisfying (7), the minimum
value of Q is attained by setting w,=0 if
& h: is non-negative and v,=0 if ¥-h; is
negative. Then, clearly, Q=0.

Problem A is closely related to the so
called Tchebycheff problem,® which was
originally formulated and solved by La-
place in 1799,* and which can be reduced
to a linear programming problem in many
ways. For example, let 17 be an auxiliary
variable satisfying the inequalities

M>2u, M2 —wuy, t=0,-.-,T—1. (13)

Then Problem A reduces to: Minimize 1/
subject to the inequality constraints (13)
and equality constraints (5).

There are many other problems of
optimal control of linear discrete-time
systems which can be reduced in various
wayvs to linear programming problems.
Some of these are discussed in the accom-
panying communication by B. Whalen.

The author is indebted to Prof. G.
Dantzig for the \allée-Poussin reference.t

L. A. ZaDpEH

Dept. of Elec. Engrg.
University of California
Berkeley, Calif.

Tt =

B. H. Whalen®

As Prof. Zadeh points out above,
Krasovskii's formulation of the minimal-
time problem for linear discrete systems can
be reduced to problems in linear program-
ming. As shown below, a different formula-
tion leads to a different linear program. A
minimal-fuel problem is also discussed.

Tue MiNiMAL-TIME PROBLEM

The definitions and the notation in Prof.
Zadeh's communication are assumed. The
problem is then to choose T, uq, - - -, #r_
such that T is minimized, and such that

T
B=ATxy + Zh;ur_,

=1

fuw] <1, 6=0,1,---, T =1 (D)

Krasovskii's idea was to fix 7 and then
minimize over #; the function

max{]u,l,t=0,1, ,T—1} (@
subject to the constraints
T

B = ATz, + 2 Aiir_e 3)
i=1

The alternative suggested here is to
fix T and then minimize over #; the function

max{_e,-|,i=1,--~n}

3 E. Stiefel, “Note on Jordan elimination, linear
programming and Tchebycheff approximation,”
.\umenschz Mathematik, vol. 2, pp. 1-17; 1960.

. J. de la Vallee- Poussm, “Sur la methode de
lappronmatlon minimum,” Ann. Soc. Sci.[(Bruxelles),
vol. 35, pt. 2, pp. 1-16; 1911,
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tion.

where

T
Z htr_ (4)

t=1

e=(e, - ,e)=8— A% —

subject to the constraints
| ] <1 (5

To reduce this problem to a linear pro-
gram, introduce a new variable g and mini-
mize g, subject to the 2% constraints

€; >O
:Z”_Leigog i=1,---,n, (6
and the 27T constraints
U > — 1%
= t=0,1,---,T—1. (1
—uy > — 1 M

Since the e; are linear functions of
and since g is a linear functional of the
variables g, #e, - + +, #7_, the above prob-
lem is a linear program in these 741 vari-
ables.s If the minimal g is nonzero, T is ad-
justed and the process repeated. For the
least 7 such that the minimal g is zero, the
solution of the program is the solution of
the original minimal-time problem.

For the regulator problem (3=0), T
should always be adjusted to a larger value,
although this is not necessarily true for the
control problem. Obviously, a technique
which determines only the value of the
program, i.e., the minimal g, is satisfactory
for all the iterat1on> but the last one.

A MinivaL-FuerL PROBLEM

Suppose it is desired to minimize the
cost function

T-1 .
PIRAR ®)

=0

subject to the constraints
T
8= ATz, + 2 hutr_.. 'O)
t=1

To reduce this problem to a linear pro-
gram, introduce the new variables gq, « - -,
gr—1. The equivalent linear program is then

T-1
min 2 cig (10)

gty U t=0D

subject to the constraints

gt+u=>0
o — >0
g t=0.1 T —1
11,2—1[
—u > —
T
8= ATxe + 2, hutr—s 11

Although this program is more complex
than the program for the minimum-time
problem, no iterations are involved, since T
is specified. If one does not know in advance
that the first set of constraints can be satis-
fied, a more appropriate cost function would
include both the fuel and the final error.
If the cost is linear in the |e;|, this more
general problem can be reduced to a linear
program by the same method used above.

6 D. Gale, “The Theory oi Linear Economic Mod-
els,” \IcGra\\ Hill Book Co., Inc., New York, N. Y.,
chs. 1, 3, 4; 1960.
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Another alternative which resultsin a linear
program is to minimize fuel subject to an
inequality constraint on the 'e;.

CONCLUSION

It should be noted that the dimensions
of the linear programs obtained here, as well
as those in Prof. Zadeh’s communication are
proportional to T for large 7. However, the
special character of the constraints makes it
possible to employ specialized algorithms
which greatly reduce the computational
labor for large values of 7.

Aside f{rom practical considerations,
there are some theoretical advantages to
this approach. For example, from the ele-
mentary fact that a solution of the linear
program lies on a vertex of the constraint
set, one can see that for both the minimal-
time and the minimal-fuel problems, the
optimal control is “bang-bang” for at least
T —=»n values of . This is true whether the
system is oscillatory or not, and one can
thus obtain bounds on the error caused by
using an input which can only be plus or
ninus one.

Another aspect of the linear program-
ming formulation is that every linear pro-
gram has an equivalent “dual™ program.
In fact, Krasovskii’'s observation that
Problems “A” and “B” are equivalent is
easily proved by demonstrating that the
corresponding linear programs are dual to
each other.

B. H. WHALEN
University of California
Berkeley, Calif.

Plant-Adaptive Optimal Systems*

It is interesting to note that often in the
synthesis of optimal control systems one ob-
tains part of the solution to the adaptive
problem [1]. Consider, for example, a plant
with dynamics, in state space, of the form

x = f(x, u, w) [¢D)

where x represents the plant output, u the
control input, and w a constant plant-
parameter vector. The optimal control sys-
tem then takes the form of Fig. 1.

The value of the parameters in the con-
troller depend, of course, on the plant-
parameter vector w. If a relationship be-
tween the parameters of the controller and
w can be established, then an adaptive path
may be included in the optimal system to
maintain optimality. See Fig. 2.

The adaptive path must both identify
the vector w and actuate the optimal con-
troller. The purpose of this note is to in-
dicate how the relationship between con-
troller parameters and plant parameters
may be obtained. The results are best illus-
trated by a simple example.

* Received April 9, 1962. The work reported in
this memorandum was sponsored by the Office of
Scientific Research under Contract No. AF-18(603)-
105.




