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Model predictive control

Consider the discrete-time system
x(k + 1) = f(x(k), u(k)) (1)

where x ∈ R
n , u ∈ R

m , f(0, 0) = 0 and f ∈ C1 . The following constraints are defined:

u(k) ∈ U , x(k) ∈ X , ∀k ∈ Z = {0, 1, 2, . . . } . (2)

Given the horizon N , let a cost be defined as

J(x(k), u(·), k) =

N−1∑

i=0

(

‖x(k + i)‖2Q + ‖u(k + i)‖2R

)

+ Vf (x(k +N)), (3)

where ‖z‖2M is a shorthand for z⊤Mz, Q = Q⊤ ≻ 0, R = R⊤ ≻ 0 and Vf : Rn −→ R
+ .

Felice Andrea Pellegrino 322MI –Spring 2023 L8 –p1



Model predictive control (cont.)

For each time k, we can formulate the following optimization problem:

Find the optimal input sequence

uo = {uo(k), uo(k + 1), . . . , uo(k +N − 1)}

such that the cost (3) is minimized and the constraints (2) are satisfied, in accordance to the dynamics (1).
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The receding-horizon principle

The model predictive control (MPC) is based on the so-called receding-horizon principle:

At time k, solve the optimization problem over the finite horizon [k, k+N ] and apply only the first input uo(k)

of the obtained optimal sequence uo. At time k + 1, solve a new optimization problem over the interval
[k + 1, k +N + 1], apply the first input of the optimal sequence and so on.

Notice that in doing so, we are implicitly defining a time-invariant state-feedback control law:

u(k) = KRH(x(k)). (4)

Indeed, since the horizon is shifted forward at each time step, the optimization problem depends only on the
current state x(k), irrespective of k.
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The receding-horizon principle (cont.)

It should be observed that the control law (4) does not guarantee the stability of the equilibrium, unless some
conditions are met.

In the following, we report a formulation of the problem (in terms of the choice of cost and constraints) that
guarantees the stability; more precisely, that renders the origin x = 0 an asymptotically stable equilibrium.
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Stability of the MPC

Consider the system
x(k + 1) = f(x(k), u(k))

where x ∈ R
n , u ∈ R

m , f(0, 0) = 0 and f ∈ C1 .

Let the constraints be:
u(k) ∈ U , x(k) ∈ X , ∀k ∈ Z = {0, 1, 2, . . . } .

where the sets U ⊂ R
m and X ⊂ R

n are bounded and closed sets, containing the origin in their interior.

Suppose that an auxiliary control law u = Ka(x) is given that renders positively invariant the set Xf ⊂ X

containing the origin, guaranteeing the satisfaction of the constraints. In other words, the system

x(k + 1) = f(x(k),Ka(x(k)))

is such that , if x(k̄) ∈ Xf then:

1. x(k) ∈ Xf ∀k ≥ k̄, and

2. u(k) = Ka(x(k)) ∈ U ∀k ≥ k̄.
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Stability of the MPC (cont.)

Consider now the following optimization problem (where Q = Q⊤ ≻ 0 and R = R⊤ ≻ 0):

min
u(·)

J(x(k), u(·), k) =

N−1∑

i=0

(

‖x(k + i)‖2Q + ‖u(k + i)‖2R

)

+ Vf (x(k +N))

s.t.

x(k + 1) = f(x(k), u(k))

x(k + i) ∈ X i = 0, . . . , N − 1

u(k + i) ∈ U i = 0, . . . , N − 1

x(k +N) ∈ Xf

Notice, in particular, the presence of the terminal constraint.
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Stability of the MPC (cont.)

The following theorem provides a sufficient condition for the stability.

Theorem
If for all x ∈ Xf the following inequality is satisfied:

Vf (f (x(k),Ka(x(k))))− Vf (x(k)) +
(

‖x(k)‖2Q + ‖Ka(x(k))‖
2
R

)

≤ 0 (5)

then the origin x = 0 is an asymptotically stable equilibrium for the closed-loop system obtained by applying
the control law (4).
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Stability of the MPC (cont.)

Proof.

Let the optimal input sequence at time k be

uo
k = {uo

k(k), u
o
k(k + 1), . . . , uo

k(k +N − 1)} .

If, at time k, we apply uo
k
(k), the next state will be

xo(k + 1) = f(x(k), uo
k(k)).

Consider now the sequence

uk+1 = {uo
k(k + 1), . . . , uo

k(k +N − 1),Ka(x
o(k +N))}

where xo(k +N) is the last state of the optimal state sequence at time k. The sequence is certainly admissible
(it satisfies the constraints) for the optimization problem formulated at time k + 1 from the state xo(k + 1).
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Stability of the MPC (cont.)

Indeed, it results in a trajectory which overlaps the optimal trajectory of the previous step, except for the last
step (from xo(k +N) to z, in the figure). But the last step does not violates the constraints because the
auxiliary control law Ka(x) is admissible in Xf .

x
o(k +N)

<latexit sha1_base64="vR8sTZOARXTpa8Pj0vihC+y6FCE=">AAACVnicbVBNT9tAEF2bb7dAaC9IXFZElaiQIpse4IjaS08VlUgAxS4abyZhlf2wdsdtqRWJ/9Br+yf6a1qJ34KwEw4EOqc3783oPb28UNJTHP8LwoXFpeWV1bXoxcv1jc3W1quet6UT2BVWWXeeg0clDXZJksLzwiHoXOFZPv7Q6Gdf0XlpzSldF5hpGBk5lAKopi6+f7F74/1Pb6PLVjvuxNPhz0HyANrH2z9u127+vD+53AoO04EVpUZDQoH3/SQuKKvAkRQKJ1FaeixAjGGE/Roa0Oizapp4wt+UHsjyAh2Xik9JfPxRgfb+Wuf1pQa68k+1hvyf1i9peJRV0hQloRGNEUmFUyMvnKyrQD6QDomgSY5cGi7AARE6yUGImizrbuYMZ6HnqMZ5YMnXrMFvwmoNZpAa63Q/yapU4ZBS1UNH7SR1cnRFqWu2SRQ1VSdPi30Oeged5F3n4HPd+RGbzSrbYbtsjyXskB2zj+yEdZlgmv1kv9jv4G9wFy6FK7PTMHj4ec3mJmzdA8vbt94=</latexit>

z
<latexit sha1_base64="5NIbRKlm4FFNM5q+qyhE+U5lNRU=">AAACT3icbVC7TuNAFB0HdgHvg1eJhEZEK20V2VBARyQaSliRgBRb6HpyE0bMw5q5BgUrJR3t7rdQ7T9sud/AB9Ah7JCCAKc6c84dnaOT5Up6iqL/QWNu/tPnhcWl8MvXb9+XV1bXut4WTmBHWGXdWQYelTTYIUkKz3KHoDOFp9nlQe2fXqHz0poTGuWYahgaOZACqJJ+3YTnK82oFU3A35N4Spr7f++PH24374/OV4PdpG9FodGQUOB9L45ySktwJIXCcZgUHnMQlzDEXkUNaPRpOak65j8KD2R5jo5LxScivv5RgvZ+pLPqUgNd+LdeLX7k9Qoa7KWlNHlBaEQdRFLhJMgLJ6sNkPelQyKomyOXhgtwQIROchCiEotqlJnAl9IzUp3ct+Qr1eC1sFqD6SfGOt2L0zJROKBEddFRM06cHF5Q4urXOAzrqeO3w74n3e1WvNPaPo6a7T32gkW2wbbYTxazXdZmh+yIdZhgA3bHfrM/wb/gMXhqTE8bwZSssxk0lp4BAk23uA==</latexit>

x
o(k + 1)

<latexit sha1_base64="an9XBSr3NJ6uP57ccVkh3rBtRNo=">AAACVnicbVBNT9tAEF2bUsClbYALEpdVo0qgSpFND3BE7aVHKpFAFbtovJmEVfbD2h3zZUXiP3Atf6K/ppX4LQg74dBA5/TmvRm9p5cXSnqK479BuPBq8fXS8kr0ZvXtu/ettfWet6UT2BVWWXeSg0clDXZJksKTwiHoXOFxPv7a6Mfn6Ly05oiuCsw0jIwcSgFUUz8uf9rt8adkJzptteNOPB3+EiRPoH2weX2/cvP7y+HpWrCXDqwoNRoSCrzvJ3FBWQWOpFA4idLSYwFiDCPs19CARp9V08QT/rH0QJYX6LhUfErivx8VaO+vdF5faqAz/1xryP9p/ZKG+1klTVESGtEYkVQ4NfLCyboK5APpkAia5Mil4QIcEKGTHISoybLuZs5wFnqOapwHlnzNGrwQVmswg9RYp/tJVqUKh5SqHjpqJ6mTozNKXbNNoqipOnle7EvQ2+0knzu73+vO99lsltkW+8C2WcL22AH7xg5Zlwmm2S37xe6CP8FDuBguzU7D4Olng81N2HoElB+3wQ==</latexit>

x(k)
<latexit sha1_base64="dSQXecGPWxyZFPEeXvxmGshHH78="></latexit>

Xf
<latexit sha1_base64="cJR9l68Qs9egUwb08jVDTBDO1Sk="></latexit>
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Stability of the MPC (cont.)

However, the sequence uk+1 is not optimal, in general.

Let J̃(xo(k + 1), k + 1) be the cost obtained by applying uk+1 from the state xo(k + 1). We have:

Jo(xo(k + 1), k + 1) ≤ J̃(xo(k + 1), k + 1),

and subtracting Jo(x(k), k) we get

Jo(xo(k + 1), k + 1)− Jo(x(k), k) ≤ J̃(xo(k + 1), k + 1)− Jo(x(k), k) =

= Vf (f (xo(k +N),Ka(x
o(k +N))))− Vf (x

o(k +N))+

+
(

‖xo(k +N)‖2Q + ‖Ka(x
o(k +N))‖2R

)

−
(

‖x(k)‖2Q + ‖KRH(x(k))‖2R

)

.

Indeed, the contributes to J̃ and Jo from k+1 to k+N − 1 cancel each other because the trajectories overlap.
Notice that the colored term is ≤ 0 by (5), since xo(k +N) ∈ Xf .
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Stability of the MPC (cont.)

As a consequence, we have

Jo(xo(k + 1), k + 1)− Jo(x(k), k) ≤ −
(

‖x(k)‖2Q + ‖KRH(x(k))‖2R

)

and the right-hand side of the inequality is zero only if x(k) = 0, because Q is positive definite. Thus, the
function

∆Jo(x)
.
= Jo(x+)− Jo(x),

where x+ = f(x,KRH(x)) is negative definite. Since Jo(x) is positive definite, we conclude by the Lyapunov
Theorem that the origin is asymptotically stable.
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Zero terminal constraint

A possible way to enforce the condition

Vf (f (x(k),Ka(x(k))))− Vf (x(k)) +
(

‖x(k)‖2Q + ‖Ka(x(k))‖
2
R

)

≤ 0 ∀x ∈ Xf

is employing a zero terminal constraint, i.e., letting

Ka(x) = 0

Xf = {0}

Vf (x) = 0

It is immediate to check that the required condition is satisfied by the sole state (x = 0) belonging to Xf .
Moreover, the null control law Ka(x) = 0 renders positively invariant the set Xf and is admissible, since 0 ∈ U .

The zero terminal constraint is a conceptually simple approach, but has a significant disadvantage: the
constraint

xo(k +N) ∈ Xf = {0}

can be difficult to satisfy, both in the linear, control-constrained, case and in the nonlinear (even
unconstrained) case.

Felice Andrea Pellegrino 322MI –Spring 2023 L8 –p12



Quasi-infinite horizon MPC

With reference to linear systems, the quasi-infinite horizon MPC is formulated as follows:

Ka(x) = −KLQx

Xf =
{
x : x⊤Px ≤ α

}
⊂ X

Vf (x) = x⊤Px

where α is a sufficiently small positive scalar and the matrices KLQ and P are obtained by solving an infinite
horizon optimal linear quadratic control problem.

More precisely, given the system
x(k + 1) = Ax(k) +Bu(k),

we solve the infinite horizon LQ problem using the same matrices Q and R appearing in the cost (3). Thus we
get the auxiliary control law:

Ka(x) = −KLQx,

and the matrix P , as the positive definite solution of the algebraic Riccati equation

P = A⊤PA+Q−A⊤PB
(

R+B⊤PB
)
−1

B⊤PA

︸ ︷︷ ︸

KLQ
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Quasi-infinite horizon MPC (cont.)

and of the equivalent equation:
(
A−BKLQ

)
⊤
P
(
A−BKLQ

)
− P = −

(

Q+K⊤

LQRKLQ

)

.

Since Xf is a sublevel set of the LQ cost, it is positively invariant and satisfies the constraints, provided that α is
sufficiently small to ensure that

u(x) ∈ U , ∀x ∈ Xf .

Notice that such a sufficiently small α does exist, because u(0) = 0 ∈ IntU (the interior of U ).

It remains to show that the condition of the theorem is satisfied:

Vf (f(x(k),−KLQx(k))
︸ ︷︷ ︸

(

A−BKLQ

)

x(k)

)− Vf (x(k)) +
(

‖x(k)‖2Q +
∥
∥KLQx(k)

∥
∥2

R

)

=

= x⊤(k)
(
A−BKLQ

)
⊤
P
(
A−BKLQ

)
x(k)− x⊤(k)Px(k)+

+ x⊤(k)Qx(k) + x⊤(k)K⊤

LQRKLQx(k) =

= x⊤(k)
[

(A−BKLQ)⊤P (A−BKLQ)− P +Q+K⊤

LQRKLQ

]

︸ ︷︷ ︸

zero because P solves the Riccati equation

x(k) = 0.
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Quasi-infinite horizon MPC (cont.)

In the case of nonlinear systems, the auxiliary control law Ka(x) = −KLQx can be obtained by solving an LQ
problem for the linearized system around the origin (details in Magni and Scattolini (2014)).
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