Control Theory

Course ID: 322MI – Spring 2023

Felice Andrea Pellegrino

University of Trieste Department of Engineering and Architecture

[322MI –Spring 2023](#page-0-0) Lecture 8: Model predictive control Consider the discrete-time system

$$
x(k+1) = f(x(k), u(k))
$$
\n(1)

where $x\in \mathbb{R}^n$, $u\in \mathbb{R}^m$, $f(0,0)=0$ and $f\in \mathcal{C}^1.$ The following constraints are defined:

$$
u(k) \in \mathcal{U}, \quad x(k) \in \mathcal{X}, \quad \forall k \in \mathbb{Z} = \{0, 1, 2, \dots\}.
$$
 (2)

Given the horizon N , let a cost be defined as

$$
J(x(k), u(\cdot), k) = \sum_{i=0}^{N-1} \left(\|x(k+i)\|_{Q}^{2} + \|u(k+i)\|_{R}^{2} \right) + V_f(x(k+N)),
$$
\n(3)

where $\|z\|^2_M$ is a shorthand for $z^\top M z$, $Q = Q^\top \succ 0$, $R = R^\top \succ 0$ and $V_f: \mathbb{R}^n \longrightarrow \mathbb{R}^+.$

For each time k , we can formulate the following optimization problem:

Find the optimal input sequence

$$
\underline{u}^o = \{u^o(k), u^o(k+1), \dots, u^o(k+N-1)\}
$$

such that the cost [\(3\)](#page-2-0) is minimized and the constraints [\(2\)](#page-2-1) are satisfied, in accordance to the dynamics [\(1\)](#page-2-2).

The *model predictive control* (MPC) is based on the so-called *receding-horizon principle*:

At time k , solve the optimization problem over the finite horizon $[k,k+N]$ and apply only the first input $u^o(k)$ of the obtained optimal sequence $\underline{u}^o.$ At time $k+1,$ solve a new optimization problem over the interval $[k+1, k+N+1]$, apply the first input of the optimal sequence and so on.

Notice that in doing so, we are implicitly defining a time-invariant state-feedback control law:

$$
u(k) = K_{RH}(x(k)).
$$
\n⁽⁴⁾

Indeed, since the horizon is shifted forward at each time step, the optimization problem depends only on the current state $x(k)$, irrespective of k.

It should be observed that the control law [\(4\)](#page-4-0) does not guarantee the stability of the equilibrium, unless some conditions are met.

In the following, we report a formulation of the problem (in terms of the choice of cost and constraints) that guarantees the stability; more precisely, that renders the origin $x = 0$ an asymptotically stable equilibrium.

Consider the system

$$
x(k+1) = f(x(k), u(k))
$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $f(0,0) = 0$ and $f \in \mathcal{C}^1$.

Let the constraints be:

$$
u(k) \in \mathcal{U}, \quad x(k) \in \mathcal{X}, \quad \forall k \in \mathbb{Z} = \{0, 1, 2, \dots\}.
$$

where the sets $U \subset \mathbb{R}^m$ and $\mathcal{X} \subset \mathbb{R}^n$ are bounded and closed sets, containing the origin in their interior.

Suppose that an *auxiliary control law* $u = K_a(x)$ is given that renders positively invariant the set $\mathcal{X}_f \subset \mathcal{X}$ containing the origin, guaranteeing the satisfaction of the constraints. In other words, the system

$$
x(k+1) = f(x(k), K_a(x(k)))
$$

is such that, if $x(\bar{k}) \in \mathcal{X}_f$ then:

1.
$$
x(k) \in \mathcal{X}_f \quad \forall k \ge \bar{k}
$$
, and
2. $u(k) = K_a(x(k)) \in \mathcal{U} \quad \forall k \ge \bar{k}$.

Consider now the following optimization problem (where $Q = Q^{\top} \succ 0$ and $R = R^{\top} \succ 0$):

$$
\min_{u(\cdot)} J(x(k), u(\cdot), k) = \sum_{i=0}^{N-1} (||x(k+i)||_Q^2 + ||u(k+i)||_R^2) + V_f(x(k+N))
$$

s.t.

$$
x(k+1) = f(x(k), u(k))
$$

$$
x(k+i) \in \mathcal{X} \quad i = 0, ..., N-1
$$

$$
u(k+i) \in \mathcal{U} \quad i = 0, ..., N-1
$$

$$
x(k+N) \in \mathcal{X}_f
$$

Notice, in particular, the presence of the terminal constraint.

The following theorem provides a sufficient condition for the stability.

Theorem

If for all $x \in \mathcal{X}_f$ the following inequality is satisfied:

$$
V_f(f(x(k), K_a(x(k)))) - V_f(x(k)) + (||x(k)||_Q^2 + ||K_a(x(k))||_R^2) \le 0
$$
\n(5)

then the origin $x = 0$ is an asymptotically stable equilibrium for the closed-loop system obtained by applying the control law [\(4\)](#page-4-0).

Proof.

Let the optimal input sequence at time k be

$$
\underline{u}_k^o = \{u_k^o(k), u_k^o(k+1), \dots, u_k^o(k+N-1)\}.
$$

If, at time k , we apply $u_k^o(k)$, the next state will be

 $x^o(k+1) = f(x(k), u_k^o(k)).$

Consider now the sequence

$$
\underline{u}_{k+1} = \{u_k^o(k+1), \dots, u_k^o(k+N-1), K_a(x^o(k+N))\}
$$

where $x^o(k+N)$ is the last state of the optimal state sequence at time $k.$ The sequence is certainly admissible (it satisfies the constraints) for the optimization problem formulated at time $k + 1$ from the state $x^o (k + 1)$.

Indeed, it results in a trajectory which overlaps the optimal trajectory of the previous step, except for the last step (from $x^o(k+N)$ to z , in the figure). But the last step does not violates the constraints because the auxiliary control law $K_a(x)$ is admissible in \mathcal{X}_f .

However, the sequence \underline{u}_{k+1} is not optimal, in general.

Let $\tilde{J}(x^o(k+1),k+1)$ be the cost obtained by applying \underline{u}_{k+1} from the state $x^o(k+1)$. We have:

$$
J^{o}(x^{o}(k+1), k+1) \leq \tilde{J}(x^{o}(k+1), k+1),
$$

and subtracting $J^o(x(k),k)$ we get

$$
J^o(x^o(k+1), k+1) - J^o(x(k), k) \le \tilde{J}(x^o(k+1), k+1) - J^o(x(k), k) =
$$

= $V_f(f(x^o(k+N), K_a(x^o(k+N)))) - V_f(x^o(k+N)) +$
+ $(||x^o(k+N)||_Q^2 + ||K_a(x^o(k+N))||_R^2) - (||x(k)||_Q^2 + ||K_{RH}(x(k))||_R^2).$

Indeed, the contributes to \tilde{J} and J^o from $k+1$ to $k+N-1$ cancel each other because the trajectories overlap. Notice that the colored term is ≤ 0 by [\(5\)](#page-8-0), since $x^o(k+N) \in \mathcal{X}_f$.

As a consequence, we have

$$
J^o(x^o(k+1),k+1) - J^o(x(k),k) \le -\left(\|x(k)\|_Q^2 + \|K_{RH}(x(k))\|_R^2\right)
$$

and the right-hand side of the inequality is zero only if $x(k) = 0$, because Q is positive definite. Thus, the function

$$
\Delta J^o(x) \doteq J^o(x^+) - J^o(x),
$$

where $x^+=f(x,K_{RH}(x))$ is negative definite. Since $J^o(x)$ is positive definite, we conclude by the Lyapunov Theorem that the origin is asymptotically stable. \Box A possible way to enforce the condition

$$
V_f(f(x(k), K_a(x(k)))) - V_f(x(k)) + (||x(k)||_Q^2 + ||K_a(x(k))||_R^2) \le 0 \quad \forall x \in \mathcal{X}_f
$$

is employing a *zero terminal constraint*, i.e., letting

$$
K_a(x) = 0
$$

$$
\mathcal{X}_f = \{0\}
$$

$$
V_f(x) = 0
$$

It is immediate to check that the required condition is satisfied by the sole state $(x = 0)$ belonging to \mathcal{X}_f . Moreover, the null control law $K_a(x) = 0$ renders positively invariant the set \mathcal{X}_f and is admissible, since $0 \in \mathcal{U}$.

The zero terminal constraint is a conceptually simple approach, but has a significant disadvantage: the constraint

$$
x^o(k+N) \in \mathcal{X}_f = \{0\}
$$

can be difficult to satisfy, both in the linear, control-constrained, case and in the nonlinear (even unconstrained) case.

With reference to linear systems, the *quasi-infinite horizon MPC* is formulated as follows:

$$
K_a(x) = -K_{LQ}x
$$

\n
$$
\mathcal{X}_f = \{x : x^\top P x \le \alpha\} \subset \mathcal{X}
$$

\n
$$
V_f(x) = x^\top P x
$$

where α is a sufficiently small positive scalar and the matrices K_{LO} and P are obtained by solving an infinite horizon optimal linear quadratic control problem.

More precisely, given the system

$$
x(k+1) = Ax(k) + Bu(k),
$$

we solve the infinite horizon LQ problem using the same matrices Q and R appearing in the cost [\(3\)](#page-2-0). Thus we get the auxiliary control law:

$$
K_a(x) = -K_{LQ}x,
$$

and the matrix P , as the positive definite solution of the algebraic Riccati equation

$$
P = A^{\top} P A + Q - A^{\top} P B \underbrace{\left(R + B^{\top} P B\right)^{-1} B^{\top} P A}_{K_{LQ}}
$$

Felice Andrea Pellegrino [322MI –Spring 2023](#page-0-0) L8 –p13

Quasi-infinite horizon MPC (cont.)

and of the equivalent equation:

$$
(A - BK_{LQ})^{\top} P (A - BK_{LQ}) - P = - (Q + K_{LQ}^{\top} R K_{LQ}).
$$

Since x_f is a sublevel set of the LQ cost, it is positively invariant and satisfies the constraints, provided that α is sufficiently small to ensure that

$$
u(x) \in \mathcal{U}, \quad \forall x \in \mathcal{X}_f.
$$

Notice that such a sufficiently small α does exist, because $u(0) = 0 \in \text{Int } \mathcal{U}$ (the interior of \mathcal{U}).

It remains to show that the condition of the theorem is satisfied:

$$
V_f(\underbrace{f(x(k), -K_{LQ}x(k))}_{(A - BK_{LQ})x(k)}) - V_f(x(k)) + (||x(k)||_Q^2 + ||K_{LQ}x(k)||_R^2) =
$$

\n
$$
= x^{\top}(k) (A - BK_{LQ})^{\top} P (A - BK_{LQ}) x(k) - x^{\top}(k)Px(k) +
$$

\n
$$
+ x^{\top}(k)Qx(k) + x^{\top}(k)K_{LQ}^{\top}RK_{LQ}x(k) =
$$

\n
$$
= x^{\top}(k) [(A - BK_{LQ})^{\top} P (A - BK_{LQ}) - P + Q + K_{LQ}^{\top} R K_{LQ}] x(k) = 0.
$$

 \overline{z} zero because \overline{P} solves the Riccati equation

In the case of nonlinear systems, the auxiliary control law $K_a(x) = -K_{LQ}x$ can be obtained by solving an LQ problem for the linearized system around the origin (details in [Magni and Scattolini \(2014\)](#page-18-0)).

[References](#page-17-0)

Magni, L. and Scattolini, R. (2014). *Advanced and Multivariable Control*. Pitagora Bologna.

[322MI –Spring 2023](#page-0-0)

Lecture 8 Model predictive control

END