Computer Vision and Pattern Recognition
Course ID: 554SM - Fall 2020

Felice Andrea Pellegrino

University of Trieste
Department of Engineering and Architecture




Linear Algebra Review



The following material' is basically a collection of concepts and results of Linear Algebra that are frequently
encountered in Computer Vision and Pattern Recognition. An in-depth treatment can be found in Strang (2016)
and Meyer (2000).

"Part of which is taken from Kolter (2019).
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Basic concepts and notation



Sets of linear equations

Linear algebra deals with sets of linear equations.

Linear algebra provides a way to represent compactly the sets of linear equations, analyzing their properties
and operating on them.

For example:
T+ 22 =5

=48 TP ) =2

is a set of two equations in two variables. It can be compactly represented as
Az =0b

where
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- By A € R™*™ we denote a matrix having m rows and n columns, whose entries are real numbers;

- by z € R™ we denote a vector of n entries. We will treat an n-dimensional vector as a special case of a
matrix, namely a matrix having n rows and 1 column (column vector). A row vector, i.e. a matrix having 1
row and n columns, will be typically denoted by zT;

- the 4th element of vector z is denoted by z;:

Z1

T2

Tn

- we denote by ay; (or, sometimes, A;;) the entry of A in the 4th row and jth column:

a1 a2 ... aip

a21 a22 v a2n
A= ;

am1 am?2 ceo OGmn
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Basic notation (cont.)

- we denote by a; the jth column of A:

A= [ a1 as an ]
- we denote by a; the 4th row of A:
af
ay
A=
ap,

Notice that above notation is ambiguous (for example, a; and alT are not one the transpose? of the other), but
the actual meaning of the symbols will be clear from the context.

2The transpose will be formally defined in the following.
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Matrix multiplication



Product of two matrices

Definition
The product of two matrices A € R™*"™ and B € R™*? is the matrix:

C = AB € R™*P

where

n
cii =Y ambij. (1)
=il

- Matrix multiplication is associative:
(AB)C = A(BC).

- Matrix multiplication is distributive:
A(B+ C)=AB+ AC.

- Matrix multiplication is, in general, not commutative. Indeed, in general, provided that both AB and BA
exist, we have AB # BA. In the special case when AB = BA, we say that A and B commute.
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Product of two matrices (cont.)

The matrix product expression (1) holds also for block matrices (or partitioned matrices), i.e. matrices whose
rows and columns are grouped in such a way that each“entry” is actually a submatrix:

A A oo Agg Byy B2 -+ By Ci1 Ciz -+ (O
Az Az oo Ay By Bz - By, Cy1 Coy - Oy
Aml Am2 o Am" Bnl B”2 U Bnp O’ml O’mQ o C’mp

where
n
Cij = > AyBy.
k=1

Of course, he columns of A and the rows of B must be partitioned consistently, meaning that, for all k, Az
must have as many columns as the number of rows of By;.
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Vector-vector products

Definition (Dot product)
Given two vectors z, y € R”, the dot product (or inner product) of = and y is the scalar

Y1

Y2 "
xTy:[:El Ty - xn] . :Zziyie]R.

: i=1

Yn

By definition, we have z Ty = y " .
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Vector-vector products (cont.)

Definition (Outer product)

Given two vectors z € R™, y € R™ the outer product of z and y is the matrix whose entries are given by

(zyT)ij = miy;, i.e.

(al Z1Y1

T T2 _ T2Y1
Yy = Y1 Y2 Yn | =

TP, ITmY1

By definition, we have z"y = y ' .

Felice Andrea Pellegrino

T1Y2 o T1Yn
2Y2 o T2Yn

c R™X",
Im Y2 e ImYn
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Matrix-vector products

Matrix multiplication can be looked at in different ways. We will examine some of them in the following, starting
from the special case of matrix-vector products.

Given A € R™*™ and z € R", their product is the vector
y= Az € R™.

A first way of interpreting Az is a stack of dot products: by writing A by rows we get:

T T
a a; T
a; a;$

T
Ay, AT

In words, the ith entry of y is the dot product of the ith row of A and z, i.e. y; = a;rz.
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Matrix-vector products (cont.)

Alternatively, by writing A column-wise we get:
y:AJJ:[al as ... an] . = a |1+ ]| ag |24+ -+ | an | zn-

In other words, y is a linear combinations of the columns of A, where the coefficients are the entries of z.
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Matrix-vector products (cont.)

If we multiply a matrix on the left by a row vector, we get a row vector y | = z ! A4, where A € R™*" ¢ ¢ R™,
y € R™ The row vector y T can be expressed in two ways, as before. If we write A column-wise we have

T T T
y =z A==z [al as ... an]:[:vTal zlag ... xTan],

thus the sth entry of T is the inner product of z and the ith column of A.

Conversely, if we write A row-wise we have:

-
@i

T T &

y == Az[m T2 ﬂUm] . :"El[ al ]+x2[ a5 ]+-~-+xm[ O, ]
T
a'"L

this 4T is a linear combination of the rows of A where the coefficients are the entries of z.
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Matrix-matrix products

We now focus on the product C' = AB and show four different ways it can be thought of.

1. By partitioning A row-wise and B column-wise we get

T T T T
ay a; b1 a; b2 oo ay by
T T T T
aq ag by ay by oo ay by
c=aB=| " |[ b b by | =
T T T T
A ambl A, b2 o apm bF

thus the product C is a matrix whose (4, j)th entry is the dot product of the sth row of A and the jth
column of B.

Felice Andrea Pellegrino 554SM -Fall 2020  Supplementary material: Linear Algebra-p12



Matrix-matrix products (cont.)

2. By partitioning A column-wise and B row-wise we get

by
b; n
CZAB:[al a a"] R :Zazb;r
. =1
bT

where the last equality follows from the generalization of the product matrix to partitioned matrices. Thus,
the product AB is written as a sum of outer products a;b;, each of which is an m x p matrix.

3. By representing B by columns, and interpreting the matrix-matrix multiplication as a set of matrix-vector
products, we get

C=AB=A[ b by - by |=[ b Ak - Ab, |,

thus the jth column of C is a column vector obtained as the product of A and the jth column of b:
Cj = Ab]
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Matrix-matrix products (cont.)

4. Finally, by representing A by rows we get:

T T
ay a, B
T T
ay ay, B
C=AB= B = ,
T T
a"m a?TLB

thus the ith row of C'is the product of the ith row of A and B: ¢ = a; B.
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Operations and properties




Identity matrix

Definition

The identity matrix of size n is the square matrix I,, € R®*™ with ones on the main diagonal and zeros
elsewhere:
) 1 ifi=j
YT o ity
For example, the following are identity matrices:
0
L 1 0 O
11_[1],12_{ }13:0 1 0|, I,=1[0 0 1
0 1 _
0 0 1 :
0 0 O 1
Forall A € R™*"™ we have:
InA= A= AIL,.
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Transpose

Definition
Given a matrix A € R™*™ its transpose denoted by AT € R™X™ s the n x m matrix such that
(AT> = Aji.
i
For example:
1 2 3 Lo
A= , AT=]2 5
4 5 6
3 6

The following properties hold:
(AT =4
- (AB)T =BT AT
- (A+B)T = AT + BT
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Symmetric matrices

Definition
A square matrix A € R®*" is said to be symmetric if

A=AT.

Definition
A square matrix A € R®*" is said to be skew-symmetric or anti-symmetric if

A=—AT.

For example, the following matrices are respectively symmetric and skew-symmetric:

1 3 5 0 -1 -2
3 5 7 1 0 -1
5 7 9 2 0
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Symmetric matrices (cont.)

Any square matrix A € R™*™ can be written as the sum of a symmetric matrix and a skew-symmetric matrix, in
view of the following identity:

A:%(A+AT)+%(A—AT).

For example:
1 2 3 1 3 5 0 -1 -2
4 5 6 = 3 5 7 |+|1 0 -1
7 8 9 5 7 9 2 1 0
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Trace

Definition

The trace of a square matrix A € R™*", denoted as tr(A) or tr 4, is the sum of the elements of the main
diagonal:

n
tr A = Z Qjj.-
i=1

The following properties hold:

ctrA=trAT

-tr(A+ B)=trA+trB

s tr(@d) = atr4, Va€eR
- tr(AB) = tr(BA)
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Inverse

Definition
Let A be an n x n square matrix: A € R™*"_ If there exists a matrix B such that

AB = BA = I,
then B is called inverse of A, and denoted by A—1.

The following properties hold true (in the identities below, we assume that all the inverses do exist):

- the inverse, if it does exist, is unique;
(AT =4

(AT = () = AT

- (AB)"'=B~tA"L

For example:

O N=

2
isthe inverse of A = 0 .
2 4

(NI
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Inverse (cont.)

Definition
A square matrix A is said to be invertible or non-singular if A=1 exists.

It is said to be non-invertible or singular otherwise.

In the following we will give necessary and sufficient conditions for a matrix being invertible.

The inverse can be used to solve a linear systems of equations. Let the system be Az = b, where A € R™"*"™ and
z,b € R™ Then, provided that A is invertible, by multiplying both sides by A= we get

z=A"1b.
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Geometric interpretation of the dot product

The dot product (or scalar product or inner product) between the vectors z and y
has the following geometrical meaning:

z-y = ||zl [[y]| cos ¥

where 9 is the acute angle between the two arrows that represent z and y. When
the vectors are treated as single-column matrices, the dot product is obtained by a
matrix product as follows:

m-y:zTy:mi.
Definition
Two vectors z and y are said to be orthogonal if their dot product is zero:

:ETy =0.

If z and y are orthogonal, the arrows representing = and y are mutually perpendicular.
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Norms

Definition (Vector norm)
A norm is any function ||| : R — R that satisfies the following properties:

1. |lz|| > 0,Vxz #0 (positivity);
2. |laz|| = |a| ||z||, Ya € R (homogeneity);
3. ||z +yll < Jlz|| + |ly]l  (triangle inequality).

Examples of norms are:

- Euclidean norm:

- Ly norm:

llzlly

- Loo norm (or max norm):

2/l oo
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Norms (cont.)

The level surfaces of the previous norms are, respectively, spheres, diamonds and cubes.

AN
AN

-
\

The previous norms are a special case of the L, norm, defined as

forpeR,p>1.
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Norms (cont.)

Any vector norm induces a corresponding matrix norm in the following way.

Definition (Induced matrix norm)
Let || - || be a vector norm. The corresponding induced matrix norm is defined as

[[All = max [|Az]|
lzll=1

Thus, we can define |[A|l,, [|All5, | All -

Informally speaking, the induced L, norm of A is a measure of the maximum “amplification” that a vector
z € R™ may incur when multiplied by A, when the length of the vectors are measured using the vector norm L,
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Norms (cont.)

Definition (Frobenius norm)
Given a matrix A, its Frobenius norm is defined as

m o n

lAllp =

i=1 j=1

Thus, the Frobenius norm is the Euclidean norm of a column vector obtained by stacking all the entries of A.

It can be easily checked that
|Allp = 1/tr (AT A).
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LeEem s

Definition (Determinant)
Let A € R™*"™ The determinant of A, denoted as det(A), det A or |A|, is a scalar defined, by either of the
following recursions:

det(A) = 3" ay(—1)" det(A\ ;) (i fied) det(4) = 3 ay(~1)* det(A\;,) (j fixed)
j=1 or i=1
det(a) = a det(a) = a

where A\; \; is a@ matrix obtained from A by suppressing the ith row and the jth column. The determinant
does not depend on fixed indices 1 <i<nand1<j<n.

For example, the determinant of a 2 x 2 matrix takes the form:

([ * 2]) i
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Determinant (cont.)

The determinant of a 2 x 2 matrix has the following geometric meaning: its (a,5) (a+c,b+d)
absolute value represents the area of the parallelogram defined by the rows ’

of the matrix, as shown in the figure.

It represents also the area of a parallelogram (in general, different) defined by

the columns.

The above geometrical meaning extends to three dimensional volume and (c,d)
n-dimensional volume. (0,0)
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Determinant (cont.)

The following properties hold, for A € R®*"™:

- Alsinvertible <= det(A) # 0
- if A isinvertible, then the inverse can be written as

=il _ 1
"~ det(4)

adj(A)

where the adjoint matrix adj(A) € R™*™ is such that (adj(A4)); = (—1)" det(A\; \;)
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Linear independence

Definition
The set of vectors z1, z2, . . ., zm € R™ is said to be linearly independent if
m
Zaixizo - a; =0, Vi
=1

Equivalently, a set of vectors is linearly independent if no vector can be written as a linear combination of the

remaining vectors. For example, the vectors

1 4 2
B = 2 Ty = 5 I3 = 1
3 6 0
are not linearly independent because x3 = —2x; + 5.
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Orthogonal matrices

Recall that two vectors z, y € R™ are orthogonal if Ty = 0.

Definition
A vector z € R™ is normalized if ||z||, = 1.

Definition
A square matrix U € R™*" is orthogonal if all its columns are orthonormal, i.e.:

1. normalized, and

2. orthogonal to each other (mutually orthogonal).

It follows that
UTu=I1=UUT,

thus the inverse of an orthogonal matrix is its transpose.
It can be shown that, if U is orthogonal, then
| Uzlly = ||zl

thus operating on a vector with an orthogonal matrix will not change its Euclidean norm.
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Definition (Column rank)

The column rank of matrix A € R™*™ is the size of the largest subset of columns of A that constitute a
linearly independent set.

Definition (Row rank)
The row rank of matrix A € R™*" is the size of the largest subset of rows of A that constitute a linearly
independent set.

Proposition
For any A € R™*" the column rank and the row rank are equal.

In view of the above Proposition, we can simply refer to the rank of a matrix A, denoted by rank(A) or rank A.
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Rank (cont.)

The following properties hold:
- for A € R™*™ rank(A) < min(m, n). If rank(A) = min(m, n), then A is said to be full rank (more precisely,
if the rank is n it is full column rank, if the rank is m it is full row rank).
- rank(A) = rank(AT)
- rank(AB) < min(rank(A), rank(B))
- rank(A 4+ B) < rank(A) + rank(B)
- A e R "™ s full rank <= det(A4) # 0
- if Bis invertible, then rank(AB) = rank(A)
- if Bis invertible, then rank(BA) = rank(A)
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Definition (Span of a set of vectors)
The span of a set of vectors {1, z2, . .
combination of {z1, z2, ..., Zm}:

m
span{zi, z2,...,Tm} = {v N Zaixi, a; € R}

s=1l

., Zm} is the set of all vectors that can be written as a linear

0 . . .
] } is the whole R? since any vector » € R? can be written as

1
For example, the span of { { 0 ] , {
1

for some aq, as.
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Span (cont.)

Let {z1, z2,...,zm} be a set of vectors and suppose that z; can be expressed a linear combination of the
remaining vectors:
T; = Z Q;T;.
J#i
It is easy to prove that:
span({z1, 22, ..., T;m}) = span({z1, 22, .. ., Tm } \ ;).

As a consequence, the span of a set of vectors is equal to the span of the largest subset of independent vectors.
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Definition (Subspace)

Let V be a subset of R™: V C R™. It is said to be a subspace of R™ if it is closed with respect to linear
combinations:

u,veEY — au+pvel, Va,BR.

Clearly, R™ is a subspace of itself. Moreover, the span of any set of vectors of R” is a subspace of R".
Conversely, any subspace of R™ can be written as the span of a suitable set of vectors of R™.
Definition (Basis)
Let V be a subspace of R™. A set of vectors {v1,...,vn} is said to be a basis for V if both the following
properties hold:

- V =span{vy,...,vn} (Vis generated by {v1,...,vm})

- the set {v1,...,vm} is linearly independent.
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Subspaces (cont.)

For example, the sets

o {BIEy - RHED
| HIRIRI

is not a basis, because the set of vectors is not linearly independent. A subspace has an infinite number of
different bases, nut they all share the same number of elements, as state by the following proposition.

Proposition
If {o1,...vp} and {ws,...,w,} are both bases of the same (sub)space V, then p = q.

Thus we can formulate the following definition.

Definition (Dimension)
The dimension of a (sub)space V, denoted by dim V), is the number of vectors of any basis of V. The null
subspace V = {0} has dimension zero.
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Range and nullspace

Definition (Range of a matrix)

The range (or columnspace, or image) of a matrix A € R™*", denoted by im A4, is the subspace of R™ given
by the span of the columns of A:

imA={veR™:v= Az, z€R"}.

Properties:
- dim (im A) = rank(A)
- imA=im(AAT)

Definition (Rowspace)

The span of the rows of A € R™*" (a subset of R”) is said to be the rowspace of A and denoted by im(AT).
Its dimension is equal to the rank of A: dim(im(A ™)) = rank(AT) = rank(A).
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Range and nullspace (cont.)

Definition (Nullspace)

The nullspace (or kernel) of a matrix A € R™*" denoted by ker 4, is the set of all vectors of R” that equal 0
when multiplied by A:
ker A = {z € R" : Az =0}.

Since Au =0, Bv =0 = A(au+ Bv) = 0, it follows that ker A is a subspace.

The following fundamental theorem establishes a relationship between dim(ker A) and dim(im A).

Theorem (Rank-nullity theorem)

Let A € R™X"™ Then
n = dim(im A) 4+ dim(ker A).
———

rank A
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Range and nullspace (cont.)

Another fundamental result is the following. (dim )

Theorem
For A € R™*™ we have

{w cw=u+v,ucim(AT),ve kerA} =R” and im(AT)Nker A = {0}.
In other words, the rowspace and the nullspace of a matrix have trivial R™

intersection and together span the whole R™. They are said to be orthogonal
complements, denoted as im(AT) = ker(A)L.

(dimn — )
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QR decomposition

Theorem (QR decomposition)

Every matrix A € R™*™ with linearly independent columns can be uniquely factored as
A= QR,

in which the columns of @ € R™*"™ are an orthonormal basis for im A and R € R®*" is an upper-triangular
matrix with positive diagonal entries.

For example:

0 —-20 -14 . 0 =20 -15 5 25 —4
3 27 —4 = % 15 12 -16 0 25 10
4 11 -2 20 -9 12 0 10
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Eigenvalues and eigenvectors

Definition
Given a square matrix A € R"*" we say that A € C is an eigenvalue of A and z € C™ is the corresponding

eigenvector if
Az =Xz, z#0. ()

The pair z, X is sometimes referred to as an eigenpair.

Intuitively, the above definition means that multiplying A by an eigenvector z results is a vector having the
same direction as z but scaled by a factor \.

Eq. (2) is equivalent to
(Ml —A)z=0, z#0.

But (A — A)z = 0 has a non-zero solution if and only if (A\I — A) is not full rank, i.e. if and only if
det(A — A) = 0.
Thus the eigenvalues are the roots of the nth degree polynomial

p(\) = det(M — A),
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Eigenvalues and eigenvectors (cont.)

called the characteristic polynomial. As a consequence, an n x n matrix has n (not necessarily distinct)
eigenvalues Aq,..., An.

If X is an eigenvalue, the set of the corresponding eigenvectors (whose union with {0} is a subspace called
eigenspace) is the set of non-zero solutions of the system

(A= A)z=0.

The following properties hold, for any A € R®*",
StrA=30 1 Ag
- det A =TJ% ; X; (thus, a singular matrix has at least one zero eigenvalue);
- the rank of A is equal to the number of non-zero eigenvalues of A4;
- if A'is non-singular and (=, \) is en eigenpair of 4, then (z,1/X) is an eigenpair of A—1;
- if Ais triangular, its eigenvalues are the entries of main diagonal;
- if A'is symmetric, then its eigenvalues are real;

- if A is symmetric, then its eigenvectors are orthogonal.
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Eigenvalues and eigenvectors (cont.)

Theorem (Schur decomposition)
Any matrix A € R™*™ can be expressed as

QUQ",
where U is an upper triangular matrix and @ is a unitary matrix (i.e. a matrix whose conjugate transpose Q* is

also its inverse).

Notice that, in general, both U and @ are complex valued.
Example (real eigenvalues):
7 -2 1 [ 1 -2 3 —14 ] 1
[12 —3:|:\/5[2 1 }[0 1 }\/5
Example (complex eigenvalues):

1 1—j
. .

1+ -1

1 1] 1
2 3| V3
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Eigenvalues and eigenvectors (cont.)

Theorem (Schur diagonalization)
Any symmetric matrix A € R"*" having eigenvalues A1, ..., Ay, can be expressed as

A= TATT,
where A = diag (A1, ...,A,) and T is orthogonal. The columns ¢; ... ¢, of T are eigenvectors of T associated
to, respectively, A1, ..., Ap (in other words, (A, ;) is an eigenpair).
Example:
V2 V2 V2 V2
2 2 2 2
2 1 . o 0 3 == o
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Quadratic forms

Definition (Quadratic form)
Given a square matrix A € R®*™ and a vector « € R”, the scalar value =" Az is called a quadratic form:

n n n

n n
ITAI = Z SEZ(A:L'), = E iEl(Z aijxj)i = Z Z Qg5 T T«
i=1 =1 j=1 i=1 j=1
Since the transpose of a scalar is equal to the scalar itself we have
2" Az = (2" Az)T = 2" ATz

Moreover, by averaging the first and last member, which are equal, we get

A AT
T T
Az = -+ —
T B = B (2+ 2 ):1:
—_———
symmetric part of A

thus only the symmetric part of A contributes to the quadratic form.
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Quadratic forms (cont.)

Definition (Positive definite matrix)
A matrix A € R™*" is positive definite (denoted by A = 0) if

z' Az >0, Vz#0,zeR"™

Definition (Positive semidefinite matrix)
A matrix A € R**" is positive semidefinite (denoted by A > 0) if

z' Az >0, VzeR™
The following matrices are, respectively positive definite and positive semidefinite:
5 0 0 O
. Ap = }
0 10 } [ 0 10 }

Indeed, the respective quadratic forms are 2T Ay z = 522 + 1022 > 0,Vz # 0 and z T Aoz = 1022 > 0, Va.
Notice that the definitions above imply that a positive definite matrix is also positive semidefinite.

Ay =
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Quadratic forms (cont.)

Definition (Negative definite matrix)
A matrix A € R*X"™ is negative definite (denoted by A < 0) if

z' Az <0, Vz #0,z € R™.

Definition (Negative semidefinite matrix)
A matrix A € R**" is negative semidefinite (denoted by A < 0) if

z' Az <0, VzeR™
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Quadratic forms (cont.)

Recall that all eigenvalues of a symmetric matrix are real. The following results are useful.

Lemma
A symmetric matrix A is positive (negative) definite if and only if all its eigenvalues are strictly positive
(negative):

A>0 = Ai > 0, i=1,...,n

where )\; denotes the i-th eigenvalue of A.

Lemma

A symmetric matrix A is positive (negative) semidefinite if and only if all its eigenvalues are non-negative
(non-positive):
A>0 => i

Observe that, for non-symmetric matrices, the eigenvalue check must be carried out on the symmetric part.
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Quadratic forms (cont.)

The following properties are useful:

- forany A € R™*", the matrices (AT A) € R™*™ and (AAT) € R™X™ are both positive semidefinite;

- the gradient V (regarded as a column vector) of a quadratic form is:
Vz ! Az = 2Az (if A is symmetric);
- the Hessian matrix H(-) of a quadratic form is:

H(z" Az) =2A  (if Ais symmetric).

Felice Andrea Pellegrino 554SM —Fall 2020  Supplementary material: Linear Algebra-p46



Quadratic forms (cont.)

Theorem (Cholesky)

Any real symmetric and positive definite matrix A can be decomposed uniquely as the product of lower
triangular matrix having strictly positive eigenvalues and its transpose:

A=LL".
For example:
4 12 —-16 2 0 0 2 6 -8
12 37 —43 | = 1 0 0 1 5
—16 —43 98 -8 5 3 0 0 3
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Principal Component Analysis (PCA)

z(2)

An important application of Schur diagonalization is the Principal Component Analysis (PCA). The PCA has many
motivations and interpretations. The most common is "find the direction along which the data varies the most”.

Suppose we are given a set of n points zy, ..., z, € R™. Assume that the set has zero mean:

1 n
w= EZ}%:O.
i=

(If the set has nonzero mean, we can subtract u to all the vectors). Let a direction in R™ be represented by a
unit vector d € R™. The component of z; along the direction d is thus given by the dot product d z;. The
amount of "variation of the data set along d” can be quantified as the empirical variance of the components, i.e.

n
% ; (dT:rZ')Z .
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Principal Component Analysis (PCA) (cont.)

Finding the direction of maximal variance amounts to solving the following optimization problem:

n 2 n
argmaxz (dei> = argmaxz (dei) (xtT d) ,
ldllo=1 %=1 lldlla=1 3=

where the division by n has been omitted since the minimizer is the same.

By collecting the data in the matrix

X = [ T T2 Tn ]
we have
x;—d
:r;d
A'X=[dTe dTe ... dTe. | and  XTd=| "
z! d

thus the objective function can be written more compactly and the problem becomes

argmax dTxx7"d.
[l =1
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Principal Component Analysis (PCA) (cont.)

The matrix XX T is called covariance matrix and is symmetric and positive semidefinite by construction. Thus,
according to the Schur's diagonalization theorem, it can be diagonalized by an orthogonal transform:

M0
T T 0 )\2 0 T
XXT=TATT =T T
0 0 0

0 0 0 Am
where Ay > Ay > --- > \,;, > 0. Thus, the objective function becomes
d"TATT d,
and we search for the maximizing unit vector d. By letting
y="T"'4d,
and observing that ||y||, = 1 < ||d||, = 1, the problem becomes

argmax yT/\y7
[lyllg=1
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Principal Component Analysis (PCA) (cont.)

whose solution, since the eigenvalues appear in decreasing order, is y =[1 0
is

... 0]T. Thus, the maximizing d
d=Ty=1,
i.e. the first column of T, corresponding to an eigenvector associated to the largest eigenvalue.

From the above, it should be clear that the subsequent columns of T, i.e. ta, t3 ... represent directions,

orthogonal to each other and to ¢;, exhibiting a decreasing variance.
Z(2)
23
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Principal Component Analysis (PCA) (cont.)

The PCA can be used for dimensionality reduction, by projecting the original data in the subspace spanned by
the first k < m columns of T. If z € R™ is a vector of the original set, its projection onto the subspace T

spanned by {t1, 2, ... ,t}isthevectorz € R™
2= DDz, where D=1[t; to ... ]
The coordinates of Z with respect to the basis of {t1, ,t2 ... ,#} of T are given by the vector
z=D"zx

and are called the first k principal components of x.
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Solutions to linear systems of
equations




Solutions to linear systems of equations

Consider the linear system of equations:
Az = b. (3)

where A € R™*" ¢ € R™ and b € R™.
For b = 0 the system is said to be homogeneous and (3) becomes
Az =0.
From the definition of nullspace, the set of the solutions is thus ker(A4). Two cases may occur:

1. rank A = n (i.e. A is full column rank): in that case by the rank-nullity theorem, dim(ker(A)) = 0. Thus
ker(A) = {0} and the trivial solution z = 0 is the only solution;

2. rank A < n: there exist infinite solutions, precisely the set of solutions is a subspace of R™ of dimension

dim(ker(A)) = n — rank(A4) > 1.
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Solutions to linear systems of equations (cont.)

For b # 0 the system Az = b is said to be non-homogeneous. The following theorem provides a necessary and
sufficient condition for the existence of solutions.

Theorem
Consider the system

Az = b,
where A € R™*™ z € R™ and b € R™. Then,

the system admits a solution = rank(A4) = rank ([ A b ]) .

Moreover, if it admits a solution, and denoting by z any specific solution to Az = b, the entire solution set can
be described as

{z:x=120+% where o € ker(A4)}. (4)
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Solutions to linear systems of equations (cont.)

Observe that:

- the condition rank(A) = rank ([ A b ]) is equivalent to b € im(A);
- if rank(A) = n and the system admits a solution, then the solution is unique;

- if A'is square and full rank, the condition is certainly satisfied and there exists a unique solution, which is
z=A"1p

- the set of solutions (&) is a linear variety, as represented in figure.

solution set

2 20
ker(A)
o T
1
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A useful property

In the following we will use the following property.

Property
Forany A € R™*™:
rank(A) = rank(AT A) = rank(AAT).

Proof.

We first prove the first equality. Let z € ker(AT A). Then (AT A)z = 0 and multiplying by =T to the left we get
T AT Az = 0 which implies that || Az|| = 0, thus z € ker(A). We have proven that

z € ker(ATA) = 1z € ker(A). The opposite implication is obvious, thus

z€ker(ATA) <= € ker(A).

In other words, A and AT A have the same nullspace. Since they have the same number of columns n, by the
rank-nullity theorem, the dimension of their columnspaces must be the same. The second equality follows by
the fact that rank M = rank M T . O
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Least-squares (approximate) solution to overdetermined systems

When trying to fit a model with real, noisy, data, overdetermined systems of equations are frequently
encountered.

We want to solve Az = b for z, but b ¢ im A. In that case the system admits no solution, but still one may want
to find the = such that Az is the closest possible to b. If we measure the distance using the Euclidean norm we
can state the problem:
min || Az — b||3.
T
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Least-squares (approximate) solution to overdetermined systems (cont.)

In the frequent case when rank A = n (full column rank), the problem admits a unique solution. Indeed:
Az — bl|3 = (Az —b) T (Az —b) = (¢ AT —b")( Az —b) =2 " AT Az — 22T ATb+bTb.
By taking the gradient with respect to =z and equating to zero, we get
2ATAz —2ATb=0 or ATAz=ATb.
Notice that AT A € R®*™ and its rank is n. Thus it is invertible, and, as a consequence, the unique solution is

2=(ATA)" A . (5)
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Least-squares (approximate) solution to overdetermined systems (cont.)

The least-squares approximate solution admits a geometric interpretation. Indeed, Az is (by definition) the
pointin im A that is closest to b, i.e. is the projection of b onto im A.

Y2

im A

Y1
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Minimum-norm solution to underdetermined systems

Another situation that may occur is that of an underdetermined system (more variables than independent
equations), typically having the form

Assuming that m > n and rank A = m (full row rank) infinite solutions exist.
It can be useful to find the minimum norm solution, i.e. solve the problem:

min [|z[|

subjectto Az =1b
The minimum norm solution 2z can be shown to be:
F=AT(AAT) 1o
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Minimum-norm solution to underdetermined systems (cont.)

Indeed, the minimization problem can be stated as:

minz ' 2

subjectto Az =1b
By introducing the Lagrange multipliers vector A € R™, we get the Lagrangian
L(z,A) =z z+ AT (Az — b).
The stationarity conditions are
Vol(z,\) =22+ ATA=0 and  ViL(z,\)=Az—b=0.

From the first we get z = — AT \/2 thus, from the second, we have A = —2(AAT)~1b. Notice that
AAT e R™*™ is certainly invertible, being rank m. Finally, by substituting in the first we get

2=AT(AAT) b, (6)
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Minimum-norm solution to underdetermined systems (cont.)

The minimum norm solution is orthogonal to ker A, indeed, for any y € ker A we have Ay = 0 and also
yl AT =0. Thus
y i=y  AT(AAT) b =0.
The minimum norm solution admits a geometric interpretation. Indeed, 2 is the projection of the origin of R™
onto the solution set of Az = b.

solution set

T2

ker(A)

T
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Singular value decomposition




Singular value decomposition

Any matrix A € R™*" can be seen as a linear map from R™ to R™ (it associates Az € R™ to z € R").

The singular value decomposition of A reveals a lot about this map.

Theorem (Singular Value Decomposition)

Any matrix A € R™>"™ can be written as
A=UsVT,

where U € R™*X™ and V € R™"*" are orthogonal matrices and ¥ € R™*" has the form:

o1 0
s 0 0 o2 0
y=| 1! . Ti=| € RPXP
0 0 : :
0 0 op

where o1 > o2 > ...0p > 0,and p = min{m, n}.
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Singular value decomposition (cont.)

Definition

The real values o1, 09, ...,0, are called the singular values of A.
Definition

The columns wy, ug, ..., uy, of U are called the left singular vectors of A.
The columns vy, va, ..., v, of V are called the right singular vectors of A.

Observe that, for1 <7 < p:

0 0
Av;=ULV o =UL | 1 =U| o; | =0iu. )
0 0
ith row
Similarly, we get
AT u; = oy, (8)
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Singular value decomposition (cont.)

Multiplying (7) to the left by AT and substituting (8) we get:

(AT A)v; = 02w, i=1,...,p,
thus (Ui,o'f) is an eigenpair of AT A. Similarly we obtain:

(AAT)u; = ofvi, i=1,...,p,
thus (u;, 02) is an eigenpair of AAT.
Indeed, the following property holds true.

Property

Let A € R™X™,

If n. > m, the singular values of A are the square root of the eigenvalues of AAT.
If m > n, the singular values of A are the square root of the eigenvalues of AT A.
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Singular value decomposition (cont.)

Property
The rank of A equals the number of non-zero singular values of A.

Proof.
It is sufficient to observe that, since U and VT are nonsingular:
rank(A) = rank(UZ V) = rank(X).
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Singular value decomposition (cont.)

The singular value decomposition provides bases for im A and ker A, as shown by the next proposition.

Proposition
If A= UZ VT is a singular value decomposition of 4, and rank(A) = r, then:

- the first  columns of U are a basis for im 4;

- the last n — r columns of V are a basis for ker A.

Moreover, the Frobenius norm and the 2-norm of A can be characterized in terms of singular value
decomposition:
IAlF =0f +03+---+0p

Al = o1

Felice Andrea Pellegrino 554SM -Fall 2020  Supplementary material: Linear Algebra-p67



Four subspaces

The diagram below shows the four subspaces associated to A (sometimes called the four fundamental
subspaces) and their relationship to the linear map y = Axz.

(dim )

(dimn —r) (dim m —r)
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Four subspaces (cont.)

The singular value decomposition provides orthogonal bases for the four subspaces, as represented in the
figure below. The colors of the partitions of U and V correspond to the subspaces of the previous slide.
n

T m —1T n
&
% r
5 :
z n—r
m imA ker(AT)
A = U %) VT

Felice Andrea Pellegrino

554SM —Fall 2020  Supplementary material: Linear Algebra-p72



Geometrical interpretation

The singular values admit the following geometrical interpretation.

The singular values of A € R™X"™ represent the length of the semiaxes of the hyperellipse in R™ obtained by
applying the linear map A to the unit hypersphere of R™ (centered in the origin).

A
RY — T R™
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Geometrical interpretation (cont.)

As an example, consider the case R2 —s R2:

N I

We have

[Avi]| = llorw | = o1 ]l = o1

[[Ava|| = [lo2uz|| = o2 [Juz|| = o2
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Singular values and eigenvalues

The singular values are different from the eigenvalues. In particular:

- the singular values are defined for any matrix, while the eigenvalues exist only for square matrices;

- the singular values are always real;

- the singular values are always non negative;

- if Ais square, then the singular values can be computed by taking the square root of the eigenvalues of
either AT Aor AAT:

0i = \/A(AT A) = /Ai(44T).
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Let
1 0 0
A= ,
0 2 0

thus the map is from R3 to R2. We can compute the singular values as v/X;(AAT):

0
1 0
2 = — A1 =4, =1
0 0 4

thus o1 =2,09 =1.
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Example (cont.)

It can be easily checked that a singular value decomposition is3

0 1 2 01]0
1 0 0 1]0

Il
=S =B =
e @ =
= O O

v o

RZ

U

uz[

o~

3the singular value decomposition is not unique: for instance one can change the sign of both u; and v; and get a different SVD, but this is not the

only source of ambiguity.
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Compact SVD and dyadic expansion

Proposition (Compact SVD)
Let A € R™*™ and let rank(A) = r. If A= UZ VT is the singular value decomposition of 4, it can be shown

that:
A=Ux, V], 9)

where Up = [ug ug ...ur], Vi =[v1 v2 ...v7],and X, = diag{o1,02,...,0:}.

Moreover, A admits the following dyadic expansion:

s T
A=Y o] =Y 0%,  (where, clearly, Z; € R™ " and rank(Z;) = 1)
=1 i=1

For instance, the matrix of the previous example has the following compact SVD and dyadic expansion:

10 0} |01 2 0 010_2000 1 0 0
0 2 0 1 0 0 1 1 0 0 0 1 0 0 0 O

ug vir ug ’U;

+1
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Low rank approximation

Theorem
Let k < r = rank(A) and Ay = Zlf 1 opuv) . Then:

i Nl = Blly = [|A = Awll, = okr1-

In other words, Ay is the best approximation of rank < k of A, with respect to the 2-norm.

Theorem
Let k < r = rank(A) and Ay = Z,’le oiu;v; . Then:

A= Ble= 4= Awll, = Zm

ki
ran ( i=k+1

In other words, Ay is the best approximation of rank < k of A, with respect to the Frobenius norm.

Notice that Ay can be written as:
Agy = UpZp V)

where Uy = [ug ug ...ug], Vi =[v1 v2 ...v], and X, = diag{o1,02,...,0%}.
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Non-trivial approximate solutions to homogeneous systems

Consider the homogeneous system Az = 0, where A € R™>™_If A is full column rank, the only solution is
z = 0. Otherwise, the system admits non-trivial solutions (in other words, A has non-trivial nullspace).

When trying to fit a model with real, noisy, data, it may well happen that A is full column rank due to noise or
measurement errors, although from a theoretical point of view it should not. Still, one may be interested in
non-trivial approximate solutions. In particular, an approximate solution can be found by solving:

min ||Az|?, (10)
llz=1

where we state the constraint ||z|| = 1 to exclude the trivial solution = = 0 (the choice of the value 1 is
arbitrary, basically because we are interested in the direction of z).

The solution of (10) is easily proven to be the right singular vector associated to the smallest singular value.
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Non-trivial approximate solutions to homogeneous systems (cont.)

Theorem
let A€ R™*"and let A= UX VT be its singular value decomposition. The solution of the following
constrained minimization problem:

i n [|Az|?,

is ¢ = vy, Where vy, is the nth column of V, i.e. the right singular vector associated to the smallest singular

value.
Proof.
Recalling that U and V are orthogonal, we have:
2

min ||Az||> = min HUZVTIH = min H YV H min || Zy[|? = mm U?yz.

llzll=1 zll= llzll=1 llyll=1 llyll=
Since the singular values appear in X in decreasing order, the minimum is achieved fory =[0 ... 0 1]T, thus

O

the solution is z = wy,.
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Orthogonal Procrustes problem

The Orthogonal Procrustes* problem amounts to finding the orthogonal transformation W that renders the
transformed matrix WB as close as possible to A (in Frobenius norm). Its solution can be expressed in terms of
an SVD.

Theorem (Orthogonal Procrustes problem)

Given two matrices A and B, the solution to the problem

min A — WBJ|%
min_ 1A= W}

is W= VUT,where BAT = UL VT is the singular value decomposition of BAT.

An important special case, frequently encountered in Computer Vision and in Robotics, is B = I, when the aim
is to find the orthogonal matrix W which is closest to a given A:

min A—W|>A.
Cmin 14— Wi

The solution corresponds to substituting X with the identity matrix in the SVD of A.

“He Rilled Damastes, surnamed Procrustes, by compelling him to make his own body fit his bed, as he had been wont to do with those of strangers.“
(Plutarch, Life of Theseus).
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SVD and PCA

We have seen that the PCA of matrix X amounts to performing an eigenvalue decomposition of the (symmetric
and positive semidefinite) matrix XX T

XXT = TATT. (11)
Now, considering the SVD of X:
X=UzV",
we can express the matrix XX T as follows:
-
xxT = (UZVT) (U:VT) =ULVTVEUT = Uz2UT (12)
N——
I

Since X2 is diagonal, (12) is an eigenvalue decomposition as well as (11) is, and the columns u; of U are
eigenvectors of XX T associated to the eigenvalues a?.

Thus PCA reduces to computing the SVD of X (without forming XX T) and, denoting by Uy, the matrix
containing the first k columns of U, the vector of the first k principal components of z is UJCL’.
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PCA, dimensionality reduction and SVD

Suppose we are given n points in R™
X = [ T Tz ... Tp ] € RmX"

Let
D:{dl d ... dk]eRka

where k < m be an orthonormal basis for a subspace D of R™. The projection onto D of a vector z € R™ is

2=DD"z.
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PCA, dimensionality reduction and SVD (cont.)

We can reduce the dimensionality of the set {x,...,z,} by encoding each z; as the vector z; € R¥ of the
components of Z; along the basis {di, ..., dy}:

zi = DTI/L\

For a given k < m (i.e for a given target dimensionality) what is a reasonable criterion for the choice of D? From
2z € R¥ we can reconstruct #; = Dz; € R™; thus, a reasonable criterion is the minimization of the sum of the
squared reconstruction errors, i.e.

n
_ . o T . 2
Doptfnggg':} ;sz DDz |5, (13)

Z;

where the constraint guarantees that the columns of D form an orthonormal basis. Recalling the Frobenius
matrix norm, Eq. (13) can be written in compact form as

_ ; _ppTx |2
Dopt = argmin || X — DD X [ (14)
=B
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PCA, dimensionality reduction and SVD (cont.)

Now observe that:

- since D is rank k we have:
rank B < k

- hence, problem (14) can be seen as a constrained low-rank approximation problem (it is constrained
because B must be of the form DDT X where D has orthogonal, unit norm columns).

If X = UX VT isthe SVD of X, the solution of the unconstrained problem is well-known to be
B= UV,

where Uy = [u1 ug ...ug], Ve =[v1 va ...vx], and Iy = diag{o1,02,...,0.} (see the second theorem of
slide 80).

We now show that the unconstrained solution satisfies the constraint and, as a consequence, is the solution of
the constrained problem. More precisely, we show that the unconstrained solution has the form DD T X with

D = Uy,
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PCA, dimensionality reduction and SVD (cont.)

Indeed we have:

UUl X = Uy U] UZVT

:Uk[lk 0][20’“ 2 V:'T
:Uk[zk 0] VE—
= U V)]

where x denotes a submatrix that does not affect the result.
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