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Abstract 13 

Extraterrestrial impacts are one of the most ubiquitous processes in the solar system, 14 

reshaping the surface of rocky bodies of all sizes. On early Earth, impact structures may have 15 

been a nursery for the evolution of life. More recently, a large meteorite impact caused the end 16 

Cretaceous mass extinction, killing 75% of species on the planet, including non-avian dinosaurs, 17 

and clearing the way for the dominance of mammals and eventual evolution of humans. 18 

Understanding the fundamental processes associated with impact events is critical to 19 

understanding the history of life on Earth and the potential for life across the solar system and 20 

beyond.  21 

Scientific ocean drilling has generated irreplaceable data on impact processes. The 22 

Chicxulub impact is the single largest and most significant impact event that can be studied by 23 

sampling modern ocean basins, and marine sediment cores have been instrumental in quantifying 24 

the climatological and biological effects of the impact. Recent drilling in the Chicxulub Crater 25 

has already significantly advanced our understanding of fundamental impact processes, notably 26 

the formation of peak rings in large impact craters.  These results raise a number of new 27 

questions waiting to be addressed with further drilling.  28 

Extraterrestrial impacts have been controversially suggested as drivers for many 29 

important paleoclimatic events in the Cenozoic, up to and including the Younger Dryas stadial at 30 

the end of the last glacial maximum. However, marine sediment archives (e.g., Osmium 31 
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isotopes) provide a long term archive of major impact events in recent Earth history and show 32 

that, other than the end Cretaceous, major paleoclimatic events are not driven by impacts. 33 

 34 

Keywords: Ocean Drilling, Impact Events, Cretaceous-Paleogene, Chicxulub, Mass Extinction 35 

 36 

 37 

1 Introduction 38 

 Large meteorite impacts have had a significant influence on Earth history, possibly 39 

driving the early evolution of life (e.g., Kring, 2000; Nisbet and Sleep, 2001; Kring, D.A., 2003) 40 

and the composition of the oceans and atmosphere (e.g., Kasting 1993). They also have the 41 

potential to completely reshape the terrestrial biosphere (e.g., Alvarez et al., 1980). The 42 

Cretaceous-Paleogene (K-Pg) mass extinction, caused by the impact of a meteorite on the 43 

Yucatán carbonate platform of Mexico 66 Ma, is the most recent major mass extinction. It ended 44 

the dominance of non-avian dinosaurs, marine reptiles, and ammonites, and set the stage for the 45 

Cenozoic dominance of mammals that led directly to the evolution of humans (Schulte et al., 46 

2010; Meredith et al., 2011). This mass extinction was likely a direct response to climate change 47 

over days to years, and thus provides an important partial analog for the recovery of biodiversity 48 

following modern anthropogenic climate change. 49 

 The K-Pg impact hypothesis was controversial when first proposed, but careful 50 

correlation of K-Pg boundary sections led to its gradual acceptance. The discovery of the 51 

Chicxulub Crater in 1991 and its clear genetic relationship with K-Pg boundary ejecta provided 52 

confirmation of this hypothesis (Hildebrand et al., 1991; Sigurdsson et al., 1991). Scientific 53 

ocean drilling has been instrumental in discovering and documenting the global environmental 54 

effects of the impact. Recent drilling by IODP Expedition 364 into the Chicxulub Crater itself 55 

has yielded valuable insights into the mechanisms of large impact crater formation and the 56 

recovery of life (Morgan et al., 2016; Lowery et al., 2018). 57 

 Although the K-Pg is the only mass extinction that is widely accepted to be caused by an 58 

extraterrestrial collision, impacts have been suggested at one point or another as drivers for every 59 
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major extinction event (e.g., Rampino and Stothers, 1984) and many other major climate events 60 

(e.g., Kennett et al., 2009; Schaller et al., 2016). The discovery of an iridium layer at the K-Pg 61 

boundary as signature of extraterrestrial material spurred the search for other impact horizons 62 

through the careful examination of many other geologically significant intervals, and so far no 63 

other geologic event or transition has met the criteria to indicate causation by an impact (e.g., the 64 

presence of Ir and other platinum group elements in chondritic proportions; tektites, shock-65 

metamorphic effects in rocks and minerals; perturbation of marine Os isotopes; and, ideally, an 66 

impact crater).  67 

 The Deep Sea Drilling Project (DSDP), Ocean Drilling Program (ODP), Integrated 68 

Ocean Drilling Program, and International Ocean Discovery Program (IODP) have provided a 69 

unique and irreplaceable perspective on the history of the Earth for 50 years. IODP and its sister 70 

organization the International Continental scientific Drilling Program (ICDP) provide insights 71 

into impact cratering processes and effects of different magnitude events as well as target rocks 72 

on the climate and biosphere, providing an exceptional record of processes that are ubiquitous 73 

across the solar system (and, presumably, beyond). Here we examine the contributions of 74 

scientific ocean drilling into our understanding of impact events, from detailed records of 75 

extinction and chemical perturbation in the marine realm to the mechanisms by which rocks are 76 

deformed to create peak rings in impact craters. The exciting results of recent drilling in the 77 

Chicxulub crater raise new questions, and suggest promising new challenges and avenues of 78 

investigation that can only be undertaken by a program like IODP. 79 

2 Marine Record of Impacts 80 

 Scientific ocean drilling excels at providing raw material to generate high-resolution 81 

composite records of geochemical changes in the ocean through time. One of these proxies is the 82 

isotopic ratio of osmium, which records flood basalt volcanism (e.g., Turgeon and Creaser, 83 

2008), weathering flux (Ravizza et al., 2001), ocean basin isolation (e.g., Poirier and Hillaire-84 

Marcel, 2009), and, importantly for our purposes, impact events (Peucker-Ehrenbrink and 85 

Ravizza, 2000, 2012; Paquay et al., 2008). Extraterrestrial impacts result in a strong, rapid 86 

excursion to unradiogenic (i.e., negative) 187Os/188Os ratios (Koeberl, 1998; Reimold et al., 2014) 87 

(Figure 1A). The only two such excursions in the Cenozoic are Chicxulub (Figure 1B) and the 88 

late Eocene (35 Ma; Poag et al., 1994) Chesapeake Bay impact on the North American Atlantic 89 



4 

 

coastal plain (Fig 1C) (Robinson et al., 2009; Peucker-Ehrenbrink and Ravizza, 2012). Other 90 

major climate events which are associated with proposed impacts, like the Paleocene-Eocene 91 

Thermal Maximum (PETM; e.g., Schaller et al., 2016) (Figure 1D), Miocene Climate Transition 92 

(Figure 1E), and Younger Dryas (e.g., Kennett et al., 2009) (Figure 1F) are not associated with 93 

any clear excursion toward unradiogenic values, despite relatively high sample resolution. It 94 

should be noted that the Chesapeake Bay impact is approximately an order of magnitude smaller 95 

than the Chicxulub impact (Poag et al., 1992) and is not associated with any significant climatic 96 

or biological perturbation. Despite this, the event has a significant Os isotope excursion (Fig. 97 

1C). Thus, an impact strong enough to effect global climate, as has been proposed at various 98 

important climatic horizons beyond the K-Pg, would be expected to leave a clear signature in the 99 

Os record. Setting aside the debates about whether any particular event coincides with a bollide 100 

impact, the lack of an Os isotopic excursion for any of these events calls into question the scale 101 

of any proposed contemporaneous impacts, and thus their causal relationship with the events 102 

they happen to coincide with. 103 

3 The Chicxulub Impact and Its Physical Effects 104 

The hypothesis that an impact caused the most recent major mass extinction (Smit and 105 

Hertogen, 1980) was founded on elevated iridium levels in the K-Pg boundary clays within 106 

outcrops in Spain, Italy and Denmark (Alvarez et al., 1980). The impact hypothesis was initially 107 

quite widely dismissed, and one of the early objections was that iridium had only been measured 108 

at a few sites across a relatively small area and that it was not deposited instantaneously (Officer 109 

and Drake, 1985). Researchers then began to investigate and document other K-Pg boundaries 110 

around the globe, many of which were DSDP drill sites (Fig. 2). High iridium abundances were 111 

soon found at other sites (e.g. Orth et al., 1981; Alvarez et al., 1982), and the identification of 112 

shocked minerals within the K-Pg layer added irrefutable proof that it was formed by an extra-113 

terrestrial impact (Bohor et al., 1984). When a high-pressure shock wave passes through rocks, 114 

common minerals such as quartz and feldspar are permanently deformed (referred to as shock 115 

metamorphism), producing diagnostic features (e.g. Reimold et al., 2014) that are only found on 116 

Earth in association with impacts and nuclear test sites. Since 1985, many ODP and IODP drill 117 

sites have penetrated (and often specifically targeted) the K-Pg boundary (Fig. 2), further 118 

contributing to our understanding of this event, and demonstrating that ejecta materials were 119 

deposited globally (Figure 3). 120 
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The Chicxulub impact structure, Yucatán Peninsula, Mexico, was first identified as a 121 

potential impact crater by Penfield and Carmargo (1981), and then as the site of the K-Pg impact 122 

by Hildebrand et al. (1991). Hildebrand et al. (1991) noted that the size of the shocked quartz and 123 

thickness of the K-Pg boundary deposit increased towards the Gulf of Mexico, and located the 124 

Chicxulub crater due to its association with strong, circular, potential field anomalies. Core 125 

samples from onshore boreholes drilled by Petróleos Mexicanos (“Pemex”) confirmed its impact 126 

origin.  Although Keller et al. (2004, 2007) argue against a link between Chicxulub and the K-Pg 127 

boundary, accurate 40Ar/39Ar dating of impact glass within the K-Pg layer (Renne et al., 2013; 128 

2018), as well as dating of shocked zircon (Krogh et al., 1993; Kamo et al., 2011) and 129 

microcrystalline melt rock (Swisher et al., 1992) from Chicxulub and the K-Pg layer clearly 130 

demonstrate that Chicxulub is the site of the K-Pg impact. Hildebrand et al. (1991) also noted that 131 

DSDP Sites 94, 95, 536 and 540 contained deep water gravity flows and turbidity-current deposits 132 

adjacent to the Campeche bank, and DSDP sites 603B, 151 and 153, as well as outcrops along the 133 

Brazos River in Texas had potential tsunami wave deposits (Bourgeois et al., 1988), all of which 134 

they suggested were caused by the Chicxulub impact.  135 

Many studies have subsequently confirmed that, at sites proximal to Chicxulub, the impact 136 

produced multiple resurge, tsunami, gravity flow and shelf collapse deposits, some of which are 137 

many meters thick (e.g. Bohor and Betterton, 1993; Bralower et al., 1998; Grajales-Nishimura et 138 

al., 2000; Schulte et al., 2010; Vellekoop et al., 2014). Within the Gulf of Mexico basin, well logs, 139 

DSDP cores, and seismic data show margin collapse deposits reach 100s of meters thick locally, 140 

making the K-Pg deposit in the circum-Gulf of Mexico the largest known single event deposit 141 

(Denne et al., 2013; Sanford et al., 2016). Complex stratigraphy (Figure 3) and a mixture of 142 

nannofossil and foraminiferal assemblages of different ages and impact-derived materials 143 

characterize proximal deep water DSDP and ODP sites in the Gulf of Mexico (DSDP Sites 95, 144 

535, and 540), and Caribbean (ODP Sites 999 and 1001) driven by the sequential deposition of 145 

material from seismically driven tsunami, slope collapse, gravity flows and airfall (Bralower et al., 146 

1998; Denne et al., 2013; Sanford et al., 2016). This distinct assemblage of materials was termed 147 

the K-Pg “Boundary Cocktail” by Bralower et al. (1998).  148 

At intermediate distances from Chicxulub (2000-6000 km) the K-Pg boundary layer is 1.5 149 

– 3 cm thick, as seen in North America (Smit et al., 1992), the Demerara Rise (western Atlantic) 150 

ODP Site 1207 (MacLeod et al., 2007; Schulte et al., 2009) and Gorgonilla Island, Columbia 151 
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(Bermúdez et al., 2016), and, at the first two locations, has a dual layer stratigraphy. The lower 152 

layer contains goyazite and kaolonite spherules, which have splash-form morphologies such as 153 

tear drops and dumbbells (Bohor et al., 1989; Smit and Romein, 1985; Bohor et al., 1993; Bohor 154 

and Glass, 1995). The similarity between spherules in Haiti (~800 km from Chicxulub) and the 155 

lower layer in North America has led to their joint interpretation as altered microtektites, which 156 

were formed from ejected melt droplets (Smit and Romein, 1985; Bohor et al., 1993; Bohor and 157 

Glass, 1995). Large-scale mass wasting has also been documented along the North Atlantic 158 

margins of North America and Europe, including at Blake Plateau (ODP Site 1049), Bermuda Rise 159 

(DSDP Sites 386 and 387), the New Jersey margin (DSDP Site 605), and the Iberian Abyssal Plain 160 

(DSDP Site 398) (Klaus et al., 2000; Norris et al. 2000). 161 

At distal sites (> 6000 km) the K-Pg boundary becomes a single layer with a fairly uniform 162 

2-3 mm thickness, and has a similar chemical signature to the upper layer in North America (e.g. 163 

Alvarez et al. 1982; Rocchia et al., 1992; Montanari and Koeberl, 2000; Claeys et al., 2002). The 164 

most abundant component (60-85%) of the distal ejecta layer is spherules with a relict crystalline 165 

texture (Smit et al., 1992) which are referred to as microkrystites (Glass and Burns, 1988), and are 166 

thought to have been formed from liquid condensates within the expanding plume (Kyte and Smit, 167 

1986). These microkrystites are now primarily composed of clay (smectite, illite, and limonite) 168 

owing to their ubiquitous alteration. Some spherules contain skeletal, magnesioferrite spinel (Smit 169 

and Kyte 1984; Kyte and Smit, 1986; Robin et al., 1991); spinel is the only pristine phase that 170 

appears to have survived diagenetic alteration (Montanari et al., 1983; Kyte and Bostwick, 1995). 171 

Shocked minerals are present in the K-Pg layer at all distances from Chicxulub, and are co-located 172 

with the elevated iridium (Smit, 1999). 173 

DSDP, ODP, and IODP sites (Fig. 2) have all been used for mapping the global properties 174 

of the K-Pg layer. Sites close to the crater appear to have a slightly lower total iridium flux at 10-175 

45 x 10-9 gcm-2 (e.g. Rocchia et al., 1996; Claeys et al., 2002; MacLeod et al., 2007) compared 176 

with a global average of ~55 x 10-9 gcm-2 (Kyte, 2004), and maximum iridium concentrations are 177 

quite variable (< 1 to > 80 ppb, Claeys et al., 2002). Although several attempts have been made to 178 

locate the ultimate source of the iridium, the host is too fine-grained to be identified with 179 

conventional techniques. The siderophile trace elements in the distal and upper K-Pg layer have a 180 

chondritic distribution (Kyte et al., 1985), the isotopic ratio of the Platinum Group Element (PGE) 181 
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osmium is extra-terrestrial (Meisel et al., 1995), and the chromium isotopic composition indicates 182 

the impactor was a carbonaceous chondrite (Shukolyukov and Lugmair, 1998).  183 

The most common explanation for the origin of the microtektites at proximal and 184 

intermediate sites is that they are formed from melted target rocks that have been ejected from 185 

Chicxulub as melt droplets on a ballistic path within an ejecta curtain, and solidified en route to 186 

their final destination (e.g. Pollastro and Bohor, 1993; Alvarez et al., 1995). Ejecta at distal sites 187 

and within the upper layer at intermediate sites, including the shocked minerals and microkrystites, 188 

are widely thought to have been launched on a ballistic trajectory from a rapidly expanding impact 189 

plume (Argyle, 1989; Melosh et al., 1990). There are, however, several observations that are 190 

difficult to reconcile with these explanations of how K-Pg ejecta traveled around the globe. For 191 

example: 1) microkrystites within the global layer have roughly the same mean size (250 µm) and 192 

concentration (20,000 per cm2) (Smit, 1999), whereas shocked minerals show a clear decrease in 193 

number and size of grains with increasing distance from Chicxulub (Hildebrand et al., 1991; 194 

Croskell et al., 2002); 2) if shocked quartz were ejected at a high enough velocity to travel to the 195 

other side of the globe, the quartz would anneal on re-entry (Alvarez et al., 1995; Croskell et al., 196 

2002); and 3) if the lower layer at intermediate sites were formed from melt droplets ejected from 197 

Chicxulub on a ballistic path, the thickness of the lower layer would decrease with distance from 198 

Chicxulub whereas, across North America, it is close to constant. Interactions of ejecta with the 199 

Earth’s atmosphere appear to be necessary to explain all of these observations (Goldin and Melosh, 200 

2007; 2008; Artemieva and Morgan 2009; Morgan et al., 2013). 201 

Differences in the K-Pg boundary layer around the globe have been used to infer different 202 

angles and directions for the Chicxulub impactor. Schultz and D’Hondt (1996) argued that several 203 

factors, including the dual layer and particularly large fragments of shocked quartz in North 204 

America, indicated an impact direction towards the northwest. Subsequently, however, 205 

comparable 2-cm thick K-Pg layers at sites to the south of Chicxulub at equivalent paleodistances 206 

were identified (Schulte et al., 2009; Bermúdez et al., 2016), and it now appears that the global 207 

ejecta layer is roughly symmetric, with the number and size of shocked quartz grains decreasing 208 

with distance from Chicxulub (Croskell et al., 2002; Morgan et al., 2006). One aspect of the layer 209 

that is asymmetric is the spinel chemistry: spinel from the Pacific (e.g., DSDP Site 577) is 210 

characterized by higher Mg and Al compared to European (e.g., Gubbio, Italy) and Atlantic spinel 211 
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(e.g., DSDP Site 524) (Kyte and Smit, 1986). Kyte and Bostwick (1995) concluded that the Pacific 212 

spinel represented a higher temperature phase, and thus that the impact direction must have been 213 

towards the west because the plume would be hottest in the downrange direction. Subsequently, 214 

Ebel and Grossman (2005) used thermodynamic models to predict the sequential condensation 215 

within the cooling impact plume and concluded the opposite: that the spinel from Europe and the 216 

Atlantic represented the higher temperature phases and, thus, that the impact direction was towards 217 

the east. Arguments that sought to use position of crater topography relative to the crater center 218 

(Schultz and D’Hondt, 1996) have been questioned through comparisons with Lunar and Venutian 219 

craters with known impact trajectories (Ekholm and Melosh, 1998; McDonald et al., 2008). More 220 

recently, 3D numerical simulations of crater formation, which incorporate new data from IODP 221 

Site M0077 in the Chicxulub crater, indicate that an impact towards the southwest at a ~60° angle 222 

produces the best match between the modeled and observed 3D crater structure (Collins et al., 223 

2017). 224 

4 Ocean Drilling Perspective on Mass Extinction 225 

Paleontologists had long recognized a major mass extinction at the end of the Cretaceous 226 

with the disappearance of non-avian dinosaurs, marine reptiles, and ammonites, although the first 227 

indication of the rapidity of this event came from microfossils. The earliest advances on the 228 

extinction of the calcareous and siliceous microfossils across the K-Pg boundary came from 229 

outcrops on land (e.g., Luterbacher and Premoli-Silva, 1964; Perch Nielsen et al., 1982; Percival 230 

and Fischer, 1977; Romein, 1977; Jiang and Gartner, 1986; Smit, 1982; Harwood, 1988; Hollis, 231 

1997; Hollis et al., 2003). However, the full taxonomic scope of the extinction and how it related 232 

to biogeography and ecology is largely known from ocean drilling (e.g., Thierstein and Okada, 233 

1979; Thierstein, 1982; MacLeod et al., 1997; Pospichal and Wise, 1990; Bown et al., 2004). Deep-234 

sea sites also serve as the basis for our understanding of the subsequent recovery of life (Bown, 235 

2005; Bernaola and Monechi, 2007; Jiang et al., 2010; Hull and Norris, 2011; Hull et al., 2011). 236 

The K-Pg boundary has now been recovered in dozens of cores representing all of the major ocean 237 

basins, including some from the earliest DSDP legs (Fig. 2) (Premoli Silva and Bolli, 1973; Perch-238 

Nielsen, 1977; Thierstein and Okada, 1979; see summary of key terrestrial sections in Schulte et 239 

al., 2010). Deep-sea sections generally afford excellent microfossil preservation, continuous 240 

recovery, and tight stratigraphic control including magnetostratigraphy and orbital chronology 241 
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(Röhl et al., 2001; Westerhold et al., 2008). 242 

Studies of deep-sea sections have exposed the severity of the mass extinction among the 243 

plankton with over 90% of foraminifera and nannoplankton species becoming extinct (Thierstein, 244 

1982; D’Hondt and Keller, 1991; Coxall et al., 2006; Hull et al., 2011). These studies have also 245 

shown that the extinction was highly selective, with siliceous groups experiencing relatively low 246 

rates of extinction (Harwood, 1988; Hollis et al., 2003). Among the calcareous plankton groups, 247 

survivors include high-latitude and near-shore species (Bown 2005; D’Hondt and Keller, 1991) 248 

suggesting that these species were adapted to survive variable environments in the immediate 249 

aftermath of the impact.  Moreover, deep sea benthic foraminifera survived the impact with little 250 

extinction, illustrating that deep ocean environments were not perturbed (Alegret et al., 2001; 251 

2012). This is a strong piece of evidence in support of an extremely rapid extinction event, as 252 

expected for an impact, as it must have occurred faster than the mixing time of the ocean (~1000 253 

years). Benthic foraminifera would suffer an extinction 10 myr later during the Paleocene Eocene 254 

Thermal Maximum (Thomas and Monechi, 2007), a geologically rapid event that was still slow 255 

enough to impact the deep sea. 256 

Carbon isotopes across the oceans appear to suggest that the flux of organic carbon to the 257 

deep ocean ceased or was very low for ~3 myr, a phenomenon which was originally interpreted as 258 

indicating the complete or nearly complete cessation of surface ocean productivity (Hsü and 259 

McKenzie, 1985; Zachos et al., 1989; the latter from DSDP Site 577 on Shatsky Rise, a fertile 260 

location for K-Pg studies). This hypothesis became known as the Strangelove Ocean (after the 261 

1964 Stanley Kubrick movie) (Hsü and McKenzie, 1985). D’Hondt et al. (1998) suggested that 262 

surface ocean productivity continued, but the extinction of larger organisms meant that there was 263 

no easy mechanism to export this organic matter to the deep sea – a modification of the Strangelove 264 

Ocean hypothesis that has since been known as the Living Ocean hypothesis. However, several 265 

facts about the earliest Danian ocean are incompatible with both of these hypotheses. The lack of 266 

a corresponding benthic foraminiferal extinction suggests that the downward flux of organic 267 

carbon may have decreased somewhat but remained sufficiently elevated to sustain the benthic 268 

community (Hull and Norris, 2011; Alegret et al., 2001). More recent work on biogenic barium 269 

fluxes in deep sea sites across the world has shown that, in fact, export productivity was highly 270 

variable in the early Danian, with some sites recording an increase in export production during the 271 
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period of supposed famine in the deep sea (Hull and Norris, 2011). 272 

Calcareous plankton communities were geographically heterogeneous in the immediate 273 

aftermath of the mass extinction (Jiang et al., 2010). Among the nannoplankton, northern 274 

hemisphere assemblages are characterized by a series of high-dominance, low-diversity “boom-275 

bust” species (Bown, 2005); southern hemisphere assemblages contain a somewhat more diverse 276 

group of surviving species (Schueth et al., 2015). In general, diversity of northern hemisphere 277 

assemblages took longer to recover (Jiang et al., 2010) and heterogeneity was maintained for more 278 

than 300 kyr. This heterogeneity is likely a result of a combination of factors including incumbency 279 

of the surviving population in the southern hemisphere sites as well as environmental and 280 

ecological differences following the impact (Schueth et al., 2015). 281 

However, the shift in the surface-to-deep carbon isotope gradient does have significant 282 

implications for biogeochemical cycling, and is still ultimately linked to a major disruption and 283 

recovery of food webs across the oceans. In the pelagic realm, diminished productivity by 284 

nannoplankton and increased bacterial activity (Sepulveda et al., 2009) combined with flourishing 285 

production of calcisphere resting stages drastically changed the surface-to-deep carbon isotope 286 

gradient (Kump, 1991) and led to an increase in carbonate saturation (Henehan et al., 2016). 287 

Pelagic calcifiers like planktic foraminifera and calcareous nannoplankton are a key component of 288 

the carbon cycle, exporting carbon in the form of CaCO3 from the surface ocean to the seafloor, 289 

where it is buried. The extinction of so many marine calcifiers, and the smaller size of the 290 

survivors, led to the weakening of the marine “alkalinity pump” (Henehan et al., 2016), and the 291 

resulting oversaturation can be observed in a white layer that overlies the K-Pg boundary in 292 

numerous sites including the eastern Gulf of Mexico (DSDP Site 536; Buffler et al., 1984), the 293 

Caribbean (ODP Sites 999 and 1001; Sigurdsson et al., 1997), Shatsky Rise in the western Pacific 294 

(Fig. 3) (IODP Sites 1209-1212; Bralower et al., 2002), and in the Chicxulub Crater itself (IODP 295 

Site M0077; Morgan et al., 2017). 296 

 Records from cores across the oceans indicate that the post-extinction recovery of export 297 

productivity (e.g., Hull and Norris, 2011) and calcareous plankton diversity (e.g., Jiang et al., 2010) 298 

was geographically heterogeneous, with some localities recovering rapidly and others taking 299 

hundreds of thousands (for productivity) to millions (for diversity) of years to recover. Recovery 300 

appears to be slower in the North Atlantic and Gulf of Mexico (e.g., Alegret and Thomas, 2005; 301 
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Jiang et al., 2010; Hull and Norris, 2011), suggesting that distance from the crater correlates to 302 

slower recovery. Some authors (e.g., Jiang et al., 2010) attributed this to direct environmental 303 

effects of the impact, such as perhaps the uneven distribution of toxic metals in the oceans. If this 304 

is true, then the recovery from the K-Pg mass extinction is driven by impact-specific processes 305 

and thus can only be used to understand impact-driven extinctions (i.e., just the K-Pg). If recovery 306 

is slower closer to the crater, then it should be slowest in the crater itself. However, recent drilling 307 

within the Chicxulub crater has shown a rapid recovery of life there, with planktic and benthic 308 

organisms appearing within just a few years of the impact and a healthy, high productivity 309 

ecosystem established within 30 kyr of the impact, much faster than other Gulf of Mexico and N. 310 

Atlantic sites (Lowery et al., 2018). This rules out an environmental driver for heterogeneous 311 

recovery and instead suggests that natural ecological factors like incumbency and competitive 312 

exclusion (e.g., Hull et al., 2011; Schueth et al., 2015) governed the recovery of the marine 313 

ecosystem. The recovery of diversity took millions of years to even begin to approach Cretaceous 314 

levels (Coxall et al., 2006; Bown et al., 2004; Fraass et al., 2015). This delay in the recovery of 315 

diversity appears to be a feature of all extinction events (Kirchner and Weil, 2000; Alroy, 2008) 316 

and bodes ill for the recovery of the modern biosphere after negative anthropogenic impacts 317 

associated with climate change, over fishing, hypoxia, etc. subside. 318 

5 Unique Insight into the Chicxulub Crater 319 

Joint IODP-ICDP Expedition 364 drilled into the peak ring of the Chicxulub impact crater 320 

in 2016 at Site M0077 (Morgan et al., 2017). Peak rings are rings of elevated topography that 321 

protrude through the crater floor in the inner part of large impact structures. Prior to drilling, there 322 

was no consensus on the nature of the rocks that form peak rings or their formational mechanism 323 

(Baker et al., 2016). To form large craters like Chicxulub, rocks must temporarily behave in a 324 

fluid-like manner during crater formation (Melosh, 1977). Two hypotheses, developed from the 325 

observation of craters on other planets, proposed explanations of the process by which peak rings 326 

form. The first, the dynamic collapse model (first put forward by Murray, 1980) would predict that 327 

the Chicxulub peak ring would be formed from deep crustal rock, presumably crystalline 328 

basement. The second, the nested melt-cavity hypothesis (conceived by Cintala and Grieve, 1998), 329 

would predict that the Chicxulub peak ring would be underlain by shallow crustal rock, presumably 330 

Cretaceous carbonates. Thus, Expedition 364 was able to answer a major question about impact 331 
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cratering processes simply by seeing what kind of rock comprises the peak ring.  Geophysical data 332 

acquired prior to drilling indicate that there are sedimentary rocks several kilometers beneath the 333 

peak ring at Chicxulub, and that the peak-ring rocks have a relatively low velocity and density, 334 

suggesting that they are highly fractured (Morgan et al., 1997; Morgan and Warner, 1999; Gulick 335 

et al., 2008, 2013; Morgan et al., 2011). Site M0077 sampled the peak ring at Chicxulub to study 336 

the rocks that compose them, determine their physical state, better constrain the kinematics and 337 

dynamics of large crater formation, and further understand the mechanism by which rocks are 338 

weakened to allow bowl-shaped transient cavities to collapse and form relatively wide, flat craters 339 

(Gulick et al., 2017). 340 

Immediately after impact the peak ring was located adjacent to a thick sheet of impact melt 341 

and Chicxulub was inundated with sea-water (Gulick et al., 2008, in prep). Thus, intense 342 

hydrothermal activity within the peak ring is expected, which may have been associated with 343 

mineralization and/or provided a niche for life forms, in a similar way to oceanic hydrothermal 344 

vent systems (Abramov and Kring, 2007). Therefore, cores collected during Expedition 364 can 345 

be used to address key questions about the potential habitability of large impact craters, an 346 

important analog for early life on Earth. High microbe cell counts and DNA have been found in 347 

the peak-ring rocks, demonstrating that the crater currently provides a habitat for a deep biosphere 348 

(Cockell et al., submitted). 349 

Site M0077 (Fig. 4) was drilled on the outer edge of the peak ring in a small topographic 350 

valley where the uppermost peak-ring rocks are formed from a relatively thick (100-150 m) 351 

sequence of material with an unusually low seismic velocity (Morgan et al., 2011; Gulick et al., 352 

2017). This site was selected in order to maximize the chance of recovering the earliest Paleocene, 353 

obtain a thick section of the low-velocity material that was thought to be impact breccia, and 354 

sample several hundred meters of rocks that form the upper peak ring. Coring started at ~500 355 

meters below sea floor (mbsf) and ~110 m of Paleogene sedimentary rocks were recovered before 356 

encountering the top of the peak ring, where an unusual 80-cm thick transitional unit lies above a 357 

~130-m thick sequence of suevite (impact melt bearing breccia) and impact melt rocks. Granitoid 358 

basement rocks with pre- and post-impact dykes and suevitic intercalations were encountered from 359 

~748 mbsf to the bottom of the hole at 1335 mbsf (Morgan et al., 2016; 2017).  360 
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The discovery that the peak ring was formed from fractured, shocked, uplifted basement 361 

rocks supports the dynamic collapse model of peak-ring formation (Morgan et al., 2016; Kring et 362 

al., 2017). Structural data from the wireline logging, CT scans, and visual core descriptions provide 363 

an exceptional record of brittle and viscous deformation mechanisms within the peak-ring rocks. 364 

These data reveal how deformation evolved during cratering, with dramatic weakening followed 365 

by a gradual increase in rock strength (Riller et al., in review). The peak-ring rocks have 366 

extraordinary physical properties: the granitic basement has P-wave velocities and densities that 367 

are, respectively, ~25% and ~10% lower than expected, and a porosity of 8-10%. These values are 368 

consistent with numerical simulations that predict the peak-ring basement rocks represent some of 369 

the most shocked and damaged rocks in an impact basin (Christeson et al., 2018). Site M0077 370 

cores and measurements have been used to refine numerical models of the impact and new 371 

estimates on the release of climatic gases by the Chicxulub impact. Previous models estimated 100 372 

Gt of sulfur (which formed sulfate aerosols in the atmosphere, blocking incoming solar radiation) 373 

were released by the impact, which resulted in a 26°C drop in global temperatures (Brugger et al., 374 

2017); new models indicate that between 195 and 455 Gt of sulfur were released, suggesting even 375 

more radical cooling during the impact winter (Artemieva et al., 2017). 376 

6 New Challenges 377 

The scientific community’s understanding of the Chicxulub impact event and the K-Pg 378 

mass extinction has grown immensely since Alvarez et al. (1980) first proposed the impact 379 

hypothesis, and many of the advances were the direct result of new ocean drilling data. However, 380 

there is still a great deal that we do not know. New K-Pg boundary sites from undersampled regions 381 

(the Pacific, the Indian Ocean, and the high latitudes) are essential to reconstruct environmental 382 

gradients in the early Paleocene, understand geographic patterns of recovery and what drives them. 383 

Site U1514, on the Naturaliste Plateau on the SW Australian margin (Fig. 2), was drilled in 2017 384 

on Expedition 369 (Huber et al., 2018) and is a perfect example of the kind of new site we need to 385 

drill; at a high latitude and far from existing K-Pg boundary records, it is sure to provide a new 386 

perspective on a number of existing questions. 387 

New data from the Chicxulub Crater have resulted in refined impact models that suggest 388 

that the asteroid impacted towards the southwest (Collins et al., 2017) which contrasts with 389 

previously inferred directions that placed the northern hemisphere in the downrange direction. 390 



14 

 

Although the most proximal Pacific crust at the time of impact has since been subducted, very 391 

little drilling has been conducted on older crust in the central and eastern Pacific (red circle on Fig. 392 

2). New drilling on seamounts and rises on the furthest east Cretaceous crust in the eastern 393 

equatorial Pacific would shed new light on the environmental and biological consequences of 394 

being downrange of the Chicxulub Impact.  395 

 Finally, the Chicxulub structure remains an important drilling target to address questions 396 

that can only be answered at the K-Pg impact site. Two particular locations will likely bring the 397 

greatest return: the annular trough and the central basin. IODP Site M0077, which was drilled at 398 

the location where the peak ring was shallowest, recovered a relatively thin Paleocene section with 399 

an unconformity present prior to the Paleocene-Eocene boundary. Seismic mapping within the 400 

crater demonstrates that the Paleocene section greatly expands into the annular trough (Fig. 4) 401 

providing a potentially exciting opportunity to study the return of life to the impact crater at an 402 

even higher resolution than presented in Lowery et al. (2018). Additionally, Expedition 364 has 403 

raised new questions as to the quantity of sulfur-rich evaporites that remained in the impact crater 404 

as opposed to being vaporized and released to the global environment through the vapor plume 405 

(Gulick et al., in prep). The sedimentary target rock is 30-50% evaporites yet virtually none were 406 

recovered at Site M0077; thus, it is key to have continuous coring within an expanded Paleocene 407 

section and the underlying impactites to better constrain climatologic inputs at the onset of the 408 

Cenozoic.  409 

 Equally intriguing is the interaction of impact melt rock, suevite, and post-impact 410 

hydrothermal systems for studying how subsurface life can inhabit and evolve within an impact 411 

basin. Such settings were common on early Earth and provide an analog for the chemical evolution 412 

of pre-biotic environments as well as biologic evolution in extreme environments. Full waveform 413 

images (Fig. 4) give tantalizing suggestions of vertical flux in the form of morphologic 414 

complexities between the high-velocity melt sheet and overlying low velocity suevite layer, which 415 

are tempting to interpret as hydrothermal vents, of the kind often seen at mid-ocean ridges. Drilling 416 

into the Chicxulub melt sheet is ideal to study the hydrogeology and geomicrobiology of terrestrial 417 

impact melt sheets buried by breccias as a habit for subsurface life, providing an opportunity for 418 

scientific ocean drilling to sample the best analog for the habitat in which life may have formed 419 

on early Earth and on rocky bodies across the solar system and beyond. 420 
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The success of the cooperation between IODP and ICDP during Expedition 364 should 421 

serve as a model for future drilling in the Chicxulub crater as well as future Mission Specific 422 

Platform (MSP) expeditions. The onshore Yaxcopil-1 borehole unexpectedly encountered a 423 

Cretaceous megablock because it were essentially drilling blind, with only the regional magnetic 424 

and gravity anomaly maps to guide it. High-quality marine seismic data from offshore portion of 425 

the Chicxulub crater (Morgan et al., 1997; Gulick et al., 2008; Christeson et al., 2018) allowed for 426 

a detailed characterization of the subsurface before drilling even began (Whalen et al., 2013). In 427 

turn, this allowed Hole M0077A to precisely target not just the peak ring but a small depression 428 

on top of the peak ring expected to contain earliest Paleocene sediments which provided the basis 429 

for unprecedented study of this unique interval at ground zero (Lowery et al., 2018; Gulick et al., 430 

in prep and several other upcoming papers). As we plan for the next 50 years of scientific ocean 431 

drilling, we should look for additional opportunities to leverage the clarity and resolution of marine 432 

seismic data with the precision drilling possible from a stable platform provided by ICDP (Exp. 433 

364 achieved essentially 100% recovery; Morgan et al., 2017). 434 

 435 

 436 
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 437 

Fig. 1 Marine osmium isotopes through the Cenozoic (a), after Peucker-Ehrenbrink and Ravizza 438 

(2012). These data, the majority of which come from DSDP/ODP/IODP cores, record the long-439 

term trend toward more radiogenic (i.e., continental-weathering derived) 187Os/188Os ratios in the 440 

ocean throughout the Cenozoic. Superimposed on this long-term trend are several major, rapid 441 

shifts toward unradiogenic ratios driven by impact of extraterrestrial objects. This effect is evident 442 

in intervals associated with impact events, including the Chicxulub impact (b) and Chesapeake 443 
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Bay impact (c). Other intervals for which impacts have been proposed as important drivers of 444 

observed paleoclimatic change lack the diagnostic negative excursion, including the Paleocene 445 

Eocene Thermal Maximum (d), Miocene Climate Transition (e), and Younger Dryas (f). Red lines 446 

are well-dated large (>35 km crater diameter) impacts, after Grieve (2001). 447 

 448 

Fig. 2 a) Map of DSDP/ODP/IODP Sites which recovered the K-Pg boundary. Basemap is adapted 449 

from the PALEOMAP Project (Scotese, 2008) b) Number of K-Pg papers by site, according to 450 

Google Scholar as of July 5, 2018. As anyone who’s looked up a paper on Google Scholar will 451 

recognize, there are some caveats with these data (e.g., inclusion of papers which match the search 452 

terms but are not strictly about the K-Pg, papers that are missing because they are not cataloged 453 

by Google Scholar, etc.). However, this is a good approximation of the reams of articles that have 454 

been written about the K-Pg from DSDP, ODP, and IODP cores, and the clear impact (sorry) of 455 
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scientific ocean drilling on the K-Pg literature. n = 6797, but includes duplicates from papers which 456 

cover multiple sites. Search term: “Cretaceous AND Tertiary OR Paleogene OR Paleocene AND 457 

‘Site ###’”. 458 

 459 

Fig. 3 Representative K-Pg boundary sections from scientific ocean drilling cores. Chicxulub 460 

crater is redrawn from Morgan et al. (2016), eastern Gulf of Mexico is redrawn from Sanford et 461 

al. (2016), Blake Nose and Shatsky Rise core photographs are from the Janus database. 462 
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 463 

Fig. 4 (a) Full wavefield inverted (FWI) velocity model (colors) and migrated seismic reflection 464 

image for profile CHIX 10 crossing site M0077 (black line). The seismic image has been converted 465 

to depth using the inverted velocity model. Potential sites for future drilling are shown with white 466 

lines. Drilling in the annular trough site would encounter an expanded Paleocene section, underlain 467 

by suevite (low velocities) and possible impact melt rock (high velocities). Coring in the central 468 

basin site would target an interpreted hydrothermal upflow zone (disrupted low-velocities) above 469 

the impact melt sheet (high velocities) as well as an expanded Paleocene section. (b) Location map 470 
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showing the gravity-indicated structure of the crater and the position of the seismic line used in A. 471 

Modified from Gulick et al. (2008). 472 
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