
Introduction to  
ROOT: part 1

LACD 2022-2023
March 16th, 2023

Mirco Dorigo  
mirco.dorigo@ts.infn.it

mailto:mirco.dorigo@ts.infn.it

• Open-source analysis framework  
with building blocks for:

✓ Data processing

✓ Data analysis

✓ Data visualisation

✓ Data storage

• Widely use in high-energy physics (but not only): 
> 1EB of data in ROOT format at CERN, 
thousands of plots from ROOT in papers…

• Written mainly in C++ (bindings for Python available)

https://root.cern.ch

2

https://root.cern.ch

• C++ is a coding language to program (writing instructions for your pc to execute).

• Here we won’t learn C++: just very basic concepts to tell ROOT what to do.

• C++ is a compiled language: a compiler translates ASCII files with code into
machine instructions. A compiler is gcc.

• ROOT comes with an interpreter (CLING), don’t need to compile code to run it

• it’s not a C++ feature, its ROOT

• CLING features just in time (JIT) compilation

• CLNG provides an interactive C++ shell

• Very convenient: rapid prototype/check (drawback: learn sloppy C++…)

C++ and the interpreter

3

https://isocpp.org
https://gcc.gnu.org

Let’s start ROOT

4

• To start ROOT just type root in your shell

• .q to quit ROOT

• .? to obtain a list of command

• .!<command> (e.g. .!pwd) to access shell command

• Can start ROOT also with flags (eg. root -l).
‣ -l (do not show the root banner)
‣ -b (batch mode, no graphics)
‣ -q (run and quit)

• A few examples below, try man root for full list.

Using the prompt

5

• As a simple calculator

• Accessing complex functions (via TMath library)

• Can run also C++ instructions
ROOT As a Calculator

64

Here we make a step forward.
We declare variables and use a for
control structure.

root [0] double x=.5

(double) 0.5

root [1] int N=30

(int) 30

root [2] double gs=0;

root [3] for (int i=0;i<N;++i) gs += pow(x,i)

root [4] std::abs(gs - (1/(1-x)))

(Double_t) 1.86265e-09

Using the prompt

6

• To access ROOT classes

• Draw the function 1/(1-x)

Running a macro

7

• The prompt is powerful, but not convenient to (re)run several lines of
code. Let’s put them in a “macro”, a bunch of lines of code in a ASCII file.

• Go back and put in a macro the example of the geometrical series.

• Notice: the name of the macro must be the same of the function

• To run your macro, type root -l myMacro.C, or

Compiling a macro

8

• Not only JIT compilation, ACLIC can make libraries from your code

• Just load the macro adding a ‘+’ at the end: .L myMacro.C+

• What’s the problem?

Need to be C++ compliant

9

• Add some “headers”; make explicit the use of std (standard) library

• Should be OK now

Going full C++

10

• ROOT libraries can be used to produce standalone compiled applications.
Need to make our macro C++ standard code, by adding the main function

• Compile and run the binary example.

Note: not using ROOT libraries here, otherwise: g++ -o example myMacro.C `root-config --cflags --libs`

Language considerations

11

• Our code will be simple macros that can run on-the-fly, without
compilation. We can afford being sloppy with the language…

• Anyway, a minimum knowledge of C++ basics is needed.

• Will have a look but you will mostly learn by copying examples.
If you are completely unfamiliar, there are many good tutorials
and guides on the web (e.g. http://www.cplusplus.com).

• Let’s do a quick tour

http://www.cplusplus.com

Fundamental types

12

Variable declaration:  
every name and every expression
has a type that determines the
operations that may be
performed on it.

 Variable types

C++ Fundamental Types Machine Independent Types

C++ type Size (bytes) ROOT types Size (bytes) FORTRAN

(unsigned)char 1 (U)Char_t 1 CHARACTER*1

(unsigned)short 2 (U)Short_t 2 INTEGER*2

(unsigned)int 2 or 4 (U)Int_t 4 INTEGER*4

(unsigned)long 4 or 8 (U)Long_t 8 INTEGER*8

float 4 Float_t 4 REAL*4

double 8 (>=4) Double_t 8 REAL*8

long double 16 (>=double) REAL*16

see http://root.cern.ch/root/html/ListOfTypes.html for a complete list

23

Operators

13

Make actions on the variables, functions, output..

(Some) operators

14

Operators

Arithmetic and Assignment Operators

C++ Purpose FORTRAN
x++ Postincrement

++x Preincrement

x-- Postdecrement

--x Predecrement

+x Unary plus +X

-x Unary minus -X

x*y Multiply X*Y

x/y Divide X/Y

x%y Modulus MOD(X,Y)

x+y Add X+Y

x-y Subtract X-Y

Pow(x,y) or TMath::Power(x,y) Exp X**Y (FORTRAND and CINT)

x = y Assignment X = Y

X += y Updating assignment X = X+Y

X -=, *=, /=, %=, …, Y X=X-Y, X=X*Y, …

30

Logical Values and Operators, Relational Operators

C++ ROOT extension Purpose FORTRAN
false or 0 kFALSE False value .FALSE.

true or nonzero kTRUE True value .TRUE.

!x Logical negation .NOT.X

x && y Logical and X. AND. Y

x || y Logical or X. OR. Y

x < y Less than X. LT. Y

x <= y Less then or
equal

X. LE. Y

x > y Greater than X. GT. X

x >= y Greater than or
equal

X. GE. Y

x == y Equal X. EQ. Y

x != y Not equal X. NE. Y

41

Arithmetic operators Logic/comparison operators

Loops et al. (statements)

15

Repeat the
instructions N times

• There are other types of loops (eg. while).  
They can be combined with other kind of statement, like  
if, if … else …, switch … and so on

• We will see them with the examples throughout the lessons.

Functions

16

• Very convenient to write functions in our macros

• Notice: myMacro() was used as a function in main in slide 9.

Functions — overloading

17

• Parameters are important. Can overload functions.

Functions — overloading

18

• Parameters are important. Can overload functions.

Defining new types

• The first step to define new types is to create a structures to
group elements (members)

A structure to define a new type,

complex numbers

An object of the new type.

Access the members re and im
using a dot.

19

Defining new types

• The first step to define new types is to create a structures to
group elements (members)

20

Classes
• Classes are structures on steroids: add functionalities (methods)

21

Can define all operations
that you want with the
members of the class

class “constructor”

Access the methods  
with the dot.

Initialise an object

Classes
• Classes are structures on steroids: add functionalities (methods)

22

Object oriented
• Classes have  

members (variables) and  
methods (functions)

• An instance of a class is an
object, created by a special
method, the constructor  
(can be overloaded).

• We can define very abstract
classes, and then add derived
classes that inherit from them  
to go more specific with  
what we need to do.

23

Vehicle

Bus Car Bike

Sedan

S-Wagon

Race car

Going back to ROOT
• ROOT is organised in classes: you will use objects and methods

• All classes begin with a “T” in ROOT (TGraph,TH1,TF1…)

• All methods begin with a capital letter (Draw(),GetX(),Derive()…)

• Classes inherited from more general (abstract) classes

24

https://root.cern.ch/doc/master/classTH1.html

https://root.cern.ch/doc/master/classTH1.html

Pointers

25

• Values are in memory, at a location (an address).

• & takes the address of value

• address now contains the memory-address of value

• *address accesses the content

value = 10

address

0x10804c0c0

0x10804c……

0x10804c……

0x10804c……

0x10804c……

Pointers and objects

26

• Can use pointers with objects: create with new

normal object

w is a pointer to an object

Methods cannot be called by ‘.’

 Use ‘->’, which is a shorthand for
‘(*w).cPrint()’

• Make explicit in code:  
ComplexNumber* w = new ComplexNumber(3,2);

• Should need also a destructor to delete, but for simple classes like that the
compiler takes care for us (important when you have pointers in the class,  
to free allocated memory).

Scope

27

• Every variables has a lifetime. It is defined only within a scope.

• It is determined by the { … }

Going back to ROOT

28

• Remember this?

• Put it on a macro and run it.

Stack and heap

29

• Text segment: code to be executed

• Initialised data segment: initialised
global variable

• Uninitialised data segment:
contains uninitialised global
variables

• The stack: contains the frames,
collections of all data associated
with one subprogram call (one
function)

• The heap: dynamic memory,
requested with “new”

Stack and heap

30

• Let’s try with pointers

• Without the pointer, the function func() is in the stack, and its scope ends
after closing the last “}”. The program, made just by this function, ends
and all variables inside the function are lost.

• “new” puts the object on the heap, escapes scope and the object survives.

C++ overview wrap-up

31

• Done a very quick (and incomplete) tour of C++.  
This is NOT sufficient C++ for real-life.

• Sufficient to follow the course. We will do very simple coding  
(might not be really C++ kosher…).

• Important to understand basic concepts, such that you are not
lost when navigating the ROOT class reference  
(eg. https://root.cern.ch/doc/master/classTH1.html)

• Writing macros will come with examples…

https://root.cern.ch/doc/master/classTH1.html

Some exercises

32

• Start ROOT. From the prompt look at the content of your folder, and look
at the content of the folder above.

• Write a macro to compute the integral of x2 between —1 and 1.  
Don’t use TF1, but compare your results with that of TF1.

• Compile the macro in ROOT (.L macro.C+) and run it.

• Explore the TF1 class. Look at the type 2, expression using variable x
with parameters. Using this, write a normal Gaussian function in the range
—5 and 5, set the mean to 0 and the std deviation to 1, and draw it.  
Get the value of the 2nd derivative at x = 0. Put all in a macro and run it.

• From the ROOT prompt: draw the Landau function.

https://root.cern.ch/doc/master/classTF1.html#F2
https://root.cern.ch/doc/master/classTF1.html#F2

