INtroduction to
ROOT: part 1

Mirco Dorigo
mirco.dorigo@ts.infn.it

LACD 2022-2023

INFN

TRIESTE

mailto:mirco.dorigo@ts.infn.it

https://root.cern.ch

CMS \F 7TeVL 51fb'Vs=8TeV,L=5.3fb"

Open-source analysis framework
with building blocks for:

1500

v Data processing

1000

v Data analysis " 4 Data
| —— S+BFit
------ B Fit Component
| [J+1o
| [+20
O | — l | I I — l | I I — l | I T — I | I T — l | —
110 120 130 140 150
m,, (GeV)

v Data storage A ——— LU a—
Physics Letters B 716 (2012) 30-61

500

S/(S+B) Weighted Events / 1.5 GeV

v Data visualisation

Widely use in high-energy physics (but not only):
> 1EB of data in ROOT format at CERN,
thousands of plots from ROQOT in papers...

Written mainly in C++ (bindings for Python available)

https://root.cern.ch

C++ and the interpreter

- C++ is a coding language to program (writing instructions for your pc to execute).
Here we won'’t learn C++: just very basic concepts to tell ROOT what to do.

C++ is a compiled language: a compiler translates ASCII files with code into
machine instructions. A compiler is gcc.

ROOT comes with an interpreter (CLING), don’t need to compile code to run it
it's not a C++ feature, its ROOT

- CLING features just in time (JIT) compilation

- CLNG provides an interactive C++ shell

- Very convenient: rapid prototype/check (drawback: learn sloppy C++...)

https://isocpp.org
https://gcc.gnu.org

| et’s start ROOT

- Jo start ROQOT just type root in your shell

[(mb-md-01:~ dorigo$ root

Welcome to ROOT 6.22/02 https://root.cern
(c) 1995-2020, The ROOT Team; conception: R. Brun, F. Rademakers
Built for macosx64 on Aug 17 2020, 12:46:52

From tags/v6-22-02@v6-22-02
Try '.help', '.demo', '.license', '.credits', '

. q to quit ROOT
. ? to obtain a list of command

. ! <command> (e.g. . !pwd) to access shell command

Can start ROOT also with flags (eg. root -1).
-1 (do not show the root banner)
-b (batch mode, no graphics)
—-g (run and quit)

A few examples below, try man root for full list.

Using the prompt

- As a simple calculator

Imb-md-01:~ dorigo$ root -1
[root [@] 2%3 + 10 - 36
(int) -20

[root [1] 2%3.

(double) 6.0000000
[root [2] pow(2,8)

(double) 256.00000
[root [3] sqrt(144)
(double) 12.000000

- Accessing complex functions (via TMath library)

[root [10] TMath: :Gaus(2)
(double) ©0.13533528

[root [11] exp(-0.5%2%2)
(double) ©0.13533528
root [12] §

- Can run also C++ instructions -
2 3 4

mb-md-01:~ dorigo$ rootl l+2 4+ 27 +2° + 207 + ...
root [@] double x = 0.127;

e (LAL) spne [V = 2455

root [2] double g_series = 0;

root [3] for(int i=0; i< N; ++i) g_series += pow(x,1);

root [4] cout << "Value after 20 iterations: " << g_series << endl;
Value after 20 iterations: 1.14548

root [5] fabs(g_series - (1./(1.-x)))

(double) ©.0000000

Using the prompt

- To access ROQOT classes

Imb-md-01:~ dorigo$ root -1

[root [@] TF1 f_sqrt("f","sqrt(x)",0,100);
[root [1] f_sqrt.Eval(9)

(double) 3.0000000

[root [2] f_sqrt.Eval(65.7)

(double) 8.1055537

'root [3] f_sqrt.Derivative(9.)

(double) 0.16666667

root [4] f_sqrt.Integral(4,16)

(double) 37.333333

'root [5] f_sqrt.Draw()

Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name cl

root [6] XX

File Edit View Options Tools Help

sqrt(x)

10

- Draw the function 1/ (1-x)

D
I|III|III|III|III|

0 10 20 30 40 50 60 70 80 90 100

RunNnNiNg a macro

The prompt is powerful, but not convenient to (re)run several lines of
code. Let’s put them in a “macro”, a bunch of lines of code in a ASCII file.

void myMacro(){

Go back and put in a macro the example of the geometrical series.

Notice: the name of the macro must be the same of the function

To run your macro, type root -1 myMacro.C, Or

mb-md-01:~ dorigo$ root -1
root [@] .x myMacro.C

Value after 20 iterations: 1.145475
root [1] |}

Compiling a macro
- Not only JIT compilation, ACLIC can make libraries from your code

- Just load the macro adding a ‘+’ at the end: .. myMacro.C+

lroot [0] .L myMacro.C+
Info in <TMacOSXSystem::ACLiC>: creating shared library /Users/dorigo/./myMacro_C.so
In file included from input_line_12:6:
././myMacro.C:7:44: use of undeclared identifier 'pow'
for(int i=0; i<iterations; ++i) result += pow(variable,i);

././myMacro.C:16:2: use of undeclared identifier 'cout’
cout << "Value after " << N << " iterations: " << g_series(x,N) << endl;

././myMacro.C:16:69: use of undeclared identifier 'endl’
couER<c NV alllieFaiiterss < <ENE I iEerationsE & <t s eriies (O N <o ndils:

- What’s the problem?

Need to be C++ compliant

Add some “headers”; make explicit the use of std (standard) library
F#include <math.h> &
E#include <iostream>

void myMacro(){

double x = 0.127;

int =

double g_series = 0;

for(int i=@; i< N; ++i) g_series += pow(x,1i);

std::cout << "Value after " << << " iterations: " << g_series << std::endl;

- Should be OK now

[mb-md-01:~ dorigo$ nano myMacro.C

(mb-md-01:~ dorigo$ root -1

[root [@] .L myMacro.C++

Info in <TMacOSXSystem: :ACLiC>: creating shared library /Users/dorigo/./myMacro_C.so
[root [1] myMacro()

Value after 20 iterations: 1.145475

root [2] B

Going full C++

ROQT libraries can be used to produce standalone compiled applications.
Need to make our macro C++ standard code, by adding the main function

#include <math.h>
#include <iostream>

void myMacro(){

double x = 0.127;

| = 20;

louble g_series = 0;

for(int 1=0; i< N ; ++1) g_series += pow(x,1);

std::cout << "Value after " << N << " iterations: " << g_series << std::endl;

Eint main(){

. myMacro();

g return 0;
e

- Compile and run the binary example.

mb-md-01:~ dorigo$ gcc -o example myMacro.C
mb-md-01:~ dorigo$./example

Value after 20 iterations: 1.145475
mb-md-01:~ dorigo$

Note: not using ROOT libraries here, otherwise: g++ -o example myMacro.C “root-config --cflags --1libs" 10

Language considerations

»+ Our code will be simple macros that can run on-the-fly, without
compilation. We can afford being sloppy with the language...

- Anyway, a minimum knowledge of C++ lbasics is needed.

-+ Wil have a look but you will mostly learn by copying examples.
If you are completely unfamiliar, there are many good tutorials
and guides on the web (e.g. http://www.cplusplus.com).

Let’'s do a quick tour

11

http://www.cplusplus.com

Fundamental types

#include <math.h>
#include <iostream>

Variable declaration:

void myMacro(){ every hame and every expression
Sl e Ol has a type that determines the
int N = 20; pumamnsrmamanessorllly - Operations that may be

double g_series : :
for(int i=@; i< N ; ++i) g_series += pow(x,i); performed on it.

std::cout << "Value after " << << " iterations: " << g_series << std::endl;

return;

}

C++ Fundamental Types Machine Independent Types

C++ type Size (bytes) ROOT types Size (bytes)
(unsigned) char 1 (U) Char t 1
(unsigned) short 2 (U) Short t 2
(unsigned) int 2 or 4 (U)Int t 4
(unsigned) long 4 or 8 (U)Long t 8
float ! Float t 4
double 8 (>=4) Double t 8
long double 16 (>=double)

12

Operators

#include <math.h>
#include <iostream>

void myMacro(){

double X = @.127;

1int = 29,

double g_seriges= 04
for(int i=0; i< N%EE ++i) g_serieg += ppoow(x,1i);

std: :coutf << P?Value after " << << " iterations: " << g_series << std::endl;

Make actions on the variables, functions, output..

13

(Some) operators

Arithmetic operators

C++ Purpose
SEAFaF Postincrement
++x Preincrement
X—- Postdecrement
--x Predecrement
+x Unary plus
- Unary minus
xX*y Multiply
x/y Divide
X%y Modulus
X+y Add
X—y Subtract
Pow (x,y) or TMath::Power (x,Vy) Exp
X =Yy Assignment
X += vy Updating assignment

Logic/comparison operators

C++ ROOT extension
false or 0 kFALSE
true or nonzero kTRUE
Ix

X && y

x ||y

x < \%

X <= %

X > \

X >= W%

X::y

x =y

14

Loops et al. (statements)

#include <math.h>
#include <iostream>

void myMacro(){

double x = 0.127;
int = 20;

double g_series = 0;
for(int i=0; i< N; ++1i) g_series += pow(x,1i);

std::cout << "Value after " << << " iterations: " << g_series << std::endl;

i— vim e
St |

'here are other types of loops (eg. while).

'hey can be combined with other Kind of statement, like
if,1f .. else .., switch ..and soon

We will see them with the examples throughout the lessons.

15

Functions

- Very convenient to write functions in our macros

#include <math.h>
#include <iostream>

Ldouble g_series(double variable, int iterations){

t double result=0;

t for(int 1=0; i<iterations; ++i) result += pow(variable,i);
f return result;

+H

void myMacro(){
GOl BIESE e =0 =525/

int = 20;
std::cout << "Value after " << << " jterations: " << g_series(x,N) << std::endl;

- Notice: myMacro () was used as a function in main in slide 9.

16

Functions — overloading

- Parameters are important. Can overload functions.

#include <iostream>

double g_series(double variable){

double result=0;

for(int i=@; i<3; ++1) result += pow(variable,i);
return result;

}

double g_series(double variable, int iterations){

double result=0;

oG =0 O I a I O RS PR R 8) BT 615 IS = 1 O WIaVa Tt @ DoY)
return result;

}
void myMacro(){

double x = 0.127;

int = 20;

std::cout << "Value after " << << " iterations: " << g_series(x,N) << std::endl;
std::cout << "Value after 3 fixed iterations: " << g_series(x) << std::endl;
return; ﬂaL%“

}

17

Functions — overloading

- Parameters are important. Can overload functions.

include <math.h>
#include <iostream>

double g_series(double variable){

double result=0;

for(int i=0; i<3; ++i) result += pow(variable,i);
return result;

}

double g_series(double variable, int iter:

mb-md—01 : ~ dorigo$ root -1 myMacro.C
double result=0; root [0]

FOR(ERE =0 IS tera tionsi s) EeSULEE Processing myMacro.C...
return result;

} Value after 20 iterations: 1.14548

Value after 3 fixed iterations: 1.14313
void myMacro(){ root [1] .q

double x = 0.127;

int N = 20;

std::cout << "Value after " << N << " iterations: " << g_series(x,N) << std::endl;
std::cout << "Value after 3 fixed iterations: " << g_series(x) << std::endl;

return;

18

Defining new types

The first step to define new types Is to create a structures to

group elements (members)

#include <iostream>

struct ComplexNumber{

void macro(){

ComplexNumber z;
z.re = 1.;
Ze M=

std::cout << "real part: " << z.re << endl;
std::cout << "imaginay part: " << z.im << endl;

A structure to define a new type,
complex numbers

An object of the new type.
Access the members re and im

using a dot.

19

Defining new types

- The first step to define new types is to create a structures to
group elements (members)

#include <iostream>

struct ComplexNumber{

double re;
double im;

i

void macro(){

ComplexNumber z;
z.re = 1.;
Z SiimE =3 .

root [@] .x macro.C
real part of z 1
imaginay part of z 3

std::cout << "real part: " << z.re << endl;
std::cout << "imaginay part: " << z.im << endl;

20

Classes

+ (Classes are structures on steroids: add functionalities (methods)

include <iostream>

CompiexNumber(tTc'u_mle x, double y) : re{x}, im{y} {} ClaSS “ConStFUCtor,,

double GetRe(){ return re; }
double GetIm(){ return im; }

Can define all operations
Vond cBrimE) :
std::cout << "Re: " moMogg "Im: " << im << std::endl; that you want with the
members of the class

void macro(){

ComplexNumber z(3,4); Initialise an ObjeCt

std::cout << "real part of z " << z.GetRe() << std::endl;

std::cout << "imaginary part of z " << z.GetIm() << std::endl; Access the methods

z.cPrint(); with the dot.

} 21

Classes

- Classes are structures on steroids: add functionalities (methods)

include <iostream>
class ComplexNumber{

double re;
double im;

public:
ComplexNumber(double x, double y) : re{x}, im{y} {}

double GetRe(){ return re; }
double GetIm(){ return im; }

void cPrint(){
std::cout << "Re: " << re << " " << "Im: "™ << im << std::

¥

}; root [@] .x macro.C

UL [oEnde (o 72 &

imaginary part of z 4
ComplexNumber z(3,4); Re: 3 Im: 4
std::cout << "real part of z " << z.GetRe() << std::endl;
std::cout << "imaginary part of z " << z.GetIm() << std::endl; root [1]

void macro(){

z.cPrint();

¥

Object oriented

- Classes have
members (variables) and
methods (functions)

- An instance of a class Is an
object, created by a special
method, the constructor
(can be overloaded).

o Lo

- We can define very abstract
classes, and then add derived q
| edan
classes that inherit from them -
to go more specific with
what we need to do.

23

Going back to

ROOT

ROOT is organised in classes: you will use objects and methods

All classes begin with a “T” in ROOT (TGraph, TH1, TF1..)

All methods begin with a capital letter (Draw () , GetX () , Derive ()..)

Classes inherited from more general (abstract) classes

TObject

T

https://root.cern.ch/doc/master/class TH1.html

TNamed

TAttLine

TAttFill

| TH1

TAttMarker

TH1C

TH1D

TH1F

TH1l

TH1K

TH1S

TH2

T

TProfile

TH3

TH2C

TH2D

TH2F

TH2I

TH2Poly

TH2S TH3C

TH3D

TH3F

TH3I

TH3S

T

TProfile2D

T

[

AN

TProfile2Poly

TGLTH3Composition

TProfile3D

24

https://root.cern.ch/doc/master/classTH1.html

Pointers

Values are in memory, at a location (an address). Memory layout

root [@] double value = 10.;
root [1] doublex address = &value;
root [2] cout << value << endl;

10

root [3] cout << &value << endl;

0x10804c0Oco

root [4] cout << address << endl;

0x10804c0Oco

root [5] cout << xaddress << endl;

10

root [6] I address — 0x10804c....
0x30804c....
Ox19P804c...

& takes the address of value

Ox1&804c...

value 10€—0x10804c0c0

address now contains the memory-address of value

*address accesses the content

25

Pointers and objects

- Can use pointers with objects: create with new

mb-md-01:~ dorigo$ root -1

root [@] .L macro.C

root [1] ComplexNumber z(1,2);

root [2] z.cPrint();

Rese =l imess 2

root [3] w = new ComplexNumber(3,2);
root [4] w.cPrint();

ROOT_prompt_4:1:2: member reference type 'ComplexNumber %' is a pointer;
did you mean to use '->'?
w.cPrint();

lroot [5] w->cPrint();
Re: 3 Im: 2

Make explicit in code:
ComplexNumber* w = new ComplexNumber (3,2);

Should need also a destructor to delete, but for simple classes like that the
compiler takes care for us (important when you have pointers in the class,
to free allocated memory).

26

SCOpPE
- Every variables has a lifetime. It is defined only within a scope.

- |tis determined by the { ... }

#include <math.h>
#include <iostream>

void myMacro){

double x = 0.127;
nt = 20 H
uble g_series = 0;

(@)

1
dou
for(int i=0; i< N ; ++1i) g_series += pow(x,1);

std::cout << "Value after " << << " ijterations: " << g_series << std::endl;

27

Going back to ROOT e

o0 0
File Edit View Options

Too

Is

(el

sqrt(x)

10

Remember this? :

root [@] TF1 f_sqrt("f","sqrt(x)",9,100);
root [1] f_sqrt.Eval(9)

|
IIII[IIIITIII'III'

(double) 3.0000000

root [2] f_sqrt.Draw()
Info in <TCanvas::MakeDefCanvas>: created default

Put It on a macro and run It.

vold func(){

f_sqrt("f","sqrt(x)",0,100);
Bcout << f_sqrt.Eval(9) << endl;
f_sqrt.Draw();

root [0]
Processing func.C...
3

Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name cl

root [1] |}

Stack and heap

Text segment: code to be executed

Initialised data segment: initialised
global variable

Uninitialised data segment:
contains uninitialised global
variables

The stack: contains the frames,
collections of all data associated
with one subprogram call (one
function)

The heap: dynamic memory,
requested with “new”

Args and env vars

Stack

Unused memory

Uninitialised data segment
Initialised data segment

Text Segment

First Function

Second Function

Third Function

29

Stack and heap

_jggEE5!5!!#llllllllﬂllllllllllllllllg?
y . . z sqrt(x)
- Let’s try with pointers y

void func(){

* f_sqrt = new ("f","sqrt(x)",0,100);
cout << f_sqrt->Eval(9) << endl;
f_sqrt->Draw();

s

root [0@]
Processing func.C...
3

Info in <TCanvas: :MakeDefCanvas>: created default TCanvas with name cl
root [1] |}

Without the pointer, the function func () Is in the stack, and its scope ends
after closing the last “}". The program, made just by this function, ends
and all variables inside the function are lost.

“new’ puts the object on the heap, escapes scope and the object survives.

30

C++ overview wrap-up

Done a very quick (and incomplete) tour of C++.
This is NOT sufficient C++ for real-life.

- Sufficient to follow the course. We will do very simple coding
(might not be really C++ kosher...).

Important to understand basic concepts, such that you are not
lost when navigating the ROOT class reference
(eg. https://root.cern.ch/doc/master/class TH1.html)

- Writing macros will come with examples...

31

https://root.cern.ch/doc/master/classTH1.html

Some exercises

Start ROOT. From the prompt look at the content of your folder, and look
at the content of the folder above.

- Write a macro to compute the integral of x2 between —1 and 1.
Don’t use TF1, but compare your results with that of TF1.

Compile the macro in ROOT (.. macro.C+) and run it.

Explore the TF1 class. Look at the type 2, expression using variable x

with parameters. Using this, write a normal Gaussian function in the range
—5 and b5, set the mean to O and the std deviation to 1, and draw It.
Get the value of the 2nd derivative at x = 0. Put all in a macro and run it.

From the ROOT prompt: draw the Landau function.

32

https://root.cern.ch/doc/master/classTF1.html#F2
https://root.cern.ch/doc/master/classTF1.html#F2

