
Introduction to  
ROOT: part 2

LACD 2022-2023
March 21st, 2023

Mirco Dorigo  
mirco.dorigo@ts.infn.it

mailto:mirco.dorigo@ts.infn.it

Previous lesson

2

• Done a very quick (and incomplete) tour of C++.  
NOT sufficient C++ for real-life.

• Sufficient to follow the course. We will do very simple coding  
(might not be really C++ kosher…).

• Important to understand basic concepts, such that you are not
lost when navigating the ROOT class reference  
(eg. https://root.cern.ch/doc/master/classTH1.html)

• Writing macros will come with examples…

https://root.cern.ch/doc/master/classTH1.html

Object oriented
• Classes have  

members (variables) and  
methods (functions)

• An instance of a class is an
object, created by a special
method, the constructor  
(can be overloaded).

• We can define very abstract
classes, and then add derived
classes that inherit from them  
to go more specific with  
what we need to do.

3

Vehicle

Bus Car Bike

Sedan

S-Wagon

Race car

Inheritance
• The capability of a class to derive properties and characteristics from another class.

one of the most important features of Object-Oriented Programming.

• With inheritance, new classes are created from the existing classes. The new class
created is called “derived class” or “child class” and the existing class is known as
the “base class” or “parent class”.

• The derived class inherits all the properties of the base class, without changing the
properties of base class and may add new features to its own. These new features
in the derived class will not affect the base class. The derived class is the
specialized class for the base class.

4

Some exercises

5

• Start ROOT. From the prompt look at the content of your folder, and look at
the content of the folder above.

• Write a macro to compute the integral of x2 between —1 and 1.  
Don’t use TF1, but compare your results with that of TF1.

• Compile the macro in ROOT (.L macro.C+) and run it.

• Explore the TF1 class. Look at the type 2, expression using variable x with
parameters. Using this, write a normal Gaussian function in the range —5
and 5, set the mean to 0 and the std deviation to 1, and draw it.  
Get the value of the 2nd derivative at x = 0. Put all in a macro and run it.

• From the ROOT prompt: draw the Landau function. Set some parameters
of your preference. Draw some random value from this distribution.

https://root.cern.ch/doc/master/classTF1.html#F2
https://root.cern.ch/doc/master/classTF1.html#F2

Let’s make a data analysis together

6

• We will learn ROOT by doing an analysis using (simulated)
data from a real experiment, Belle II.

• Our goal is to see the signal peak of a rare B decay
(branching fraction ~10-5):

• With ROOT we will optimise a selection to enhance our
signal and measure its yield in our data.

B0 → K+π−

Data from Belle II

7

• Collisions of electron-positron beams at  (7 + 4) GeV s ≃ 10.5794 GeV

Data from Belle II

8

Belle/BaBar B factories: e+e- →Υ(4S)→BB

BB threshold

Very clean environment!

�(bb)
�(hadrons)

= 0.28

118

• Collisions of electron-positron beams at
• e+e-→ hadrons produce ~25% of the times a →  

(7 + 4) GeV s ≃ 10.5794 GeV
Υ(4S) BB

Data from Belle II

9

4

The Belle II detector

(7 GeV) electrons e −

(4 GeV) positrons e +

1.5T Magnet

Particle ID:
Time-of-Propagation counter (barrel)
Aerogel RICH (fwd)

Vertex Detector
(pixels detector PXD and
silicon strips detector)

Electromagnetic Calorimeter ECL
(CsI(Tl) crystals)

Central Drift Chamber
(cylindrical wire chamber
with 14336 sense wires)

KL and muon detector
(resistive plates and

scintillators)

Filippo Dattola | Search for decays with an inclusive tagging method at the Belle II experimentB+ → K+νν̄

New detector with respect to the predecessor Belle.
• B mesons have a lifetime of ~1.5 ps*: we detect the decay products.

*how much does it travel in the detector?

Data from Belle II

10

CHAPTER 2. THE BELLE II DETECTOR AT THE SUPERKEKB COLLIDER

from 17� to 180�.
The single hit spatial resolution is about 100 µm and the dE/dx resolution is 11.9% for

an incident angle of 90�. Figure 2.8 shows a reconstructed cosmic-ray track in the CDC.
The typical transverse momentum resolution is �(pT)/p2T ⇡ 0.5%/[GeV/c].

Figure 2.8: Example of event display of a typical hadronic event at Belle II. Curved tracks are recon-
structed in the CDC.

2.4 Particle-identification detectors

Charged particle identification in the Belle II experiment is mainly performed by two de-
tectors: the time of propagation counter (TOP) and the aerogel ring-imaging Cherenkov
counter (ARICH). Both use Cherenkov light to identify charged particles. Particle-identification
information is also provided by the electromagnetic calorimeter (ECL) and the K0

L and
muon detector (KLM).

2.4.1 Time of propagation counter

The TOP counter is located in the barrel region. It measures the time of propagation
of the Cherenkov photons produced by charged particles undergoing internal reflection in
its quartz radiator. A three-dimensional image of the photon cone is reconstructed using
the correlation between hits positions in the x-y plane and time of propagation. The TOP
consists of 16 quartz bars mounted on the barrel at 1.2m radius from the interaction point.
Each bar is a photon radiator and has three main components (Fig.2.9): a long section
that acts as a Cherenkov radiator, where photons are generated and propagate towards
the bar end; a spherical mirror mounted on the forward end, which focuses the light and
reduces the chromatic error; and a prism, mounted on the backward end of the bar, which
collects and guides the photons to a photomultiplier.

The polar angular acceptance ranges from 31� to 128�. The single-photon time resolu-
tion is about 100 ps, providing a good separation of pions and kaons in the 0.4� 4GeV/c
momentum range (kaon identification efficiency is about 95%, pion fake rate is about 10%).
This time resolution is achieved with a micro-channel plate photo-multiplier specially de-
veloped for this purpose.

25

Data from Belle II

11

• We start from a txt file which contains the momenta of candidates kaon and
pion of selected events (as measured in the CMS of the system)

• candidates are searched for by computing the invariant mass
of the kaon-pion system: the signal should peak at the expected mass.

• In decays, the mesons in the CMS of , have both
an energy . Since this energy is well known, let’s exploit it in the
mass calculation, to have a better mass resolution:

Υ(4S)

B0 → K+π−

B0

Υ(4S) → BB B Υ(4S)
s/2

M = s/4 − | ⃗p *B |2

Our data

12

px*
K π
py* pz* px* py* pz*

Reading the data

13

• Let’s have a look at the macro readData.C

Avoid writing std::  
all the times

when using objects from  
the standard C++ library

if(condition)  
statement

Reading the data

14

• Nothing special …

Reading the data

15

• The interesting part

 while(condition)
statement

use cin operator

to exit the loop when reaching  
the end of the file

Reading the data

16

• Closing…

• The output is

Reading the data

17

• Download the material.

• Try the macro yourself. Try also to compile it and run.

Compute a momentum

18

• Look at computeP.C

A ROOT class to use  
3D vector

C++ standard libraries:
• vector to store a collection of a types,  

a container that can change in size
• numeric to use some convenient

algorithms

https://root.cern.ch/doc/master/classTVector3.html
https://www.cplusplus.com/reference/vector/vector/
https://www.cplusplus.com/reference/numeric/

Compute a momentum

19

• Look at computeP.C

Construct the object 
and use a method

Append an element at the end,  
the size of the vector grows.

Easily access any element of the vector

Compute a momentum and an average

20

• Just std-library show-off

Number of elements in the vector

Compute a momentum and an average

21

…and what do you expect???

Notice: m(B) = 5280 MeV/c2, m(K) = 494 MeV/c2, m(π) = 140 MeV/c2

Compute a momentum and an average

22

• The output

Look at the distribution

23

• Take histoP.C

ROOT class for histograms of double
variables, you will use it a lot

An empty space, to draw object on it

https://root.cern.ch/doc/master/classTH1D.html
https://root.cern.ch/doc/master/classTCanvas.html

Look at the distribution

24

• Take histoP.C

Can be easier than this?

Look at the distribution

25

• Can take a lot of information from the histogram

Make a canvas and draw it

Look at the distribution

26

• The output

Look at the distribution

27

• Plot the histogram yourself.

• What happens if:

‣ you use 40000 o 4 bins?

‣ you change the range to be 0.0–2.0 or 2.6–4.0 GeV/c?

• Let’s explore the histogram “live”

Saving data in a ROOT format

28

• Can save data (and any C++ object) in a compressed binary
form in a ROOT file.

• ROOT provides a tree-like data structure, extremely powerful
for fast access of huge amounts of data. ROOT files can
have a sub-structure: they can contain directories.

• The file is in a machine-independent compressed binary
format, including both data and their description

Data structures

29

• Simple model: many copies of the same linear data-structure  
(a “record”), ending up into a bidimensional data structure (a “table”).

• The tables are named “n-tuples”, as in mathematics,  
the records are called “events”, as in physics,  
and the column headers are called “variables”, as in computer science.

• ROOT provides more than n-tuples, “tree”: same data structure used in
OS to save files into folders that may contain other folders.

• A tree have “branches”: simple variables or more complex objects

• A variable is the end point of a branch, a “leaf” in the ROOT jargon.

Make a Tree

30

• Take makeTree.C

ROOT class for the TTree

Class for making a ROOT file

https://root.cern.ch/doc/master/classTTree.html
https://root.cern.ch/doc/master/classTFile.html

Make a Tree

31

• Here it is the structure of our tree:
Variables I want to put in, 

to be referenced in the tree

List of branches with their
leaves: here we put a leaf for
each branch, a very simple

structure

Constructor

Make a Tree

32

• Fill the tree

Make a Tree

33

• Save in a ROOT file. We can also store the histogram.

Make a Tree

34

• The output

• Try it and  
then explore 
the tree from 
TBrowser

Exercises

35

• We still have to see a signal peak…

• Let’s build the variables. Calculate the mass defined in slide 10, by using
the class TLorentzVector.

• Another useful variable is the difference between the B-candidate energy in
the CMS and half of the collision energy, . Calculate the
variable.

• Plot the distribution of and that of into two canvas.  
Is this what you expected? Describe the distributions (mean, standard dev…).

• Add the variable to your tree, and save the tree in a file, adding also the two
canvas showing the distributions.

M

ΔE = E* − s/2

M ΔE

https://root.cern.ch/doc/master/classTLorentzVector.html

