

Introduction to ROOT: final part

Mirco Dorigo mirco.dorigo@ts.infn.it

LACD 2022-2023 March 30th, 2023

Let's make the fit of the data

- We have seen the possible function to fit each component
- In data, we have 10% of the statistic of the simulation: we can afford also simpler model.
 We will use just one Gaussian function to model the signal and the mis-id component
- We will build a model that is the sum of the 3 components
- We will do it in a macro (although we could do it online too!)

```
#inciuae "ilegena.n
   #include "TStyle.h"
                             First part pretty standard now...
   using namespace std;
11
   void fitDeltaE(){
12
13
       const double min_de = -0.15;
       const double max_de = 0.15;
       //define an histogram to look at deltaE distribution
       TH1D* h_data = new TH1D("h_data",";#DeltaE [GeV]; Entries",40,min_de,max_de);
       //open file and take the tree
19
       TFile* file = TFile::Open("data.root");
       TTree* tree = (TTree*) file->Get("treeData");
21
22
       int tot_entries = tree->GetEntries();
       cout << "Total entries in the tree: " << tot_entries << endl;</pre>
24
       //link the variables with tree banches
       double B_de;
       double bkg_killer;
28
       tree->SetBranchAddress("B_de",&B_de);
29
       tree->SetBranchAddress("bkg_killer",&bkg_killer);
       //loop over the entries
       for(int iEntry; iEntry<tot_entries; ++iEntry){</pre>
34
           tree->GetEntry(iEntry);
           //skip all candidates below the optimal cut point
           if(bkg_killer<0.92) continue;</pre>
           //fill the histograms
           h_data->Fill(B_de);
42
```

<pre>45 //Let's define the PDF for the fit, using T 46 //https://root.cern.ch/doc/master/classTF1.</pre>	F1 html		
<pre>4/ 48 47 48 48 49 49 49 50 49 50 40 40 40 40 40 40 40 40 40 40 40 40 40</pre>	<pre>//The total function that describes our observed distribution TF1* pdf = new TF1("pdf","gaus(0)+gaus(3)+pol1(6)",min_de,max_de);</pre>		
<pre>51 //signal gauss, normalisation constant 52 pdf->SetParName (0, "N_{sig}"); 53 pdf->SetParameter(0, 100); 54 //signal gauss, mean fixed 55 pdf->SetParName (1, "#mu_{sig}"); 56 pdf->FixParameter(1, 0.); 57 //signal gauss, std dev fixed 58 pdf->SetParName (2, "#sigma_{sig}"); 59 pdf->FixParameter(2,0.015); 60 //mis-id gauss, normalisation constant 61 pdf->SetParName (3, "N_{misid}"); 62 pdf->SetParName (3, "N_{misid}"); 63 //mis-id gauss, mean fixed 64 pdf->SetParName (4, "#mu_{misid}"); 65 pdf->FixParameter(4,0.042); 66 //mis-id gauss, std dev fixed 67 pdf->SetParName (5, "#sigma_{misid}"); 68 pdf->FixParameter(5,0.015); 69 //background intercept and slope 70 pdf->SetParName (6, "p_{0}^{bkg}"); 71 pdf->SetParName (7, "p_{1}^{bkg}");</pre>	All settings on parameters. We fix parameters that we know already (from physics or simulation) to ease the work of the fit. The simplest the model, the better.		

• It's all happening here with a very simple line!

76	//and now fit, in the range definined by the histogram (option R)
77	<pre>//option N = not draw (otherwise it draws a canvas with a plot by default)</pre>
78	<pre>cout << "\n First fit, fixing all possible parameters: \n\n";</pre>
79	h_data->Fit("pdf","RN");

- But plenty of options to do whatever we need...
- See the method Fit() in the reference guide.
- Note: Fit () works also for TGraph (Errors).

Value of the fit function (x² here)

Algorithm used to obtain the results

First	t fit, fixir	ng 🚽ll possible	parameters:	mportant 1	to check this	s!
FCN=2	27.8948 FROM	MIGRAD STAT	US=CONVERGED	79 CALLS	80 TOTA	
EXT	PARAMETER	EDM=9.01287	e-23 STRATE	GY= 1 ER STEP	ROR MATRIX ACCUR FIRST	ATE
NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE	
1	N_{sig}	1.69595e+02	7.30230e+00	1.84336e-02	9.63651e-13	
2	#mu_{sig}	0.00000e+00	fixed			
3	#sigma_{si	} 1.50000e-02	fixed			
4	N_{misid}	4.55419e+01	5.18582e+00	1.26809e-02	-7.00404e-13	
5	#mu_{misid	4.20000e-02	fixed			
6	#sigma_{mi	id} 1.50000e-0	02 fixed			
7	p_{0}^{bkg	4.17642e+01	1.24868e+00	2.98156e-03	8.93671e-12	
8	p_{1}^{bkg	-7.71166e+01	1.19357e+01	3.07475e-02	-1.15545e-13	
		An and the second s	الم من من من من من المنظلية و المنظلية والم المن من م			

The fit results

Can play with parameters, to obtain more information from data

• Can try also different fit methods, so in the last iteration we ask to fit with a binned-likelihood function, instead of the default χ^2

Let's try to release the signal std dev			
FCN=27.5849 FROM MIGRAD STATUS=CONVERGED 110 CALLS 111 TOTAL EDM=4.36718e-08 STRATEGY= 1 ERROR MATRIX ACCURATE			
EXT PARAMETER STEP FIRST			
NO. NAME VALUE ERROR SIZE DERIVATIVE			
1 N_{sig} 1.66753e+02 8.83060e+00 1.79772e-02 -3.65160e-05			
2 #mu_{sig} 0.00000e+00 fixed			
3 #sigma_{sig} <u>1.54440e-02 8.09241e-04</u> 1.50628e-06 -3.72362e-01			
4 N_{misid} 4.45076e+01 5.52977e+00 1.26128e-02 -3.30067e-06			
5 #mu_{misid} 4.20000e-02 fixed			
6 #sigma_{misid} 1.50000e-02 fixed			
7 p_{0}^{bkg} 4.16391e+01 1.26990e+00 2.96553e-03 -8.98781e-05			
8 p_{1}^{bkg} -7.64094e+01 1.20082e+01 3.05822e-02 -9.12170e-06			
Update the mis-id std dev And release also the mis-id mean and do a binned-likelihood fit, instead of a chi2			
and do a binned-likelihood fit, instead of a chi2			
and do a binned-likelihood fit, instead of a chi2 Info in <tcanvas::makedefcanvas>: created default TCanvas with name c1 FCN=13.7672 FROM MIGRAD STATUS=CONVERGED 148 CALLS 149 TOTAL EDM=5.36238e-08 STRATEGY= 1 ERROR MATRIX ACCURATE</tcanvas::makedefcanvas>			
and do a binned-likelihood fit, instead of a chi2 Info in <tcanvas::makedefcanvas>: created default TCanvas with name c1 FCN=13.7672 FROM MIGRAD STATUS=CONVERGED 148 CALLS 149 TOTAL EDM=5.36238e-08 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST</tcanvas::makedefcanvas>			
and do a binned-likelihood fit, instead of a chi2 Info in <tcanvas::makedefcanvas>: created default TCanvas with name c1 FCN=13.7672 FROM MIGRAD STATUS=CONVERGED 148 CALLS 149 TOTAL EDM=5.36238e-08 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE</tcanvas::makedefcanvas>			
and do a binned-likelihood fit, instead of a chi2 Info in <tcanvas::makedefcanvas>: created default TCanvas with name c1 FCN=13.7672 FROM MIGRAD STATUS=CONVERGED 148 CALLS 149 TOTAL EDM=5.36238e-08 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 N_{sig} 1.66476e+02 8.69389e+00 1.78671e-02 -3.46486e-06</tcanvas::makedefcanvas>			
and do a binned-likelihood fit, instead of a chi2 Info in <tcenvas::makedefcanvas>: created default TCanvas with name c1 FCN=13.7672 FROM MIGRAD STATUS=CONVERGED 148 CALLS 149 TOTAL EDM=5.36238e-08 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 N_{sig} 1.66476e+02 8.69389e+00 1.78671e-02 -3.46486e-06 2 #mu_{sig} 0.00000e+00 fixed</tcenvas::makedefcanvas>			
<pre>And refease also the mis-id mean and do a binned-likelihood fit, instead of a chi2 Info in <tcanvas::makedefcanvas>: created default TCanvas with name c1 FCN=13.7672 FROM MIGRAD STATUS=CONVERGED 148 CALLS 149 TOTAL EDM=5.36238e-08 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 N_{sig} 1.66476e+02 8.69389e+00 1.78671e-02 -3.46486e-06 2 #mu_{sig} 0.00000e+00 fixed 3 #sigma_{sig} 1.56044e-02 8.92083e-04 1.50313e-06 3.01092e-02</tcanvas::makedefcanvas></pre>			
and do a binned-likelihood fit, instead of a chi2 Info in <tcanvas::makedefcanvas>: created default TCanvas with name c1 FCN=13.7672 FROM MIGRAD STATUS=CONVERGED 148 CALLS 149 TOTAL EDM=5.36238e-08 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 N_{sig} 1.66476e+02 8.69389e+00 1.78671e-02 -3.46486e-06 2 #mu_{sig} 0.00000e+00 fixed 3 #sigma_{sig} 1.56044e-02 8.92083e-04 1.50313e-06 3.01092e-02 4 N_{misid} 4.26560e+01 5.59930e+00 1.22986e-02 1.88504e-05</tcanvas::makedefcanvas>			
and do a binned-likelihood fit, instead of a chi2 Info in <tcanvas::makedefcanvas>: created default TCanvas with name c1 FCN=13.7672 FROM MIGRAD STATUS=CONVERGED 148 CALLS 149 TOTAL EDM=5.36238e-08 STRATEGY= 1 EXT PARAMETER STEP NO. NAME VALUE ERROR SIZE DERIVATIVE 1 N_{sig} 1.66476e+02 8.69389e+00 2 #mu_{sig} 0.00000e+00 fixed 3 #sigma_{sig} 1.56044e-02 8.92083e-04 1.50313e-06 3.01092e-02 4 N_{misid} 4.26560e+01 5.59930e+00 1.22986e-02 1.88504e-05 5 #mu_{misid} 4.37828e-02 2.89346e-03</tcanvas::makedefcanvas>			
<pre>and do a binned-likelihood fit, instead of a chi2 Info in <tcanvas::makedefcanvas>: created default TCanvas with name c1 FCN=13.7672 FROM MIGRAD STATUS=CONVERGED 148 CALLS 149 TOTAL EDM=5.36238e-08 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 N_{sig} 1.66476e+02 8.69389e+00 1.78671e-02 -3.46486e-06 2 #mu_{sig} 0.0000e+00 fixed 3 #sigma_{sig} 1.56044e-02 8.92083e-04 1.50313e-06 3.01092e-02 4 N_{misid} 4.26560e+01 5.59930e+00 1.22986e-02 1.88504e-05 5 #mu_{misid} 4.37828e-02 2.89346e-03 6.25797e-06 6.01764e-02 6 #sigma_{misid} 1.54440e-02 fixed</tcanvas::makedefcanvas></pre>			
and do a binned-likelihood fit, instead of a chi2 Info in <tcanvas::makedefcanvas>: created default TCanvas with name c1 FCN=13.7672 FROM MIGRAD STATUS=CONVERGED 148 CALLS 149 TOTAL EDM=5.36238e-08 STRATEGY= 1 EXT PARAMETER STEP NO. NAME VALUE ERROR SIZE DERIVATIVE 1 N_{sig} 1.66476e+02 8.69389e+00 1.78671e-02 -3.46486e-06 2 #mu_{sig} 0.00000e+00 fixed 3 #sigma_{sig} 1.56044e-02 8.92083e-04 1.50313e-06 3.01092e-02 4 N_{misid} 4.26560e+01 5.59930e+00 1.22986e-02 5 #mu_{misid} 4.37828e-02 2.89346e-03 6.25797e-06 6.01764e-02 6.01764e-02 6 #sigma_{misid} 1.54440e-02 fixed 7 p_{0}^{0}*bkg} 4.22155e+01 1.34014e+00 2.98857e-03 1.67546e-04</tcanvas::makedefcanvas>			

2nd fit results, releasing the sigma for the signal

3rd fit results, releasing also mis-id mean. Use the binned likelihood here.

```
//draw the result
93
        gStyle->SetOptStat(0);
94
        gStyle->SetOptFit(1111);
95
        TCanvas* c1 = new TCanvas("c1", "c1", 600, 600);
96
97
        h_data->SetMinimum(0);
98
        h_data->SetMarkerColor(kBlack);
99
        h_data->SetMarkerStyle(8);
100
        h_data->SetMarkerSize(0.8);
101
        h_data->SetLineColor(kBlack);
102
03
        h_data->Draw("err");
104
        //just to draw each component separately...
06
        //the signal
107
        TF1* pdf_sig = new TF1("pdf_sig","gaus",min_de,max_de);
08
        pdf_sig->SetParameters(pdf->GetParameter(0),
109
                                pdf->GetParameter(1),
110
                                pdf->GetParameter(2));
111
        pdf_sig->SetLineColor(kRed);
12
        pdf_sig->SetLineWidth(2);
13
        pdf_sig->Draw("same");
114
15
        //the mis-id B->pipi
116
        TF1* pdf_misid = new TF1("pdf_misid","gaus",min_de,max_de);
117
        pdf_misid->SetParameters(pdf->GetParameter(3),
18
                                  pdf->GetParameter(4),
19
                                      ->CotDoromotor(5))
```

Just nice drawing of the results...

We made it!

Calculate S and its uncertainty

- We didn't compute the uncertainty on the signal yield yet!
- We used a gauss pdf for the signal, its integral (divided by the bin width *w*) gives the signal yield:

pdf =
$$Ne^{-\frac{(x-\mu)^2}{2\sigma^2}} \rightarrow S = N\sqrt{2\pi\sigma/w}$$

• To get the uncertainty on S, need to propagate the uncertainty from the fit on N and σ , considering their correlation.

Calculate S and its uncertainty

• Little addition in fitDeltaE.C

```
//option L = binned likelihood fit
//Use FitResultPtr to retreive all information about the fit
//Need to add the option S
TFitResultPtr fit = h_data->Fit("pdf","LRS");
//now we can get covariance matrix. We will store in a TMatrixDSym
TMatrixDSym cov = fit->GetCovarianceMatrix();
cov.Print();
```

Now you have all information

Calculate S and its uncertainty

From this fit model,		
Candidate in data histogram:	2777	
Total candidates from fit :	2777.01	
Signal B->Kpi candidates :	868.211	
Mis-id B->pipi candidates :	220.176	
Background candidates :	1688.62	
=======================================	=======================================	
Let's calculate the final r	esult with its uncertainty	
The measurement of the signal yield is 868 +- 47		
Corr(Nsig, sigma) = -0.511		

FCN (x² or likelihood) scan

Confidence regions

Confidence regions

//Let's have a look: make 2D confidence regions
//1sigma contour: region enclosing 68.3% probability
TGraph* cont1sigma = new TGraph(50);
fit->Contour(0,2,cont1sigma,0.683);
cont1sigma->SetLineWidth(2);
cont1sigma->SetLineColor(kBlue+4);

//2sigma contour: region enclosing 95.5% probability
TGraph* cont2sigma = new TGraph(50);
fit->Contour(0,2,cont2sigma,0.955);
cont2sigma->SetLineStyle(2);
cont2sigma->SetLineWidth(2);
cont2sigma->SetLineColor(kBlue+2);

//3sigma contour: region enclosing 99.7% probability
TGraph* cont3sigma = new TGraph(50);
fit->Contour(0,2,cont3sigma,0.997);
cont3sigma->SetLineStyle(3);
cont3sigma->SetLineWidth(2);
cont3sigma->SetLineColor(kBlue);

```
//Draw all together, need to use TMultiGraph
TCanvas* c2 = new TCanvas("c2","c2",600,600);
TMultiGraph *mg = new TMultiGraph();
mg->SetTitle("Confidence regions for #sigma_{sig} vs N_{sig}; N_{sig}; #sigma_{sig} [Gev/c^{2}]");
mg->Add(cont1sigma,"1");
mg->Add(cont2sigma,"1");
mg->Add(cont3sigma,"1");
mg->Draw("a");
```

We made it!

- Congratulations for completing your (1st?) analysis with ROOT
- Hope this tour with a real-life example was useful (and also more interesting than a standard tutorial).
- Take your time to revisit all material and try it yourself.
 For questions, doubts, curiosity don't hesitate to contact me.
 We can organise a Q&A session too.
- If you are into data analysis at a new particle physics experiment, come to talk about opportunities in Belle II.

Exercises

- Write a macro that fit each single component of the sample (signal, mis-id, background).
- Try to fit also the M distribution of each component separately using simulation. Note: the background model is not easy, can discard it at the moment.
- If you were to fit the M distribution in data, do you think you can determine both signal and mis-id separately?

More exercises

- Make the likelihood scan for $\sigma_{
 m sig}$
- Check "a posteriori" that the cut bkg_killer>0.92 is the optimal cut. What happen if you apply a tighter cut (>0.98) or a looser cut (>0.8)?
- Couldn't we make the optimisation of the cut by fitting the data directly?

Exercises (3rd lesson)

- 1. Compute the signal efficiency, $\epsilon = S(\text{selected})/S(\text{total})$, for each cut bkg_killer. Draw a graph to show the efficiency as a function of the cut value, drawing also the error on the efficiency (that you need to calculate): use the class <u>TGraphErrors</u>.
- 2. What do you expect for the M distribution of the mis-id background? Draw it, by subtracting from the total distribution the signal and that of the non-B background (like we did for ΔE). Compare its distribution with that of the signal.
- 3. There is a variable K_pid in the tuples that gives the probability of a candidate kaon to be a real kaon. Draw its distribution: compare that of the signal (isSig==1) with that of the mis-id background (isSig!=1 && isBkg!=1).
- 4. Instead of using DrawNormalized(), scale to 1 the histogram integral using the <u>Scale()</u> method of TH1 (check the integral value) and normal Draw() method.

Exercises (3rd lesson)

- 5. Find a cut value for K_pid, by maximising the $S/\sqrt{S+B}$, where S and B are the signal and mis-id background in the ΔE region [-60,60] MeV.
- 6. Apply the full selection to the simulation and data samples (data.root), and draw the resulting distributions of M and ΔE .

NB: make sure all numbers and text in plots are well visible, by adjusting size of fonts, labels...

Exercise 1.

1. Compute the signal efficiency, $\epsilon = S(\text{selected})/S(\text{total})$, for each cut bkg_killer. Draw a graph to show the efficiency as a function of the cut value, drawing also the error on the efficiency (that you need to calculate): use the class <u>TGraphErrors</u>.

We will take optimiseSelection.C from the lesson and modify it.

```
#include "Riostream.h"
   #include "TFile.h"
   #include "TTree.h"
  #include "TCanvas.h"
   #include "TH1D.h"
   #include "TGraph.h"
   using namespace std;
9
   void calculateEff(){
10
11
       //define the number of cuts to probe,
12
       //the range and the steps width
13
       const int ncuts = 15;
14
       double max_range = 1;
15
       double min_range = 0.7;
16
       double delta_cut = (max_range_min_range)/ncuts;
17
18
       //define the graph of the efficiency,
19
       //using TGraphErrors becasue I aslo want to
20
       //show the error on the efficiency
21
       TGraphErrors* g_eff = new TGraphErrors(ncuts);
                                                               TGraphErrors class
22
23
       //Open file and take the tree
24
       TFile* file = TFile::Open("./simulation.root");
25
       TTree* tree = (TTree*) file->Get("simTree");
26
```

```
27
        int tot_entries = tree->GetEntries("isBkg!=1");
28
        cout << "Total signal entries in the tree: " << tot_entries << endl;
29
30
                                                               Signal only,
        for(int icut=0; icut<ncuts; ++icut){</pre>
31
                                                               denominator of the efficiency
32
            //define the cut value to probe
33
            double cutval = min_range + icut*delta_cut;
            //put the cut in a string
            TString cutString = Form("bkg_killer > %.4f && isBkg!=1", cutval);
37
38
             //and retrieve the entries, directly from the tree, passing the selection
39
            double Nsig = tree->GetEntries(cutString);
40
41
             //calculate the efficiency and the error
42
            double eff = Nsig/tot_entries;
43
                                                                      efficiency calculation
             double err_eff = sqrt(eff*(1.-eff)/tot_entries);
44
45
             //iust a check
46
            printf("cut value = \%.3f, eff = \%.4f + \%.4f \n", cutval, eff, err_eff);
47
48
49
             and a function of the second of the second
             g_eff->SetPoint(icut,cutval,eff);
                                                            Set the point and the error in the graph
             g_eff->SetPointError(icut,0,err_eff);
51
52
53
        }
```

```
54
       printf("\n The signal efficiency for bkg_killer>0.92 is %.3f \n",
55
       g_eff->Eval(0.92));
56
57
       //and draw the graph
58
       TCanvas* c = new TCanvas("c", "c", 800, 600);
59
       g_eff->SetMarkerStyle(8);
60
       g_eff->SetMarkerSize(0.2);
61
                                                              Draw the result
       g_eff->GetXaxis()->SetTitle("cut value");
62
       g_eff->GetYaxis()->SetTitle("signal efficiency");
63
       g_eff->Draw("APL");
64
65
       return;
66
67 }
```

The output

Processing calculateEff.C			
Total signal entries in the tree: 21456			
cut value = 0.700, eff = 0.8680 +- 0.0023			
cut value = 0.720, eff = 0.8524 +- 0.0024			
cut value = 0.740, eff = 0.8330 +- 0.0025			
cut value = 0.760, eff = 0.8120 +- 0.0027			
cut value = 0.780, eff = 0.7871 +- 0.0028			
cut value = 0.800, eff = 0.7598 +- 0.0029			
cut value = 0.820, eff = 0.7318 +- 0.0030			
cut value = 0.840, eff = 0.6988 +- 0.0031			
cut value = 0.860, eff = 0.6628 +- 0.0032			
cut value = 0.880, eff = 0.6246 +- 0.0033			
cut value = 0.900, eff = 0.5761 +- 0.0034			
cut value = 0.920, eff = 0.5197 +- 0.0034			
cut value = 0.940, eff = 0.4504 +- 0.0034			
cut value = 0.960, eff = 0.3578 +- 0.0033			
cut value = 0.980, eff = 0.2223 +- 0.0028			
The signal efficiency for bkg_killer>0.92 is 0.520			
root [1]			

Exercise 2

2. What do you expect for the M distribution of the mis-id background? Draw it, by subtracting from the total distribution the signal and that of the non-B background (like we did for ΔE). Compare its distribution with that of the signal.

We will take inspectB.C from the lesson and modify it.

We will take this occasion to revisit Sumw2 ()

```
#include "Riostream.h"
2 #include "TFile.h"
3 #include "TTree.h"
 4 #include "TCanvas.h"
  #include "TH1D.h"
   #include "TLegend.h"
 7
   using namespace std;
   void compareM(){
10
11
       //open file and take the tree
12
       TFile* file = TFile::Open("simulation.root");
13
       TTree* tree = (TTree*) file->Get("simTree");
       int tot_entries = tree->GetEntries();
16
       cout << "Total entries in the tree: " << tot_entries << endl;
17
19
       //link the variables with tree banches
       double mass, bkg_killer;
20
       int bkg, sig;
21
22
       tree->SetBranchAddress("B_m",&mass);
       tree->SetBranchAddress("isBkg",&bkg);
23
       tree->SetBranchAddress("isSig",&sig);
24
       tree->SetBranchAddress("bkg_killer",&bkg_killer);
26
```


Not an issue... Warning in <TH1D::Sumw2>: Sum of squares of weights structure already created

tree->GetEntry(iEntry);

//fill the histograms

h_m_tot->Fill(mass);

if(bkg_killer<0.92) continue;</pre>

if(bkg) h_m_bkg->Fill(mass);

else if(sig) h_m_sig->Fill(mass);

//skip all candidates below the optimal cut point

//loop over the entries 42 for(int iEntry; iEntry<tot_entries; ++iEntry){</pre> 43 44 45 46 47 48 49 50 51 52 53 54 55 }

Fill the histograms, just for the events that pass the cut

•Let's inspect just a bin (here 24): print out its content error for all histograms.

•Make then the operations to obtain the mass histogram for mis-id backgrd.

• Check the result. We expect:

64

$$N_{\text{unkn.}} = N_{\text{tot}} - N_{\text{bkg}} - N_{\text{sig}}$$

$$\sigma_{\text{unkn.}} = \sqrt{\sigma_{\text{tot}}^2 + \sigma_{\text{bkg}}^2 + \sigma_{\text{sig}}^2} = \sqrt{N_{\text{tot}} + N_{\text{bkg}} + N_{\text{sig}}}$$

33

• Check the result. We expect:

$$N_{\text{unkn.}} = N_{\text{tot}} - N_{\text{bkg}} - N_{\text{sig}}$$
$$\sigma_{\text{unkn.}} = \sqrt{\sigma_{\text{tot}}^2 + \sigma_{\text{bkg}}^2 + \sigma_{\text{sig}}^2} = \sqrt{N_{\text{tot}} + N_{\text{bkg}} + N_{\text{sig}}}$$

From original histograms: Total histo, bin 24 content: 2432.0 +- 49.3 Signal histo, bin 24 content: 1667.0 +- 40.8 Backgr histo, bin 24 content: 326.0 +- 18.1 The derived histogram: B->pipi histo, bin 24 content: 439.0 +- 66.5 B->pipi histo, sqrt(bin 24 content): 21.0 B->pipi histo, from error propagation: 66.5

Let's take out the command Sumw2 ()

$$N_{\text{unkn.}} = N_{\text{tot}} - N_{\text{bkg}} - N_{\text{sig}}$$
$$\sigma_{\text{unkn.}} = \sqrt{\sigma_{\text{tot}}^2 + \sigma_{\text{bkg}}^2 + \sigma_{\text{sig}}^2} = \sqrt{N_{\text{tot}} + N_{\text{bkg}} + N_{\text{sig}}}$$

From original histograms: Total histo, bin 24 content: 2432.0 +- 49.3 Signal histo, bin 24 content: 1667.0 +- 40.8 Backgr histo, bin 24 content: 326.0 +- 18.1 The derived histogram: B->pipi histo, bin 24 content: 439.0 +- 21.0 B->pipi histo, sqrt(bin 24 content): 21.0 B->pipi histo, from error propagation: 66.5

Just drawings...

77	//draw the histograms
78	TCanvas* c1 = new TCanvas("c1","c1",1200,800);
79	c1->Divide(2,2);
80	c1->cd(1);
81	h_m_tot->GetYaxis()->SetRangeUser(0,2600);
82	h_m_tot->Draw();
83	c1->cd(2);
84	h_m_bkg->GetYaxis()->SetRangeUser(0,2600);
85	h_m_bkg->SetMarkerColor(kBlue);
86	h_m_bkg->SetLineColor(kBlue);
87	h_m_bkg->Draw();
88	c1->cd(3);
89	h_m_sig->GetYaxis()->SetRangeUser(0,2600);
90	h_m_sig->SetMarkerColor(kRed);
91	h_m_sig->SetLineColor(kRed);
92	h_m_sig->Draw();
93	c1->cd(4);
94	h_m_unknown->GetYaxis()->SetRangeUser(0,2600);
95	h_m_unknown->SetMarkerColor(kMagenta);
96	h_m_unknown->SetLineColor(kMagenta);
97	h_m_unknown->Draw();

Breaking down Exercise 2 and 4

4. Instead of using DrawNormalized(), scale to 1 the histogram integral using the <u>Scale()</u> method of TH1 (check the integral value) and normal Draw() method.

Breaking down Exercise 2 and 4

Draw the result

116	
117	TCanvas* c2 = new TCanvas("c2","c2",600,800);
118	c2->Divide(1,2);
119	c2->cd(1);
120	h_m_unknown->Draw(" <mark>histo</mark> ");
121	h_m_sig->Draw(<mark>"histo same");</mark>
122	
123	//put a legend
124	TLegend* leg = new TLegend(0.2,0.65,0.5,0.8);
125	leg->AddEntry(h_m_sig, <mark>"Signal","L");</mark>
126	leg->AddEntry(h_m_unknown,"Unknown backgr.","L");
127	leg->Draw();
128	
129	c2->cd(2);
130	h ratio->Draw():

Breaking dov

Zoom in the core of the distributions, to check the flatness of the ratio.

To quantify it, we can make a fit of the point with a constant and see the probability of the χ^2 . Here it is (ridiculously) high...

Fit Panel	
Data Set: TH1D::ratio	▼
Fit Function	
Type: Predef-1D 💌 pol0	▼
Operation	
Nop C Add C NormAd	dd 🔿 Conv
pol0	
Selected:	
pol0	Set Parameters
General Minimization	
- Fit Settings	
Method	
Chi-square 🔻	User-Defined
Linear fit	Bobust: 0.95
Fit Options	
□ Integral	🗌 Use range
Best errors	Improve fit results
All weights = 1	Add to list
Empty bins, weights=1	Use Gradient
Draw Options	
	Advanced
	<u>A</u> uvanceu
X 5.27 📥	: 5.29
,	
	Depet
	<u>Reset</u>
TH1D::ratio LIB Minuit MIGRAD	Itr: 0 Prn: DEF