
QSTR Modelling of Acute toxicities on fathead minnow 

(Pimephales promelas) by counterpropagation neural networks

Pierluigi Barbieri*+, Nadege Piclino, Andrzej Szymoszek*, Mariana Novic*, Marian Vracko*, Emilio Benfenatio

*Kemijski inštitut Ljubljana, Hajdrihova 19, 1001 Ljubljana, p.p. 3430, Slovenija
o Istituto di Ricerche Farmacologiche “Mario Negri”, Via Eritrea 62, 20157 Milano, Italy

+on leave from Dip. Scienze Chimiche, Universita’ di Trieste, Via Giorgieri 1, 34127 Trieste, Italy



Introduction

• Risk assessment of chemicals requires evaluation of:

– Exposure to chemicals, their dispersion in  in the environment (environmental 

monitoring)

– Hazard/toxicity of chemicals towards humans and/or living beings in the 

environment.

• Experimental studies to determine hazard of chemicals are expensive and up to now 

performed only for a small number of chemical compounds (few thousands in 

comparison with the millions registered in the CAS registry) so:

• Quantitative Structure Activity Relationships studies for modelling toxicities (QSTR) can 

help.



Introduction: experimental

The toxicity towards Fathead Minnow (Pimephales promelas) – a freshwater fish 

from north America - has been tested [1] for

•562 compounds representing a cross section of industrial organic chemicals [2],

and

•Toxicity has been reported as median lethal concentrations LC50 (mmol/l) after

96 hours exposure

1. C.L. Russom, S.P. Brandbury, S.J. Broderius, D.E. Hammermeister, D.A. Drummond, Environmental

Toxicology and Chemistry, 16 (1997) 948-967.

2. G.D. Veith, B. Greenwood, R.S. Hunter, G.I. Niemi, R. Regal, Chemosphere, 17 (1988) 1617-1630 .



Target values: the toxicities

In order to obtain an index directly proportional to the toxicity of the chemicals,  96 h LC50s 

were transformed into 

Tox = (log10(1/LC50)).

Classes of Tox can be identifyed by rounding the values of Tox, round(Tox) ranging from -3 to 6.
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562 chemical structures

•562 compounds: different chemical classes, aromatic, non aromatic, heteroatoms,

•MW 32:488 AUs.

– rather wide base for building up a model with some ambition of generality,

– need of checking for subgroups to be modelled separately and for ouliers.

Our approach follows the framework of Quantitative Structure Toxicity Relationships (QSTR).

•The chemical structures can be represented as molecular descriptors which are numbers extracted
by a well defined algorithm from a representation of the molecules.

159 Topological, physicochemical and electronic descriptors based on 2D graphs [3] were considered:

– Size descriptors (molecular volume, molecular weight and van der Waals volume);

– Shape indices which account for the ramification degree, the oblong character, etc.;

– Connectivity indices describing degree of branching and cyclization in the compounds;

– Information contents descriptors;

– Lipophilicity descriptor, Electronegativity descriptor;

– Electrotopological State indices (electron density at each atom or hybrid group);

Experimental log Poct/water has been considered as a descriptor as well.

3. SciQSAR, SciVision, 200 Wheleer Rd, Burlington, Ma 101803 USA



• P-nitrophenol.mol

• 15 15  0  0  0                 1 V2000

• 0.7133    0.7255   -0.0126 C   0  0  0  0  0

• 0.7437   -0.7117   -0.0096 C   0  0  0  0  0

• -0.4565   -1.3849   -0.0126 C   0  0  0  0  0

• -1.6987   -0.6617   -0.0137 C   0  0  0  0  0

• -1.7265    0.7450   -0.0094 C   0  0  0  0  0

• -0.5009    1.4165   -0.0114 C   0  0  0  0  0

• -2.9010    1.4308   -0.0058 O   0  0  0  0  0

• 2.0267   -1.4274   -0.0036 N   0  3  0  0  0

• 2.0719   -2.5700   -0.0065 O   0  0  0  0  0

• 3.2884   -0.6963    0.0154 O   0  5  0  0  0

• 1.6532    1.3000   -0.0146 H   0  0  0  0  0

• -0.4854   -2.4862   -0.0118 H   0  0  0  0  0

• -2.6490   -1.2200   -0.0152 H   0  0  0  0  0

• -0.4932    2.5189   -0.0115 H   0  0  0  0  0

• -2.6902    2.3790   -0.0064 H   0  0  0  0  0

• 1  2  2  0  0  0

• 1  6  1  0  0  0

• 1 11  1  0  0  0

• 2  3  1  0  0  0

• 2  8  1  0  0  0

• 3  4  2  0  0  0

• 3 12  1  0  0  0

• 4  5  1  0  0  0

• 4 13  1  0  0  0

• 5  6  2  0  0  0

• 5  7  1  0  0  0

• 6 14  1  0  0  0

• 7 15  1  0  0  0

• 8  9  2  0  0  0

• 8 10  1  0  0  0
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Topological picture of p-nitrophenol

Representations of a molecule



Each of the 562 molecules is described by a vector of 160 descriptors and for it a toxicity value has been 

measured. 

The computational tool used for exploratory data analysis is Artificial Neural Network known as Self 

Organizing Map (SOM) or as Kohonen neural network [4].

The Kohonen neural network is a rectangular array of neurons (I.e.“prototype” vectors – for us dim. 160-

chosen to represent the input data). In our case study we decided to use a square (30x30) network.

In the beginning (initialization), “prototype” vectors approximate poorly the data.

Then we present all objects/molecules to this network and start the learning (training phase).     

This is a non-linear algorithm.

At the end of training, the neurons are arranged

in such a way that the similar  neurons are close

to each other.

160-D VECTOR

STRUCTURE

Exploratory data analysis: Kohonen NN

REPRESENTING

4. T. Kohonen "Self Organizing Maps", Springer Verlag, 1995.

30 x 30 neurons

30 x 30 neurons

WINNING NEURON



Aim: to recognize compounds presenting structures very different from the others, thus being hard to model.

Outliers detection by SOM has been studied in [5]: two types of outliers are known:

Type 1) compounds having as “best matching neuron” an “outlying neuron”, that is a “prototype” vector very

different from other “prototype” vectors (degree of similarity can be measured as euclidean distance);

Type 2) compounds having big Quantization Errors: the “distance” between the compound and its best matching

neuron is very high.

Graphic tool that shows heterogenehity of neurons

is unified distance matrix: it gives a measure of

dissimilarity between neurons in 160-D input space,

 Identify outlying neurons (outliers type1) .
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Quantization errors (outliers type2) can be highlighted by boxplots.

5. A. Muñoz, J. Muruzábal, Neurocomputing, 18 (1998) 33-60



• Some outliers (type I) are highlighted;

• Data have been splitted in two sets:

– the training set for building the model (371compounds=66%of 562), 

– the test set for evaluating the performance of the model on unknown c. (191 c.=33%), 

The following precautions were adopted so that the neural network for predicting toxicities will be trained 

and will learn from structures as much heterogeneous as possible:

• the map has been gridded into 25 submaps and 66% of compounds were taken in each submap;  

• outlying compounds (I and II type) were put into the training set; 

• most toxic compounds were put into the training set.

Distribution of 562 chemicals on the 

Kohonen network; colorbar indicates degree

of similarity between neurons.



Modelling: counter propagation neural network

• Counter propagation neural network [6] provide an architecture that allows to connect Kohonen

layers accounting for the molecular structures to a layer of neurons accounting for the toxicities of

molecules;

• During training (i.e. iterative presentation of the 371 input data to the network) the network learns

how to relate structural information to toxicity values.

• This Quantitative Structure-Toxicity Relationship is a model.

• If a network is trained very long, it models very well the training data, but probably it models also

the noise associated to experimental values (toxicities) and it looses generality (performs badly

with unknown/test data). This is the problem of overtraining.

• In our case Networks have been trained with different number of epochs for learning (1000, 

2000,…,5000), in order to verify if longer or shorter learning produces network giving better 

prediction.  The network trained for 2000 epochs performs best.  

training of cp-nn (2000 epochs)    

 b0 b1 r R2

 training set (371 compounds) 0.036 0.961 0.983 0.97

test set (191 compounds) 0.117 0.869 0.877 0.77

6. J. Zupan, J. Gasteiger " Neural Networks in Chemistry and Drug Design", John Wiley, 1999.



• The plot of predicted vs target values for the test set in figure shows that few 

compounds are badly modelled, so that relatively low predictions corresponds to high 

experimental values. 

The two compounds badly modelled are: Benzoylacetone

Allyl methacrylate

Test set, 191 compounds
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Which descriptors are relevant? Hunting correlations...

• Planes of the network representing descriptors and toxicity can be displayed [7], 

and  they can be ordered in a matrix so to display planes of highly correlated 

descriptors close to each other [8]. 

• In order to show correlations between descriptors, the weights of neurons (the

layers of the counterpropagation network) are considered as variables: a

Kohonen map is built for:

abs(cov(weights))

7. J.Himberg, J.Ahola, E.Alhoniemi, J.Vesanto and O.Simula "The Self-Organizing Map as a Tool in Knowledge Engineering", in 

Nikhil R. (Editor), "Pattern Recognition in Soft Computing Paradigm", World Scientific Publishing, (2001) 38-65.

8. J.Vesanto, J.Ahola, "Hunting for Correlations in Data Using the Self-Organizing Map", in H.Bothe, E.Oja, E.Massad, C.Haefke

(Editors),"Proceeding of the International ICSC Congress on Computational Intelligence Methods and Applications", ICSC 

Academic Press (1999), 279-285



Hunting correlations...

Hmax   numHBd SHsOH k0 SHBint2   24-SssNH SHssNH NHBint6 NHBint5 38 - SsF   28 - SdsN 19-SssssC 15 - StsC 14 - SddC 10 - StCH 

Hmaxpos  34 - SsOH   Redundancy  NHBint2   SHBint3   13-SsssCH 26 - StN 52-SdssS NHBint10 48 - SsSH 

     NHBint4      dxvp3 dxvp4 dxvp5 xvch8  xvch7 SHBint5 53-SddssS 

   SHBint4   MAX(ES)  31-SddsN dxv2  dxvp7 dxvp6  xvch5 NHBint7 xvch9 NHBint8 48 - SsSH 

Qsv          dxvp8     xvch3 53-SddssS SHtCH 

Qv     SHCsats     dxvp10 dxvp9  Wt knotpv  30 - SsssN SHBint9 

    9-SssCH2  7 - SsCH3   dx0     dxp10   8 - SdCH2 NHBint9 

  Hmin          dxp9 xvp10   50-SssS  76 - SsI 

   LOG(POW)    k3    dxp8  xvch10  16 - SdssC   75-SssssSn 

VCE      ka3    xp10  xvp9    NHBint3 SHBint6 

     nelem    46-SdsssP  dxp7     49 - SdS    

  MMES SMVE   Gmin  36 - SssO   xp9  xvp8 xvp5 SHCsatu   SHtvin 

             xvp7 xvp6    21-SsNH2 

numHBa    dxv1  dx1   dxp6 xvch6    xvpc4   SHsNH2 

  35 - SdO          xp8   xvp4     

Gmax   dxv0   totop   xp7 tets2   xvp3    55 - SsCl 

         dxp5   idw      SHCHnX 

sumdelI    knotp  dxp4 nrings    W  xv2      

          xp6      MES  VES 

si    dxp3       idc      phia 

nclass  dx2      xp5     xv1    ka2 

      SHvin 11-SdsCH         Qs  k2 

    Wp                

sumI xpc4  xp4     SHother  idcbar  ka1     LgP 

     TTs(4) Simp       k1   xv0     

TTd(4) Val     k0    x1          

xp3 Pf x2     Info content   idwbar   nvx   x0   fw       Tox 

 

A “second order” Kohonen map displaying 160 descriptors + Tox:



The descriptors being more similar to Tox... 

… are 

LGP=Experimental LogP (lipophylicity index)

fw = weight of the free compound (steric i.)

xv0 = valence index of Kier and Hall (electronic i.) 

This is in agreement with the approach of Hansch [9], according to whom biological responses 

depends additively on lipophylic, steric and electronic properties of molecules.

9. C.Hansh, A.J. Leo “Substituents constants for correlation analysis in chemistry and biology”, Wiley, New York, 1979



Conclusions

• A MUltistep Modelling Procedure based on Self-Organization has been outlined and

applied to find relationships between descriptors of chemical structures and toxicity on

the fish Pimephales promelas.

• Methods for outliers detections were implemented so to improve the split of the original

data in training and test set.

• Quantitative methods for finding (local) correlations between descriptors, up to now

applied only to Kohonen neural networks, have been applied to counter propagation NN.

• The test on 191 compounds not used to train the model shows that the model is robust

(R2
test=0.77), and that 2D descriptors performs well.

.
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