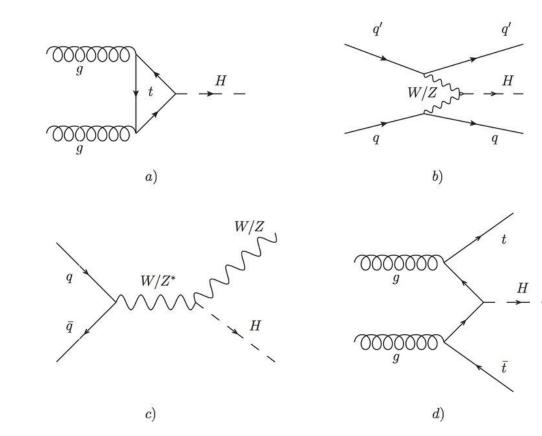
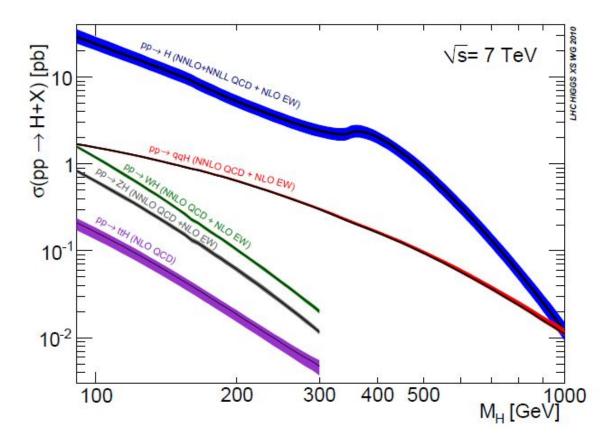

Dynamics of EW & Strong Interactions

Part 4 - Dr. Michele Pinamonti (INFN Trieste) Lecture 6 - Trieste, 17/01/2023

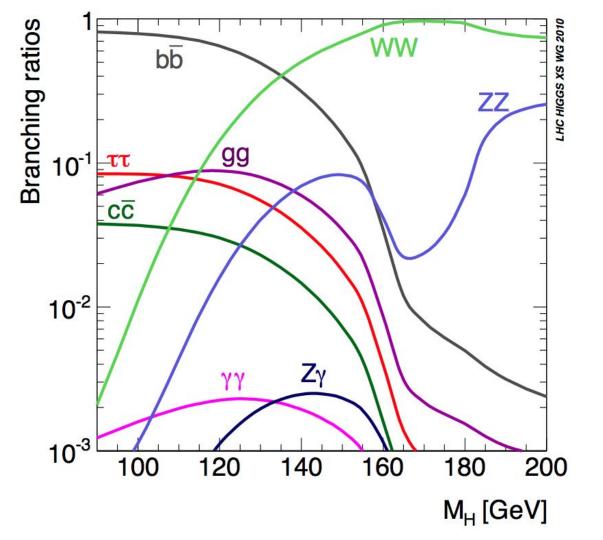
HEP data analysis (continued)

The Higgs field

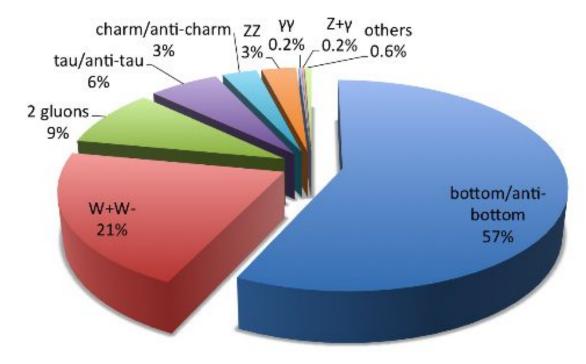

- Reminder of Higgs mechanism:
 - Higgs field added to SM lagrangian:
 - Higgs potential shape \Rightarrow ground state \neq 0:
 - \circ ~ covariant derivative acting on ϕ
 - \rightarrow mass terms for EW gauge bosons
 - \rightarrow Higgs-boson coupling with gauge bosons proportional to their mass squared
 - Yukawa coupling added between φ and fermions
 - \rightarrow mass terms for fermions
 - \rightarrow Higgs-boson coupling with fermions proportional to their mass


Searching and measuring the Higgs boson

- Higgs boson couplings and mass only depend on 1 extra free parameter w.r.t. Higgs-less SM
 - ⇒ for a given Higgs mass, all production and decay properties of Higgs boson fixed (for a minimal Higgs sector, i.e. single-doublet model)
- Two main consequences:
 - before its observation, very clear where to look at (also thanks to EW precision fits)
 - once Higgs observed and measured, overconstrained system ⇒ deviations from precise predictions = evidence for new physics


Producing Higgs bosons

Producing Higgs bosons



Higgs decays

Higgs decays

Decays of a 125 GeV Standard-Model Higgs boson

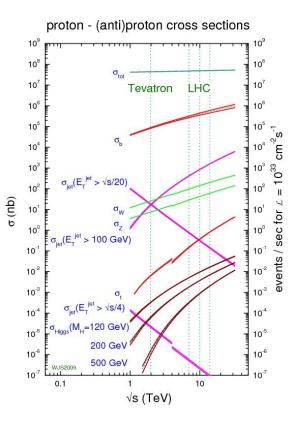


Analysis steps

- 1. Define what we want to measure
- 2. Choose a "final state" or "channel"
- 3. Identification of **background** processes
- 4. Define an "event selection" (and an "object selection")
- 5. Look at the "observable":

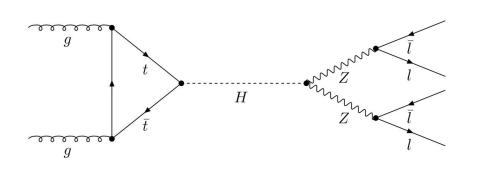
number of events, invariant mass, asymmetry...

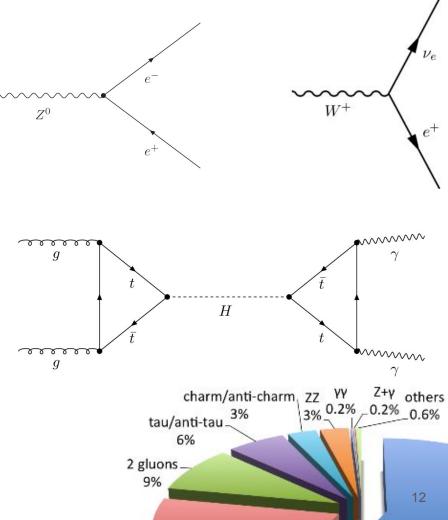
- usually build histogram(s)
- 6. **Extract** the measurement & it's uncertainty
 - from the comparison of data histograms with a model (built from theory, assumptions, simulation...)
 - statistical interpretation


MC simulation

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

Matrix Element Parton Shower & **Hadronisation Detector** Simulation


Why choosing a certain decay channel?

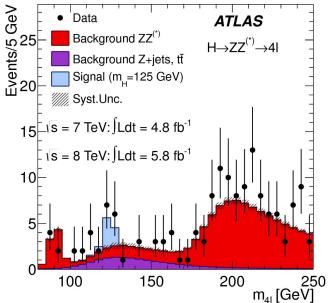

- Two aspects to consider:
 - how easy to distinguish target process from background processes?
 - all-hadronic final states hard to see just because of huge hadronic background
 - presence of high-energy lepton(s) / photon(s)
 preferred
 - how easy to measure particles in final state?
 - electrons, muons and photons measured with much better accuracy than jets, taus or *neutrinos*

Choosing decay channels

- W and Z:
 - leptonic decay channels preferred at hadron colliders (*l* = e or μ):
- Higgs boson best channels to look at: • $H \rightarrow ZZ^* \rightarrow 4\ell$
 - \circ H \rightarrow $\gamma\gamma$

Which backgrounds and how do they contribute?

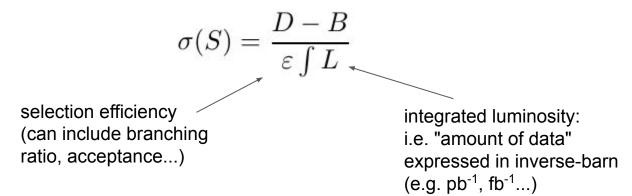
- Once final state / channel chosen, need to evaluate backgrounds
 - background = any process that can produce similar final state, i.e. mimic signal (if cross-section large enough)
- How to evaluate background?
 - theory predictions
 - Monte Carlo simulation
 - "data-driven" methods, based on known difference between signal and background process events (from first principles, simulation...)
- What to do with background predictions?
 - will need to "subtract" prediction from observed data:
 Signal^{measured} = Data^{observed} Background^{estimated}


Why event selection?

- Compute **statistical uncertainty** of measurement:
 - **suppose measuring** N^{signal} = S (produced at LHC, in a certain dataset, in a certain channel e.g. resonance decay mode)
 - can extract S by counting N^{data} = D = S + B (B = N^{background})
 - statistical uncertainty $\sigma_{s} = \sigma_{D} = \sqrt{D} = \sqrt{(S + B)}$
 - relative stat. uncertainty $\sigma_s/S = \sqrt{(S + B)/S}$
 - minimize rel. stat. unc. means maximizing S/ $\sqrt{(S + B)}$:
 - if B is large \Rightarrow bad stat. precision, even with large D
 - if $B \rightarrow 0 \Rightarrow$ maximal stat. precision, with given D
- Applying selection to minimize B while keeping large expected S:
 - e.g. maximizing S/ $\sqrt{(S + B)}$
- With event selection (<u>efficiency</u> ε < 1) need to modify equation to extract S:
 S₀ = 1/ε · (D B)

Observables and histograms

- In general, measurements most of the times extracted from histograms:
 - essentially counted number of events in each bin of one (or more than one) observable
 - observable means measured quantity: p_T of a reconstructed particle or jet, invariant mass, angular separation, ...
 - observed data in each bin compared with predicted background and predicted signal
- Why needs predicted signal?
 - \circ remind:


$$S_0 = 1/\epsilon \cdot (D - B)$$

15

Measuring cross-sections

Production cross section of certain process can be measured as:

- Can measure differential cross sections
 - in bins of certain observable(s)

Uncertainties in cross-section measurements

• Keep in mind the master formula:

$$\sigma(S) = \frac{D - B}{\varepsilon \int L}$$

- Statistical uncertainty:
 - affecting D (as seen before)
- Systematic uncertainties:
 - what? every uncertainty that is not a statistical uncertainty
 - affecting all the other ingredients: B, $\epsilon = S/S_0$, $\int L$

Systematic uncertainties

- Can distinguish between:
 - experimental systematics:
 - integrated luminosity
 - detector resolution
 - detector calibration
 - identification and reconstruction efficiency for particles and jets
 - theory & modelling systematics:
 - background predicted cross-section(s)
 - branching ratios
 - prediction of shapes of observables used for event selection
 - for both signal and background
 - via MC simulation
 - precision in predicting energy and angular spectra, jet multiplicities etc.
 → crucial

(reminder from last time)

Uncertainties in MC simulation

- Typical systematic uncertainties affecting a NLO+PS MC prediction:
 - ME:
 - scale variations (see later)
 - PDF uncertainties
 - ME+PS:
 - matching scheme / matching scale
 - **PS**:
 - choice of algorithm ordering, recoil...
 - scale variations / effective α_s
 - Hadronization:
 - choice of hadronization model
 - uncertainties on hadronization parameters (e.g. in fragmentation functions)
 - All:
 - colour reconnection model
 - theory parameters: masses and couplings (such as α_s)

Other types of measurements

- At HEP experiments not measuring just cross sections:
 - discovery significance
 - exclusion limits
 - \circ ratio of cross-sections / decay branching ratios
 - \circ $\,$ mass and width of resonances and particles $\,$
 - angular production asymmetries
 - polarizations and spin correlations (via angular distributions of decay products)
 - \circ $\,$ extraction of parameters from cross-section measurements $\,$

(e.g. α_s , PDFs, fragmentation function parameters...)

Bonus exercise

• Madgraph MC simulation: <u>https://launchpad.net/mg5amcnlo</u>

End of lectures