Exercise 0.1. Consider the operator Tf(z) = Lf (1),
a Show that it is a bounded operator of L?(R;) into itself.

b Find the spectrum of 7. In particular, check if there are eigenvalues and if there are
eigenvalues of finite multiplicity.

c Establish if T' is a compact operator.

Exercise 0.2. Consider a Banach space X and its dual space X’.

a Prove that the o(X’, X) topology is the weakest topology in X’ which makes the maps
X' s 2" — (x,2") v/ continuous for all z € X.

b Show that for dim X = +o00 also dim X’ = +00

¢ Show that for dim X = +oco the closure of S := {2’ € X' : ||2/||x» = 1} for the o(X’, X)
topology coincides with {2’ € X' : ||2/||x» < 1}.

d Find a sequence (f,) in L*°([0, 1]) with || ful[zee([0,1)) = 1 converging weakly to 0 for the
a(L>([0,1]), L' ([0, 1])) topology.
f Show that if X is a Hilbert space and (x,) is an orthonormal sequence in X, then x,, — 0

in X.

e Find a sequence (f,,) in L>°([0, 1]) with [|fu||pec(j0,1)) = 1 and dist(fn, Vo-1) = 1 for V,
the space spanned by f1,...f, such that it is not true that f, converges weakly to 0
for the o(L>°(]0,1]), L([0,1])) topology.
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