Image Processing for Physicists

Prof. Pierre Thibault pthibault@units.it

Maximum likelihood principle

Overview

- Likelihood
- Bayes' theorem
- Application
 - ML Classification
 - Deconvolution
 - Image registration

What is likelihood?

 A likelihood function is a probability distribution expressed as a function of its parameters, and evaluated for a given set of observations. probability of x given x : p(x | a) likelihood of a given observations X: $l(\alpha|x) = p(x|\alpha)$

$$l(\alpha | x)$$
 is not the probability that the model is true
(or a given α)

Maximum likelihood Can easily be misunderstood...

Bayes' theorem

$$p(A \land B) = p(A|B)p(B)$$

$$= p(B|A)p(A)$$

$$p(B|A) = p(A|B)p(B)$$

$$p(A)$$

$$p(A|X) = p(X|X)p(A)$$

$$p(X|X) = p(X|X)p(A)$$

$$p(X|X) = p(X|X)p(X)$$

$$p(X) = p(X|X)p(X)$$

Maximum likelihood & optimization

- Goal: find the parameters that explain best the observed data.
 - \rightarrow Maximum likelihood maximize l(x|x)

or

 \rightarrow Maximum a posteriori (MAP)

maximize $l(\alpha(x) p(\alpha))$ additional knowledge about α

• Very often more convenient to minimize -log().

Example: Gaussian model
1) A single variable:
$$p(x|\mu, \sigma^{2}) = \frac{1}{\sqrt{2\pi \sigma^{2}}} \exp\left(-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right)$$

b) Many independent variables with the same distribution:
 $p(x_{1}, x_{2}, x_{3}, ..., x_{N} | \mu, \sigma^{2}) = \frac{1}{(2\pi\sigma^{2})^{N_{2}}} \exp\left(-\frac{\sum_{i} (x_{i} \cdot \mu)^{2}}{2\sigma^{2}}\right)$
 $= l(\mu, \sigma^{2} | x_{1}, x_{2}, x_{3}, ..., x_{N})$
 $I = ln(l) = \frac{N}{2} ln(2\pi\sigma^{2}) + \frac{1}{\sigma^{2}} \sum_{i} (x_{i} - \mu)^{2}$
 $\frac{\partial l}{\partial \sigma^{2}} = 0$
 $\frac{\partial l}{\partial \tau} = 0$
 $\frac{\partial l}{\partial \tau} = 0$
 $\frac{\partial l}{\partial \tau} = \frac{1}{2} \sum_{i} (x_{i} - \mu)^{2}$
 $\frac{\partial l}{\partial \sigma^{2}} = 0$
 $\frac{\partial r}{\partial \tau} = \frac{1}{2} \sum_{i} (x_{i} - \mu)^{2}$
 $\frac{\partial r}{\partial \tau} = 0$
 $\frac{\partial r}{\partial \tau} = \frac{1}{2} \sum_{i} (x_{i} - \mu)^{2}$
 $\frac{\partial r}{\partial \tau} = 0$
 $\frac{\partial r}{\partial \tau} = \frac{1}{2} \sum_{i} (x_{i} - \mu)^{2}$
 $\frac{\partial r}{\partial \tau} = 0$
 $\frac{\partial r}{\partial \tau} = \frac{1}{2} \sum_{i} (x_{i} - \mu)^{2}$
 $\frac{\partial r}{\partial \tau} = 0$
 $\frac{\partial r}{\partial \tau} = \frac{1}{2} \sum_{i} (x_{i} - \mu)^{2}$
 $\frac{\partial r}{\partial \tau} = 0$
 $\frac{\partial r}{\partial \tau} = \frac{1}{2} \sum_{i} (x_{i} - \mu)^{2}$
 $\frac{\partial r}{\partial \tau} = \frac{1}{2} \sum_{i} (x_{i} - \mu)^{2}$

Example: Gaussian model
3)
$$M$$
 variables not identically distributed and mit independent
 $p(\vec{x} \mid \vec{\mu}, C) = \frac{1}{(2\pi)^{\frac{N}{2}}\sqrt{|C|}} \exp\left(-\frac{1}{2}(x-\mu)^{T}C^{-1}(x-\mu)\right)$
means $\int L_{covariance} \frac{1}{(2\pi)^{\frac{N}{2}}\sqrt{|C|}} \exp\left(-\frac{1}{2}(x-\mu)^{T}C^{-1}(x-\mu)\right)$
 $TF N$ measurements are made:
 $p(\vec{x}^{(i)}, \vec{x}^{(i)}, ..., \vec{x}^{(N)} \mid \vec{\mu}, C) = \frac{1}{(2\pi)^{\frac{N}{2}}} \left|C\right|^{\frac{N}{2}} \exp\left(-\frac{1}{2}\sum_{i}(x^{(i)}-\mu)^{T}C^{-1}(x^{(i)}-\mu)\right)$
 $l = p$, $L = -lnl$, $\frac{\partial l}{\partial \vec{\mu}} = 0$ $\frac{\partial l}{\partial C} = 0$
 $\Rightarrow \vec{\mu} = -\frac{1}{N}\sum_{i}^{T}\vec{x}^{(i)}$ $C_{ln} = -\frac{1}{N}\sum_{i}^{T}(x_{e}^{(i)}-\mu_{e})(x_{m}^{(i)}-\mu_{m})$

stack of images

Image classification

Landsat 8-9 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)

Bands	Wavelength (micrometers)	Resolution (meters)
Band 1 - Coastal aerosol	0.43-0.45	30
Band 2 - Blue	0.45-0.51 B	30
Band 3 - Green	0.53-0.59 G	30
Band 4 - Red	0.64-0.67 P	30
Band 5 - Near Infrared (NIR)	0.85-0.88	30
Band 6 - SWIR 1	1.57-1.65	30
Band 7 - SWIR 2	2.11-2.29	30
Band 8 - Panchromatic	0.50-0.68	15
Band 9 - Cirrus	1.36-1.38	30
Band 10 - Thermal Infrared (TIRS) 1	10.6-11.19	100
Band 11 - Thermal Infrared (TIRS) 2	11.50-12.51	100

Image classification - a kind of segmentation!

Supervised Maximum Likelihood Classification 1. Training: for each class, evaluate the probability distribution of the measurements.

Image classification

Supervised Maximum Likelihood Classification

2. Classification: for each pixel, compute the probability that it belongs to each class. The highest probability wins. //ikelihood ! p(pixel | class) l(class | pixel)

e.g.
Pwater
$$(\vec{x}) / \vec{w}_{water}$$
, $(water) = (...) exp(-\frac{1}{2}(\vec{x} - \vec{\mu}_{water})^T C_{water}^{-1}(\vec{x} - \vec{\mu}_{water}))$
= find minimum

$$\begin{aligned} \hat{L} &= -\ln(p_{water}) = \frac{1}{2}\ln|C| + \frac{1}{2}(\vec{x} - \vec{\mu}_w)^T C'(\vec{x} - \vec{\mu}_w) & \text{of this expression} \\ & \text{depending on class} \\ & \text{water ? field ?, foust ?...} \end{aligned}$$

Image deconvolution revisited Image convolved with well-known PSF in the presence of noise. $g(\vec{r}) = (h * f)(\vec{r}) + n(\vec{r})$ PSF fue imagetouvier space: $(\neg(\vec{u}) = | + (\vec{u}) + N(\vec{u})$ Often good assumption: N(vi) is uncorrelated (white noise) N (a) noise: normal distribution シル

Image deconvolution revisited
Probability of masuring
$$G(\vec{a})$$

 $p(G(\vec{a}) | F(\vec{a})) \propto exp\left(\frac{1}{2} \sum_{u} \frac{1}{|N(\vec{u})|^2} | F(\vec{u}) H(\vec{u}) - G(\vec{u}) |^2\right)$
 H
 $l(F(\vec{a}) | G(\vec{u}))$
Maximum likelihood ? $-b_n(l) = \frac{1}{2} \sum_{u} \frac{1}{|N(\vec{u})|^2} | F(\vec{u}) | H(\vec{u}) - G(\vec{u}) |^2$
 $minimum w.r.t. F(\vec{u}) ? F = G/H$
 $not good! noise amplification
 $division by small numbers,...$
Schutim ; include prior knowledge. Here impose power spectrum on F
 $p(F(\vec{u})) \propto exp\left(-\frac{1}{2} \sum_{u} \frac{|F(u)|^2}{S(u)}\right) = S: power$$

Image deconvolution revisited
Maximum a posteriari
maximize
$$l(F(G)p(F))$$
 instead of $l(F|G)$
(Bayes)
 $f'(F(\vec{a})) = f - hr(p(F))$
 $= \frac{1}{2} \int_{u} \frac{1}{|N(u)|^2} |F(\vec{a}) H(\vec{u}) - G(\vec{u})|^2 + \frac{1}{2} \int_{u} \frac{|F(u)|^2}{S(u)}$
minimize w.r.t. $F(\vec{a})$
 $\frac{2f'}{2F^*} = \sigma = \frac{1}{|N(u)|^2} (F(\vec{u}) H(\hat{u}) - G(\vec{u})) H^*(\vec{u}) + \frac{F(\vec{u})}{S(u)}$
 $F(\vec{u}) \frac{|H(u)|^2}{|N(u)|^2} - \frac{G(\vec{u})}{|N(u)|^2} + \frac{F(\vec{u})}{S(u)} = \sigma$
 $F(\vec{u}) = \frac{H^*(\vec{u})}{(|H(u)|^2 + |N|_{\infty}^2)} G(\vec{u})$ Wiener filter
Maximum Likelihood

What is image registration?

- Geometric transformation of multiple images to make them match
- Transformations can be rigid or non-rigid
 - Rigid: translation, scale, rotation
 - Non-rigid: shear, perspective, ...
- Optimization can be done on the transformed images or on a set of control points.
- In almost all cases, interpolation is required to remap images on a regular grid.

Control points for photo stitching

Source: http://hugin.sourceforge.net/tutorials/two-photos/en.shtml

Image registration

Medical image registration

Source: http://www.cs.dartmouth.edu/farid/Hany_Farid/

Source: Boerkema et al. Photosynth. Res. 102, 189-196 (2009)

Single particle analysis

Source: Nield et al. Nat. Struct. Bio. 7, 44-47 (2000)

Image registration

image stacking registration combined by registration with averaging

Summary

- Likelihood maximization: finding parameters that best fit an observation.
 - Powerful, but:
 - Can overfit, can misinterpret
- Broad range of applications:
 - Classification, registration, enhancements, ...