Image Processing for Physicists

Prof. Pierre Thibault pthibault@units.it

Computed tomography: medical application

 $M₂$

Overview

- \rightarrow \bullet X-ray interaction with matter
- \sim Medical CT systems
	- Image quality:
		- Artifacts

– Dose

X-ray interaction with matter

- Photons interact with charged particles
- X-rays: mainly with atomic electrons
- Two main interaction types:

- Scattering \longrightarrow photon "bouncing" on alons - Absorption -> photon energy is converted inside atom
medical imaging:
combined effect: attenuation
combined effect: attenuation
huger, there

X-ray interaction with matter

Atomic cross-sectionsTotal cross-section of an atom: $\sigma_{tot} = \sigma_{pe} + \sigma_{ch} + \sigma_{inch}$ σ_{pe} : photo-electric \rightarrow absorption Ved: coherent scattering (Thompson scattering) σ_{incoh} incoherent scattering (Compton scattering) σ units of area

X-ray interaction with matter

Beer-Lambert law & linear attenuation

$$
\oint_{\mathcal{L}} p_{hot} \text{ from } f |_{ux} \text{ (if } p_{hot} \text{ is } \rho_{\text{at}} \text{ is } \rho_{\text{at
$$

X-ray interaction with matter Energy dependence

 $NIST$

Hounsfield units

Linear attenuation renormalized with water

gray value in cur image = $\mu - \mu_{water}$. 1000 HU $\mu_{\rm v}$ ater

Hounsfield units

- Mathematical methods developed by Allan M. Cormack in the early 60s.
- First clinically useful CT instrument developed by Godfrey Hounsfield in the early 70s.
- Cormack & Hounsfield were awarded the Nobel prize in 1979 "for the development of computer assisted tomography".

Photo from the Nobel Foundation archive. Allan M. Cormack

Photo from the Nobel Foundation archive. Godfrey N. Hounsfield

- 3rd generation scanners:
	- 1 X-ray source
	- 1D detector
	- Fan beam geometry
	- Total scan time less than 5 second.
 25 second.

• Recent scanners: 2D detectors (cone beam)

Anti-scatter

Image quality

 $stochustic$

Signal to noise Artifacts

systematic

Ring artifacts: caused by damaged or miscalibrated detector pixels.

Beam hardening: deviation from the exponential law caused by the attenuation of a broad spectrum (thicker objects seem more transmissive than they should)

"Missing wedge": caused by an incomplete sinogram (also called limited angle tomography)
60° missing out of 180°

"Missing wedge": promising results using machine

Photon starvation: strongly absorbing features discard useful signal for the reconstruction of nearby areas

Dose and image quality

Iterative methods

Iterative methods

Iterative Reconstruction formulation
 $\overline{X^{\theta}}$ for grave slice
 $\overline{X^{\theta}}$ for \overline{X}^{θ} \overline{Y}^{θ} \overline{Y}^{θ} \overline{Y}^{θ} \overline{Y}^{θ} \overline{Y}^{θ} \overline{Y}^{θ} \overline{Y}^{θ} \overline{Y}^{θ} projection at $5 = M T$ $\int_{\mathcal{U}}^{\mathcal{U}} \text{angle } \theta$ $\frac{1}{\sqrt{\frac{1}{1000}}\sqrt{\frac{1}{1000}}}}$ M modes the summation process
as a vay passes through the sample M is sparse (full of Os) but its
(psudo) inverse is not sparse and it's big $S = MT$ Iterative methods break up the livear system in pieces. $f = \frac{1.200}{f}$ 5^{θ_2} = A^{θ_1} S° = $A^{\circ}T$ $\begin{array}{c} \begin{array}{|c|c|c|c|c|} \hline \end{array} & \begin{array}{|c|c|c|c|c|} \hline \end{array} & \begin{array}{|c|c|c|c|} \hline \end{array} & \begin{array}{|c|c|c|} \hline \end{array} & \begin{array}{$ # for one angle: j: elements of 7
(voxels) $S_{k}^{\theta} = \sum_{j} A_{kj}^{\theta} T_{j}$ k pixel index in Medical CT

Iterative Reconstruction formulation

Problem formula from a current tomogram estimate T, n

\nwhich is the new tomogram T, as close as possible to T, such that the constraint
$$
S^{\circ}
$$
-AT is satisfied?

\nwhich is the new tomogram T, as close as possible to T, such that the constraint S° -AT is satisfied?

\nHint: solve this system for a single k (and simple 0) at a time one ray at a time one upplied together that the connections found at different 0 are applied together after the ping through all the angles.

Constrained least square problem

Medical CT

$$
\mathbf{ART}
$$
\n
$$
T_{j} = T_{ij} - \frac{1}{2} \lambda_{k} A_{kj} \qquad (n_{s} \text{ sum over } k)
$$
\n
$$
app\left\{\n \begin{array}{l}\n \text{on standard: } \n \text{if } A_{kj}^{\circ} T_{j} = S_{k}^{\circ} = \n \frac{1}{2} A_{kj}^{\circ} (T_{ij} - \frac{1}{2} \lambda_{k} A_{kj})\n \end{array}\n \right.
$$
\n
$$
\lambda_{k} = \frac{2}{f_{k}^{2}} (R_{k}^{\circ} - \frac{1}{2} \sum_{j} (A_{kj}^{\circ}) \lambda_{k}
$$
\n
$$
\lambda_{k} = \frac{2}{f_{i}^{2}} (R_{j}^{\circ} - S_{k}^{\circ})
$$
\n
$$
\Rightarrow T_{j} = T_{oj} + \sum_{k} A_{kj} \underbrace{1}_{f_{j}^{2}} (A_{kj})^{r} (S_{k}^{\circ} - R_{k}^{\circ})
$$
\n
$$
\downarrow \text{otherwise for } m \text{ and } \downarrow \text{ and } \downarrow
$$

SART
\nSubstitute (44) into (4): the projection difference between magnitude
\n
$$
T = T_o + A^T (AA^T)^{-1} (5 - P)
$$

\n \sim diagonal matrix with inverse ray length
\n 2) compute $\Delta P^{\circ} = S^{\circ} - P^{\circ}$
\n \Rightarrow)=
\n \Rightarrow)=
\n $\Delta P^{\circ} = S^{\circ} - P^{\circ}$
\n \Rightarrow)=
\n $\Delta P^{\circ} = S^{\circ} - P^{\circ}$
\n \Rightarrow)=
\n $\Delta P^{\circ} = S^{\circ} - P^{\circ}$
\n $\Delta P^{\circ} = S^{\circ} - P^{\circ}$
\n $\Delta P^{\circ} = S^{\circ} - P^{\circ}$
\n $\Delta P^{\circ} = \frac{1}{2} \times \frac{1$