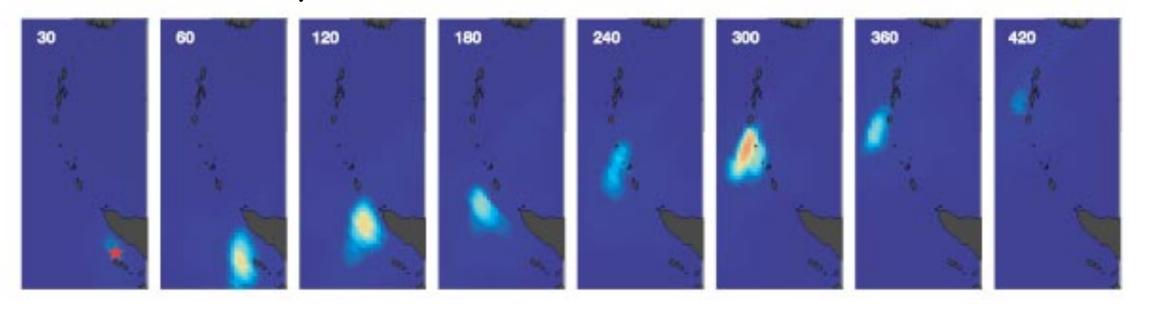
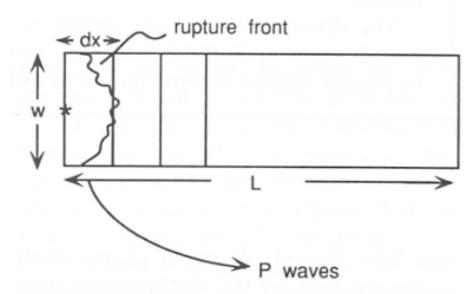


Haskell dislocation model


Haskell N. A. (1964). Total energy spectral density of elastic wave radiation from propagating faults, Bull. Seism. Soc. Am. **54**, 1811–1841

NORMAN A. HASKEL

Sumatra earthquake, Dec 26, 2004

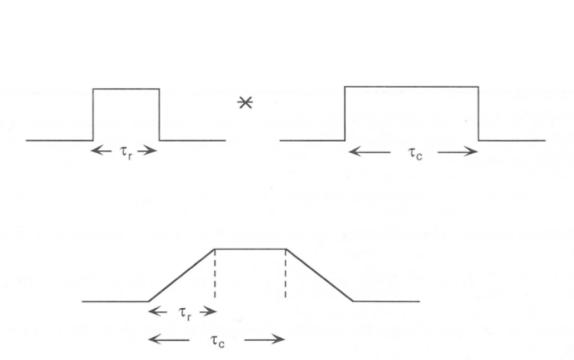

Ishii et al., Nature 2005 doi:10.1038/nature03675

Focal mechanisms

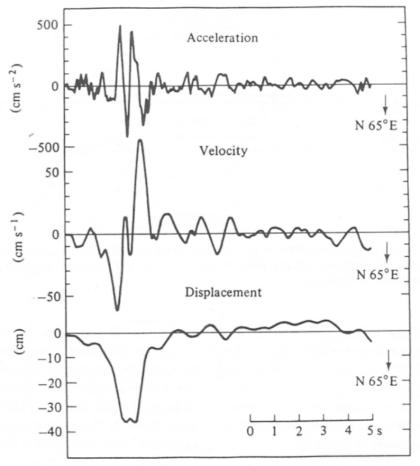
Haskell source model: far field

FIGURE 9.5 Geometry of a one-dimensional fault of width w and length L. The individual segments of the fault are of length dx, and the moment of a segment is m dx. The fault ruptures with velocity v_r .

$$\begin{split} &u_{r}(r,t) = \sum_{i=1}^{N} u_{i} \left(r_{i}, t - r_{i} / \alpha - \Delta t_{i}\right) = \\ &= \frac{R_{i}^{P} \mu}{4\pi\rho\alpha^{3}} W \sum_{i=1}^{N} \frac{\dot{D}_{i}}{r_{i}} \left(t - \Delta t_{i}\right) dx \approx \\ &\approx \frac{R_{i}^{P} \mu}{4\pi\rho\alpha^{3}} \frac{W}{r} \sum_{i=1}^{N} \dot{D}(t) * \delta \left(t - \frac{x}{v_{r}}\right) dx \approx \\ &\approx \frac{R_{i}^{P} \mu}{4\pi\rho\alpha^{3}} \frac{W}{r} \dot{D}(t) * \int_{0}^{L} \delta \left(t - \frac{x}{v_{r}}\right) dx = \\ &= \frac{R_{i}^{P} \mu}{4\pi\rho\alpha^{3}} \frac{W}{r} v_{r} \dot{D}(t) * B(t; T_{r}) \end{split}$$



Haskell source model: far field



$$u_r(r,t) \propto \dot{D}(t) * v_r H(z) \Big|_{t-x/v_r}^t = v_r \dot{D}(t) * B(t;T_r)$$

resulting in the convolution of two boxcars: the first with duration equal to the rise time and the second with duration equal to the **rupture time** (L/v_r)

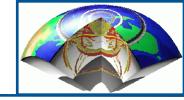
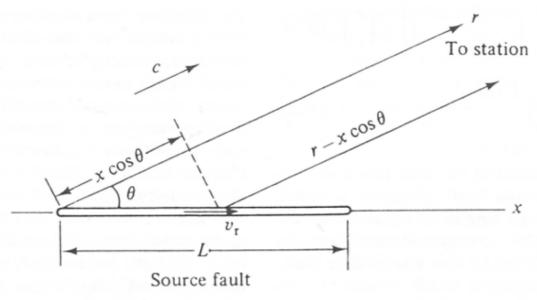
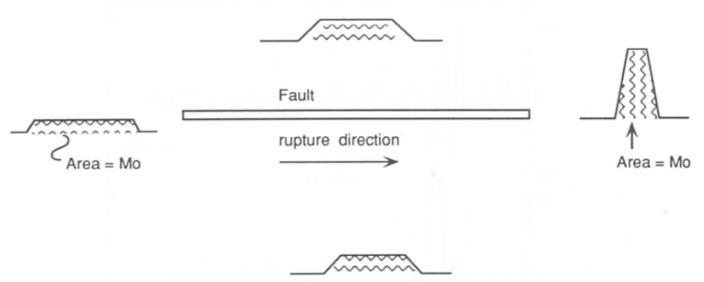

FIGURE 9.6 The convolution of two boxcars, one of length $\tau_{\rm c}$ and the other of length $\tau_{\rm c}$ ($\tau_{\rm c} > \tau_{\rm r}$). The result is a trapezoid with a rise time of $\tau_{\rm r}$, a top of length $\tau_{\rm c} - \tau_{\rm r}$, and a fall of width $\tau_{\rm c}$.

FIGURE 9.7 A recording of the ground motion near the epicenter of an earthquake at Parkfield, California. The station is located on a node for P waves and a maximum for SH. The displacement pulse is the SH wave. Note the trapezoidal shape. (From Aki, J. Geophys. Res. 73, 5359–5375, 1968; © copyright by the American Geophysical Union.)



Haskell source model: directivity


The body waves generated from a breaking segment will arrive at a receiver before than those that are radiated by a segment that ruptures later.

If the path to the station is not perpendicular, the waves generated by different segments will have different path lengths, and then unequal travel times.

$$T_{r} = \left[\frac{L}{v_{r}} + \left(\frac{r - L\cos\theta}{c}\right)\right] - \frac{r}{c} = \frac{L}{v_{r}} - \left(\frac{L\cos\theta}{c}\right) = \frac{L}{v_{r}} \left(1 - \frac{v_{r}}{c}\cos\theta\right)$$


FIGURE 9.8 Geometry of a rupturing fault and the path to a remote recording station. (From Kasahara, 1981.)

FIGURE 9.9 Azimuthal variability of the source time function for a unilaterally rupturing fault. The duration changes, but the area of the source time function is the seismic moment and is independent of azimuth.

Rupture velocity

Earthquake ruptures typically propagate at velocities that are in the range 70-90% of the S-wave velocity and this is independent of earthquake size. A small subset of earthquake ruptures appear to have propagated at speeds greater than the S-wave velocity. These supershear earthquakes have all been observed during large strike-slip events.

Rupture Velocity and Directivity: Rayleigh wave surface interface) Most important finite-source effect Mode II c_p 0 $c_R c_s$ energetically forbidden energetically allowed Mode III $v_r < c_s$ $v_r > c_s$

http://pangea.stanford.edu/~edunham/research/supershear.html

Focal mechanisms 5/8

Directivity example

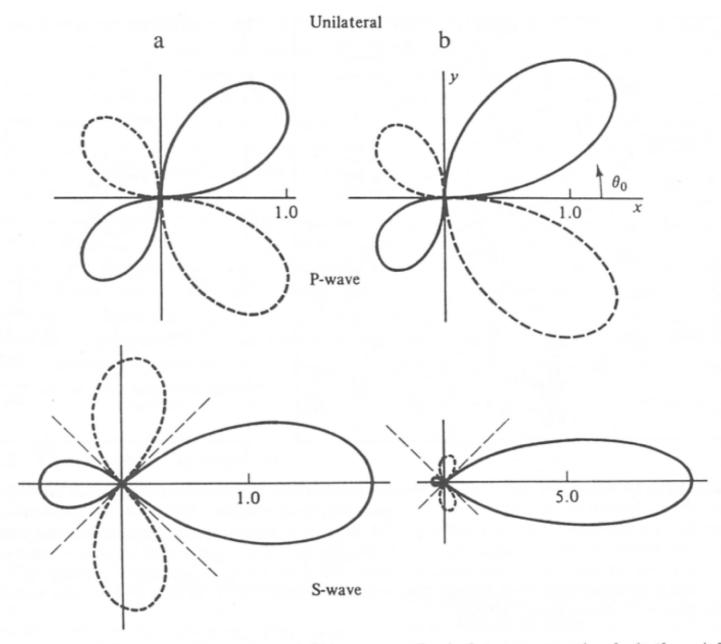


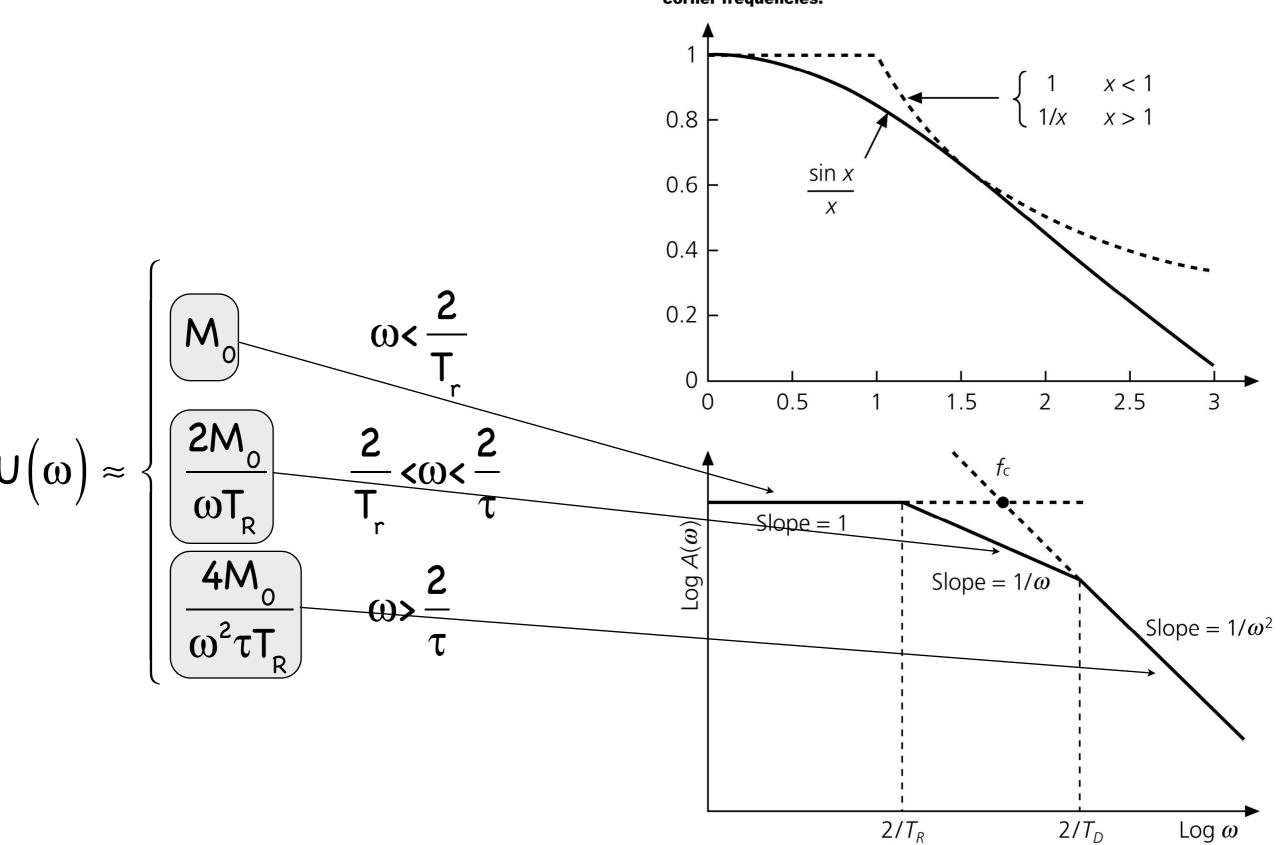
FIGURE 9.10 The variability of P- and SH-wave amplitude for a propagating fault (from left to right). For the column on the left $v_r/v_s = 0.5$, while for the column on the right $v_r/v_s = 0.9$. Note that the effects are amplified as rupture velocity approaches the propagation velocity. (From Kasahara, 1981.)

Source spectrum

The displacement pulse, corrected for the geometrical spreading and the radiation pattern can be written as:

$$u(t) = M_o \left[B(t; \tau) * B(t; T_R) \right]$$

and in the frequency domain:


$$\left| U\left(\omega \right) \right| = M_o \left| F\left(\omega \right) \right| = M_o \left| \frac{\sin \left(\frac{\omega \tau}{2} \right)}{\left(\frac{\omega \tau}{2} \right)} \right| \frac{\sin \left(\frac{\omega L}{v_r 2} \right)}{\left(\frac{\omega L}{v_r 2} \right)} \approx \begin{cases} M_o & \omega < \frac{2}{T_r} \\ \frac{2M_o}{\omega T_R} & \frac{2}{T_r} < \omega < \frac{2}{\tau} \\ \frac{4M_o}{\omega^2 \tau T_R} & \omega > \frac{2}{\tau} \end{cases}$$

Source spectrum (amplitude)

Figure 4.6-4: Approximation of the $(\sin x)/x$ function, and derivation of corner frequencies.

